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Phosphate reabsorption in the kidney: NaPi-IIb or not IIb
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Phosphate is an essential component of nucleic acids, cell
membranes and bones, and is important for enzymatic inter-
actions, synthesis of ATP and other signalling and metabolic
pathways. The level of inorganic phosphate (Pi) in serum is
tightly regulated involving intestinal uptake of dietary Pi, stor-
age in bone and excretion of excess Pi in the kidney. Even
slight disruptions in the balance of serum Pi can lead to major
disorders ranging from cardiovascular and kidney disease if
serum phosphate is too high to bone demineralisation if serum
Pi is too low [5]. Two protein families of Na-dependent Pi
transporters, SLC34A1, SLC34A2 and SLC34A3 (NaPi-IIa,
NaPi-IIb, NaPi-IIc) as well as SLC20A1 and SLC20A2 (Pit-1
and Pit-2) are central to maintaining Pi homeostasis [2]. Since
the molecular identification of these transporters, SLC34A1
and SLC34A3 have emerged as the ‘renal’ isoforms,
SLC34A2 as the ‘intestinal’ isoform and SLC20A1/2 as wide-
ly expressed ‘housekeeping’ transporters [2].

The main mechanism of regulating serum Pi is via modi-
fying the reuptake of Pi in the proximal tubule of kidneys.
SLC34A1 (NaPi-IIa) is the main transporter involved in Pi
reuptake, SLC34A3 (NaPi-IIc) plays an essential role during
growth whereas SLC20A2 (PiT-2) contributes to a lesser ex-
tent [7]. Pi reabsorption in the distal parts of the renal tubule,
‘fine-tuning Pi excretion in the urine’ has long been
established, though the molecular mediators of distal Pi up-
take have not been identified [1]. The findings from Carsten
Wagner’s lab published in this issue demonstrating the expres-
sion of SLC34A2 in distal parts of the renal tubule appear to
close this knowledge gap (Fig. 1).

In their comprehensive study, Sarah E. Motta and
Pedro Henrique Imenez Silva et al. compare the

expression of sodium phosphate transporters in kidneys
of humans, mice and rats. Not surprisingly, they find that
the most abundant transporter in all three species was
SLC34A1. SLC34A1 and SLC34A3 were expressed in
overlapping areas in the proximal tubule, whereas
SLC34A2 appears to co-localize with uromodulin in the
thick ascending loop of Henle and does not overlap with
the expression of SLC34A1 or SLC34A3.

Motta and Silva et al. also demonstrate that mice fed a high
Pi diet did not appear to have altered Pi transporter mRNA
levels compared with those fed a low Pi diet. They suggest
that adaptive changes in response to dietary Pi may occur at
the protein level, rather than at a transcriptional level in agree-
ment with previous reports [6]. Moreover, mice lacking
Slc34a2 and Slc34a3 did not show compensatory mRNA up-
regulation of other Pi transporters.

Finally, when kidney damage was induced in mice by ad-
ministering a high oxalate diet, a common murine model for
chronic kidney disease [3, 4], Motta and Silva et al. show that
whilst Slc34a1 and Slc34a3 are downregulated, these mice
upregulate Slc34a2. This finding may have interesting impli-
cations in managing hyperphosphataemia in patients with
chronic kidney disease. A first step will be to assess whether
patients with kidney disease show an upregulation in
SLC34A2. Moreover, it will be interesting to see how drugs
that increase urinary Pi excretion and primarily act in the distal
tubule such as diuretics affect intracellular location or trans-
port functions of SLC34A2.

To conclude, these findings are an important contribution
to the overall knowledge of Pi homeostasis, particularly with
regard to the expression of SLC34A2 in the kidney and the
comparative mapping of the different Pi transporters. It would
be commendable to expand similar studies to include groups
of various ages throughout the entire lifespan to monitor
growth-related expression changes. Such information is cru-
cial to evaluate the complex phenotypes presented in patients
with mutated Pi transporters and to understand how our body
strikes the fine balance between too little Pi at young age and
too much Pi during adulthood.
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Fig. 1 Pi reabsorption in the
kidney of humans, rats and mice.
a Data adapted from Motta and
Silva et al. illustrates that
SLC34A1 is by far the most
abundant sodium phosphate
transporter in the kidneys of all
three species examined. In mice
with oxalate-induced kidney
damage, the proportion of
Slc34a2 increases considerably. b
SLC34A1, SLC34A3 and
SLC20A2 are expressed in cells
in the proximal tubule (PCT),
whereas SLC34A2 co-localizes
with uromodulin in cells of the
thick ascending loop of Henle
(TAL)
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