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Abstract 

Background: Protein-protein interaction (PPI) is very important for many biochemical processes. Therefore, accurate 
prediction of PPI can help us better understand the role of proteins in biochemical processes. Although there are 
many methods to predict PPI in biology, they are time-consuming and lack accuracy, so it is necessary to build an 
efficiently and accurately computational model in the field of PPI prediction.

Results: We present a novel sequence-based computational approach called DCSE (Double-Channel-Siamese-
Ensemble) to predict potential PPI. In the encoding layer, we treat each amino acid as a word, and map it into an 
N-dimensional vector. In the feature extraction layer, we extract features from local and global perspectives by 
Multilayer Convolutional Neural Network (MCN) and Multilayer Bidirectional Gated Recurrent Unit with Convolu-
tional Neural Networks (MBC). Finally, the output of the feature extraction layer is then fed into the prediction layer to 
output whether the input protein pair will interact each other. The MCN and MBC are siamese and ensemble based 
network, which can effectively improve the performance of the model. In order to demonstrate our model’s perfor-
mance, we compare it with four machine learning based and three deep learning based models. The results show 
that our method outperforms other models in all evaluation criteria. The Accuracy, Precision, F1 , Recall and MCC of our 
model are 0.9303, 0.9091, 0.9268, 0.9452, 0.8609. For the other seven models, the highest Accuracy, Precision, F1 , Recall 
and MCC are 0.9288, 0.9243, 0.9246, 0.9250, 0.8572. We also test our model in the imbalanced dataset and transfer our 
model to another species. The results show our model is excellent.

Conclusion: Our model achieves the best performance by comparing it with seven other models. NLP-based coding 
method has a good effect on PPI prediction task. MCN and MBC extract protein sequence features from local and 
global perspectives and these two feature extraction layers are based on siamese and ensemble network structures. 
Siamese-based network structure can keep the features consistent and ensemble based network structure can effec-
tively improve the accuracy of the model.
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Background
Protein-protein interaction (PPI) has always occupied 
an important position in the field of proteomics science 
because it plays a key role in the foundation of biologi-
cal processes. The traditional research of PPI was mainly 

carried out by laboratory-based experimental techniques, 
such as yeast two-hybrid screening [1], X-ray crystal-
lography, protein chips, and affinity purification [2] 
[3]. These methods have been used to study PPI at the 
molecular level and have generated a substantial amount 
of data about potentially interacting protein pairs, but 
these biologically based methods are time-consuming 
and expensive [3]. To solve these disadvantages, compu-
tational and deep learning based methods have gradually 
begun to be applied to the field of predicting PPI.
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In recent years, many new methods have been pro-
posed to make breakthroughs in the field of PPI. These 
deep learning based studies can be roughly divided into 
three categories [4] according to the representation of 
proteins: protein structure-based, sequence-based and 
both of all.

Previous studies have shown that only using protein 
sequence information can predict PPI tasks well [4–6]. 
In these studies, the encoding process of the protein 
sequence mainly relies on the position-specific scoring 
matrix (PSSM), Conjoint Triads (CT), Auto-Covariance 
(AC), and Local Descriptor (LD). Although these four 
encoding methods have shown ability in the PPI predic-
tion task, there are still some disadvantages. Previous 
studies [7] have pointed out that getting PSSM matrix is 
time-consuming, so it is almost impossible to perform 
PSSM encoding on large-scale datasets. CT, AC, and LD 
use 343, 210 and 630 dimensional vectors to represent 
the feature of a protein separately. However, these fea-
tures are all about the physicochemical features of amino 
acids. In some other works [8, 9], one-hot vectors are 
used to encode different amino acids, but the shortcom-
ing is that the sparse feature matrix of one-hot encoding 
consumes memory.

Recently, natural language processing technology(NLP) 
has developed rapidly. Considering that the amino 
acid sequence is similar with language sentences, some 
researchers [10–15] have performed NLP technology on 
PPI tasks and obtained good results. Inspired by Nikhil 
et al’s work [12], we treat each amino acid as a word and 
map it into an N-dimensional vector, so the amino acid 
with length L can be encoded into a matrix with the size 
of L x N, where L is the length of protein sentence, and N 
is the encoding vector dimension of each amino acid.

In recent years, the siamese network and ensemble net-
work performed well in the field of deep learning. Yiwei 
Li’s work [4] utilizes CNN and RNN together to extract 
protein sequence information from two perspectives to 
compose an ensemble network. Xiaodi Yang’s work [16] 
employs a siamese CNN architecture with two identical 
CNN sub-networks that share the same parameters to 
capture complex relationship between two proteins.

In this paper, we present a novel sequence-based com-
putational approach called DCSE (Double-Channel-Sia-
mese-Ensemble) to predict potential PPI. Specifically, we 
treat the amino acid as a word and map the word into an 
N-dimension vector. Then we employ Multilayer Convo-
lutional Neural Network (MCN) and Multilayer Bidirec-
tional Gated Recurrent Unit with Convolutional Neural 
Networks (MBC) to extract the protein feature from two 
perspectives. MCN can further extract local features of 
protein sequences by setting small kernel sizes. MBC 
aims to extract the protein sequence information from 

the global perspective by extracting the protein sequence 
features from left-to-right and right-to-left simultane-
ously. The MCN and MBC are siamese and ensemble-
based networks. We show the superiority of our model 
performance by comparing it with four machine learning 
based methods and three deep learning based methods, 
and conduct ablation experiments to analyze the impor-
tance of different components in DCSE model.

Result
Dataset
The original data comes from String v11 [17] dataset. 
There are 8397 protein sequences hence it can compose 
83972 protein pairs. All the sequences are homo sapiens 
proteins. However, there are only 117,953 protein pairs 
that are verified protein protein interaction pairs. How 
select the negative samples is always important in PPI 
prediction field because there are some pairs that indeed 
interact with each other but haven’t been verified by the 
biological experiments. To guarantee the credibility of 
the negative samples, we use the Dissimilarity Threshold 
[18] method to select the negative samples. The core idea 
of the Dissimilarity Threshold is that if sequence A and 
sequence B share more than 40% similarity, and sequence 
A and sequence C are verified as interaction pairs, then 
sequence B and sequence C is not considered the nega-
tive sample. The idea behind this method is that two pro-
teins have higher similarities, they are more likely to be 
similar in their 3D structure. Note that PPI occurs in the 
3D structure, so two proteins that are similar in the 3D 
structure tend to interact with the same protein. So we 
first remove the sequence that shares similarities of more 
than 40% by CD-HIT [19] to guarantee the sequences 
are not homologous. After this step, there are only 7390 
protein sequences remaining and there are only 65,232 
verified interaction protein pairs. After removing the 
homologous sequences, we use random sampling to get 
65,232 negative samples. So our dataset has 7390 pro-
teins, 65,232 positive samples and 65,232 negative sam-
ples. We follow the 7:3:1 division ratio to divide all the 
dataset into training set, validation set, and testing set. In 
addition, previous work [20] pointed out that the PPI pre-
diction is an inherently imbalanced problem, so we make 
up another three 1:3, 1:5, and 1:10 imbalanced datasets 
to further explore the performance of our method in the 
imbalanced situation.

Evaluation Metrics
The prediction of PPI is regarded as a binary classification 
task. In order to evaluate the model comprehensively, we 
adopt five evaluation metrics, including Accuracy (Acc), 
Precision (Pre), Recall, F1 score and MCC. Accuracy is 
the percentage of correct predictions. Precision reflects 
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the quality of a positive prediction. Recall is the measure 
of our model correctly identifying true positives. F1 score 
and MCC consider the performance on the positive sam-
ples and the negative samples together. Their calculation 
formula is as follows.

Where true positives (TP) denote the number of interact-
ing PPI identified correctly. True negatives (TN) denote 
the non-PPI identified correctly. False positives (FP) 
denote the number of incorrectly predicted PPI. False 
negatives (FN) denote the number of incorrectly pre-
dicted non-PPI.

Implementation
Our model is implemented with Pytorch-1.9.0 and 
trained with GeForce RTX 3090 GPU support. We per-
form 5-fold cross-validation and record the average of 
the 5-fold cross-validation and the standard deviations. 
The main hyperparameters are explored with grid search, 
which is used to get the optimal hyperparameters. The 
hyperparameters and the optimal values are shown in 
Table 1.

Comparison of the model performance
To further verify the performance of our model, we 
compared it with other current deep learning methods 
including SSC [21], DNN-XGB [22], DeepPPI [23], and 
traditional machine learning methods including Naive 
Bayes (NB) [24], K-nearest neighbors with K=5 (KNN) 
[25], Random Forest (RF) [26], XGBoost [27]. The selec-
tion criteria for these deep learning based models are 
that they are all sequence-based, and the source code can 
be obtained. The innovation of SSC is that it proposes 
a new encoding method, and finally turns a pair of pro-
tein sequences into a (1800+ 1800)× 3 matrix with 2D 
CNN to further extract the feature. DNN-XGB uses the 
CT-AC-LD encoding method to extract features through 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2× Precision × Recall

Precision + Recall

(5)M CC =
TP × TN − FN × FP

√

(TP + FP) × (TP + FN ) × (TN + FP) × (TN + FN )

DNN (Deep-neural-network) and finally passes through 
the XGB classifier. When we retrained the DNN-XGB 
model, the phenomenon of under-fitting occurs, that is 
because there are too many drop out layer, so we cancel 
the dropout layer in DNN used in the original code, and 
only keep the dropout layer in the prediction layer. Deep-
PPI employs deep neural networks to effectively learn 
the representations of proteins from common protein 
descriptors such as Amino Acid Composition (AAC), 
DipeptideComposition (DC), Composition, Transition, 
Distribution, Quasi-sequence-order (QSOD). The com-
parative results are shown in Fig. 1.

According to Fig.  1, it is clear that the deep learning 
based methods are much better than the machine learn-
ing based methods. The Accuracy of machine learning 
based methods is from 0.5016 to 0.8315, while the Accu-
racy of deep learning based methods is from 0.7722 to 
0.9303. In terms of deep learning methods, DCSE (Our) 
obtains the best performance among all the evaluation 
indicators. In addition, we also use the same protein fea-
tures used in DNN-XGB called DCSE (CT-AC-LD), and 
the performance of DCSE (CT-AC-LD) is also shown 
in Fig.  1, from which we can see the performance of 
DCSE (CT-AC-LD) is obviously not as good as DCSE 
because all evaluation indicators of DCSE (CT-AC-LD) 
have declined. We also use SSC encoding method and 
the result is also shown in Fig.  1. The result shows that 
DCSE (SSC) is also not good as DCSE. Because the SSC 
encoding method only considers the statistical infor-
mation of the amino acid such as the frequency of each 
amino acid, which is hard to fully reflect the information 
of the protein sequence. In addition, we also change our 
feature extraction layer to the one used in the DeepPPI 
and the result is shown in Fig. 1 called DCSE (DeepPPI). 
The result shows that our methods outperform the DCSE 
(DeepPPI). The reason is that DeepPPI ignores the global 
information of protein sequence, but the MBC layer is 
employed to extract the global information in our model. 
In addition, we record the confidence interval for all the 
methods, and conduct hypothetical test between DCSE 

Table 1 The optimal value of hyperparameters

Learning rate 0.01

Batch size 64

Activation function LeakReLu(0.3)

Dropout rate 0.2

Weight initialization uniform

Weight regularization L2

Optimizer Adam

kernel size 3

β 0.5
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and DNN-XGB, which can be seen in supplementary 
material.

We also plot the AUC-ROC curve and Precision-Recall 
curve as shown in Figs. 2 and 3. The area of AUC-ROC 
curve and Precision-Recall curve is 0.9763 and 0.9701, 
which is the best among all the methods.

Comparison of the combination of different channels
In order to get the complicated information of protein 
sequence, we design two channels to extract the local fea-
ture and global feature respectively. To explore the influ-
ence of each channel on PPI, we made a comparison for the 

combination of different channels. We build two reference 
models with single channel separately. The architecture 
except the channel setting of these two models is the same 
with our proposed model. The results are shown in Fig. 4, 
from which we can see that the performance of the combi-
nation of both two is better than any single one of them.

Comparison of the combination of different β
We have shown that using two channels can achieve 
better results, but what is the most suitable ratio of two 
channels to achieve the best performance is still need 

Fig. 1 The comparison results of the eight models

Fig. 2 The AUC-ROC curves of different methods
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Fig. 3 The Precision-Recall curves of different methods

Fig. 4 The impact of different channel combinations on PPI task

Fig. 5 The effect of different β values on the model performance
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to explore. β is the hyperparameter to balance the con-
tribution of two channels. We designed a series of com-
parative experiments to explore the best value of the 
hyperparameter. We take it from 0.1 to 0. 9. The result 
of our experiment is shown in Fig.  5. Our results show 
that the metrics of Accuracy, F1 and MCC all achieve the 
best value when β is set to 0.5, which means that the two 
channels have the same contribution on the PPI task.

Comparison of different value of K and N
K determines how many contiguous amino acids as the 
smallest unit, and N determines how many dimensions 
this smallest unit is mapped to. More details can be found 
in section 4.1. We test K in [1,2,3,4] and N in [20,25,30]. 
Note that when the K exceeds 5, there are too many dif-
ferent amino acid combinations(225 ), which will greatly 
increase the training time and memory consumption. 
Then we get 3*4 different hyperparameter combinations. 

This experiment is performed under the β=0.5 and the 
result of our experiment is shown in Table 2. The model 
achieves the best result when N is 25 and K is 1 because 
Accuracy, F1score, Recall, MCC are all highest among all 
the different K and N.

Comparison of different encoding method
To verify whether our encoding method is effective, we 
choose the currently widely used one-hot and CT-AC-
LD encoding to verify that our encoding method is effec-
tive. Specifically, the input of one-hot vector encoding is 
a 1000*22 matrix. For CT-AC-LD, the combined input 
dimension is 1183(343+210+630), we use 0 as padding, 
change the input dimension to 1200, and then resize 
it to 40*30 as the input of the model. The result of our 
experiment is shown in Fig. 6, from which we can see our 
encoding method achieves the best performance among 
the three encoding methods.

Table 2 The effect of different the K and N

ACC Pre F1 Recall MCC

N=20&K=1 0.8905±0.0009 0.8491±0.0007 0.8883±0.0011 0.9312±0.0013 0.7846±0.0021

N=20&K=2 0.8884±0.0007 0.9201±0.0019 0.8747±0.0005 0.8337±0.0017 0.7777±0.0017

N=20&K=3 0.8758±0.0010 0.8739±0.0014 0.8659±0.0007 0.8581±0.0013 0.7504±0.0032

N=20&K=4 0.8751±0.0008 0.8735±0.0009 0.8651±0.0010 0.8569±0.0009 0.7491±0.0048

N=25&K=1 0.9303±0.0007 0.9091±0.0002 0.9268±0.0013 0.9452±0.0021 0.8609±0.0066
N=25&K=2 0.9172±0.0011 0.8958±0.0005 0.9131±0.0018 0.9311±0.0015 0.8347±0.0027

N=25&K=3 0.9021±0.0014 0.8645±0.0007 0.8994±0.0010 0.9372±0.0021 0.8068±0.0009

N=25&K=4 0.9137±0.0003 0.8912±0.0010 0.9095±0.0009 0.9287±0.0020 0.8277±0.0018

N=30&K=1 0.9101±0.0032 0.8617±0.0009 0.9091±0.0021 0.9619±0.0019 0.8255±0.0039

N=30&K=2 0.9071±0.0007 0.8902±0.0021 0.9018±0.0019 0.9137±0.0024 0.8138±0.0015

N=30&K=3 0.8981±0.0005 0.8667±0.0007 0.8945±0.0008 0.9241±0.0019 0.7978±0.0014

N=30&K=4 0.9031±0.0029 0.8767±0.0018 0.8989±0.0021 0.9223±0.0009 0.8069±0.0020

Fig. 6 The effect of different encoding methods on the results
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Performance on the imbalanced data
In order to simulate the real situation as much as 
possible, we constructed three imbalanced datasets 
with positive and negative sample ratios of 1:3, 1:5, 
and 1:10, respectively. The experimental results are 
shown in Tables 3, 4, and 5. As the ratio of negative to 
positive samples increases, the accuracy of almost all 
models increases, but this is meaningless because the 
accuracy cannot accurately reflect the performance of 
the model on an imbalanced dataset. We focus more 
on F1 score and MCC. Both of them comprehensively 

consider the prediction effect of the model on posi-
tive samples and negative samples. The final result 
proves that our model is less affected by imbalanced 
data, The F1 score on the three imbalanced datasets is 
0.9132, 0.9088, 0.9033, and the MCC is 0.8844, 0.8904, 
0.8935. However, F1 socre and MCC of all other mod-
els decreased with increasing negative samples. Tak-
ing DNN-XGB as an example, the values of F1 score on 
three imbalanced datasets are 0.8994, 0.8703, 0.7994, 
and the values of MCC on three imbalanced datasets 
are 0.8672, 0.8467, 0.7865.

Table 3 The performance on the 1:3 imbalanced dataset

ACC Pre F1 Recall MCC

DCSE 0.9565±0.0072 0.9012±0.0123 0.9132±0.0021 0.9256±0.0241 0.8844±0.0131
DeepPPI 0.8696±0.0057 0.7293±0.0184 0.7456±0.0122 0.7639±0.0312 0.6243± 0.0408

DNN-XGB 0.9507± 0.0019 0.9194±0.0033 0.8994±0.0123 0.8803±0.0055 0.8672±0.0052

KNN 0.7825±0.0026 0.5815±0.0071 0.5185±0.0032 0.4678±0.0047 0.3838± 0.0064

XGB 0.8813±0.0016 0.8253± 0.0009 0.7379±0.0031 0.6672±0.0071 0.6686±0.0049

NB 0.3387±0.1767 0.2804±0.0602 0.4267±0.0503 0.8928± 0.2143 0.0444±0.0888

RF 0.8690±0.0014 0.9148± 0.0019 0.6675±0.0122 0.5255 ± 0.0053 0.6286± 0.0045

SSC 0.8234±0.0017 0.6419±0.0021 0.6363±0.0019 0.6440± 0.0117 0.5242± 0.0043

Table 4 The performance on the 1:5 imbalanced dataset

ACC Pre F1 Recall MCC

DCSE 0.9693±0.0013 0.9015±0.0003  0.9088±0.0002 0.9163±0.0035 0.8904±0.0022
DeepPPI 0.9052±0.0046 0.7300±0.0281 0.7087±0.0094 0.6901±0.0022 0.6532±0.0124

DNN-XGB 0.9584±0.0003 0.9079±0.0006 0.8703±0.0014 0.8358±0.00425 0.8467± 0.0014

KNN 0.8334±0.0006 0.5017±0.0027 0.4043±0.0132 0.3386±0.0054 0.3198±0.0039

XGB 0.9101±0.0005 0.8218±0.0005 0.6904±0.0170 0.5953±0.0028 0.6513±0.00226

NB 0.2773±0.1207 0.1905±0.0471 0.3138±0.0012 0.8906±0.2187 0.0380± 0.0760

RF 0.8996±0.0008 0.9266±0.0030 0.5901±0.0021 0.4329±0.0053 0.5925±0.0040

SSC 0.8894±0.0013 0.6224±0.0231 0.7128±0.0211 0.8571±0.0001 0.6647± 0.0005

Table 5 The performance on the 1:10 imbalanced dataset

ACC Pre F1 Recall MCC

DCSE 0.9822±0.0017 0.8952±0.0012 0.9033±0.0002 0.9115±0.0102 0.8935±0.0080
DeepPPI 0.9165±0.0093 0.2526±0.3094 0.2238±0.0741 0.20093±0.0461 0.2099±0.2572

DNN-XGB 0.9668±0.0004 0.8903±0.0022 0.7994±0.0123 0.7255±0.0038 0.7865±0.0031

KNN 0.8995±0.0007 0.3864±0.0073 0.2404±0.0013 0.1749±0.0129 0.2127±0.0101

XGB 0.9444±0.0003 0.8173±0.0013 0.6225±0.0201 0.5028±0.0045 0.6149±0.0030

NB 0.2933±0.2207 0.2105±0.0471 0.3037±0.1221 0.8932±0.1186 0.0300±0.0600

RF 0.9375±0.0002 0.9355±0.0027 0.4962±0.0013 0.3377±0.0036 0.5411±0.00231

SSC 0.8883±0.0212 0.4422±0.0013 0.5702±0.1072 0.8616±0.1009 0.5601±0.0312
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Performance on another species
To further verify the generalization of the model, we 
utilize S. cerevisiae-benchmark dataset as an inde-
pendent test dataset, which comes from previous work 
[28] and contains 11,188 protein pairs including 5594 
positive, 5594 negative pairs. The protein pairs with 
sequence identities of 40% or higher were removed. 
To select the negative there are two principles: (1) 
the number of negative pairs is equal to the number 
of positive pairs; and (2) the two proteins in a nega-
tive pair do not share subcellular localization. We fol-
low the 8:2 division ratio to divide it into a training set 
and a test set. Note that no hyperparameter needs to 
be adjusted so the validation set is needless. Because 
of the natural differences between human proteins and 
cerevisiae proteins, only training on human proteins 
and then testing on cerevisiae cannot fully reflect the 
performance of the model. In order to better prove the 
generalization of the model, we freeze all the param-
eters except for the prediction layer and just train the 

prediction layer in the training set of cerevisiae. The 
result is shown in Table  6. Our model also obtains 
excellent performance on the cerevisiae species by 
training the feature extraction layer in the homosapi-
ens dataset only, which reflects our model has good 
generalization.

Conclusion
In this paper, we propose the DCSE model to predict PPI 
based on protein sequence. A comparison with seven 
other models is made and the result shows that our model 
achieves the best results on the same dataset. Through 
our experiments, we found that NLP-based encoding 
methods can achieve good results on PPI tasks. MCN 
and MBC extract protein sequence features from local 
and global perspectives and these two feature extraction 
layers are based on siamese and ensemble network struc-
ture. Siamese-based network structure can keep the fea-
tures consistent and ensemble-based network structure 
can effectively improve the accuracy of the model.

Table 6 The performance on the S.cerevisiae-benchmark

ACC Pre F1 Recall MCC

0.9602±0.0001 0.9856±0.0002 0.9591±0.0013 0.9340±0.0100 0.9217±0.0016

Fig. 7 DCSE consists of three main parts, which are the embedding layer, the feature extraction layer, the prediction layer. The input of our model is 
protein sequence1 and protein sequence2. Both the sequence is truncated the first 1000 amino acids if the sequence is more than 1000 or padded 
to 1000 if the sequence is less than 1000. In the embedding layer, each amino acid is mapped into a 25-dimensional vector so each protein can be 
represented by a 1000*25 feature matrix(S1, S2). Both the S1 and S2 are then fed into the siamese-based feature extraction layer. Then the output of 
the feature extraction layer is concatenated together and put into the prediction layer which finally gives the predictive result of our model
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Even though our model achieves good results, there 
are still some shortcomings can be improved. Our model 
only uses sequence features instead of structural features, 
and the structure features usually contains more infor-
mation. We look forward to future work to extract pro-
tein features from the perspective of protein structure.

Methods
The proposed architecture of DCSE is shown in Fig.  7, 
which consists of an embedding layer, two feature extrac-
tion layers (MCN, MBC), and a prediction layer. Spe-
cifically, the embedding layer aims to turn amino acid 
sequences with different lengths into the same dimension 
feature matrix. The feature extraction layer is introduced 
to further extract useful local features and global features 
of protein sequence. Finally, the outputs of the extraction 
layer are combined and put into the prediction layer to 
predict whether these two proteins would interact with 
each other. A detailed description of each part of DCSE is 
made in the following section.

Embedding layer
Regarding each amino acid as a word, we can map each 
amino acid into the N-dimensional space to encode 
the protein sequence. Specifically, before inputting the 
sequence into our model, our preprocessing is to convert 
each amino acid into a token, and each token is mapped 
to the N-dimension initialized with learnable parameters 
from a normal distribution. We fix the length of protein 
sequence with 1000. We analyze the length distribution 

which is shown in Fig. 8, and about 86% of the protein 
sequence length is less than 1000, so we truncate the first 
1000 amino acids to reserve the majority of the sequence 
information. If the length is greater than 1000, we trun-
cate the first 1000 amino acids, and if the length is less 
than 1000, we perform the padding operation. Assum-
ing a protein sequence with 950 amino acids, when the 
raw sequence is input into the embedding layer, it is first 
transformed to a feature matrix with a size of 950*N. 
Then we use a 50*N matrix with all the values being set 
to 0, which is concatenated with the 950*N matrix to 
compose a 1000*N matrix. By the above encoding pro-
cess, a protein feature matrix with a fixed dimension 
of 1000*N is obtained. We test N to be 20,25,30 and 
find that when N is set to 25, our model gets the best 
performance.

It is worth mentioning that in Nikhil et al’s work [12], 
they treat K consecutive amino acids as the smallest unit 
(K-mer) and map the K-mers together to an N-dimen-
sional space. Specifically, in the MVMRQAGP protein 
sequence, if K is 2, then MV, VM, MR, RQ, QA, AG, GP 
are the smallest units, and these smallest units which 
constitute the representation of protein sequence will be 
mapped to the N-dimensional space. We also test the dif-
ferent values of K in [1,2,3,4] and find that when K is set 
to 1 our model obtains the best performance.

Feature Extraction Layer
The sequence of amino acid residues is determined by 
the sequence of the genetic code on the gene, and adja-
cent amino acids are linked by peptide bonds, so the 
local structure of protein sequence is important. Besides, 
PPI occurs in 3D space and the 3D structure of protein 
is completed through the folding of amino acid chains. 
Non-adjacent amino acids in the amino acid sequence 
may also be adjacent in the 3D space through folding, 
resulting in mutual influence. Therefore, the features 
of non-adjacent amino acids are also important. In this 
work, we design two channels to extract the local and 
global features of protein sequence in parallel. One chan-
nel for local feature extraction is Multilayer Convolu-
tional Neural Network (MCN). The other one for global 
feature extraction is Multilayer Bidirectional Gated 
Recurrent Unit with Convolutional Neural Networks 
(MBC). Convolutional Neural Networks (CNN) and Gate 
Recurrent Unit (GRU) all have shown good performance 
for extracting protein features in recent studies [29, 30].

We apply CNN to learn the features of adjacent amino 
acids and use GRU to learn the global sequence features. 
The major component of MBC is GRU, whose special 
advantage is to capture the long-distance dependence 
of non-adjacent amino acids. GRU integrates all the fea-
tures of each amino into the output matrix after some Fig. 8 The length distribution of our dataset
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processes, so the output of GRU contains the entire 
sequence information of the given protein. The main 
part of MCN is 1D CNN, which can learn from the raw 
sequence data directly and map amino acid features to 
a higher-dimensional space so that we can obtain more 
complicated biological information. In addition, by 
adjusting the parameter kernel and stride [31], 1D CNN 
can put more attention to the local feature so we can 
obtain more local protein features. After getting the local 
feature and global feature from two channels respectively, 
we concatenate the output of MCN and MBC together to 
obtain the final prediction through prediction layer.

MCN Layer
MCN includes a four-layer CNN, and each layer includes 
a 1D CNN, a BatchNorm layer, a Max-pooling layer. The 
input of MCN is the protein feature matrix S ∈ R1000∗N . 
Finally, the output of the four-layer CNN is input to the 
flatten layer and the liner tranformation layer, and the 
final output is a 256-dimensional vector.

CNN has advantages in local perception, which can 
ensure that the convolution kernel can fully consider 
local features [32]. 1D convolution is majorly used where 
the input is sequential such as text or audio [33], which is 
very suitable for protein sequences. The formula for the 
operation of the 1D convolution is defined as follows:

(6)

O(i, j) = f

Lr−1

m=0

Lc−1

n=0

x(i +m, j + n) ∗ w(m, n)+ b

Where O(i, j) represents the convolution operation result 
of the i-th row and j-th colomn located in the S. f(x) is 
the LeakyRelu activation function with setting negative 
slope=0.3. x is the input of 1D CNN, and w(m, n) is the 
value of the m-th row and the n-th column in the convo-
lutional kernel matrix. Lr and Lc represent the row height 
and column width of the convolution kernel matrix (w) 
respectively.

The BatchNorm layer and Max-pooling layer are added 
after the 1D CNN is to standardize the output of the 1D 
CNN and avoid overfitting of the model. The MCN layer 
is shown in Fig. 9.

MBC Layer
MBC Layer is composed of a 1D CNN, and a bidirectional 
two-layer GRU. The input of MBC is the protein feature 
matrix S ∈ R1000∗N . 1D CNN aims to map the dimension 
of the feature to a higher dimension in the MBC layer. The 
output of bidirectional two-layer GRU is finally input into 
the flatten layer and liner transofrmation layer. Finally, the 
output of MBC is a 256-dimensional vector.

Both LSTM and RNN are classic models in the NLP 
field. RNN has gradient explosion and gradient disap-
pearance phenomena [34], which makes the algorithms 
unsuitable to handle long sequences. The model structure 
of LSTM is complicated [35], which includes an input 
gate, forget gate, and output gate, so the training time is 

(7)f (x) =
{

x x > 0
0.3 ∗ x x ≤ 0

Fig. 9 MCN includes 4 layers Conv1D, BatchNorm layer, Max-pooling layer. The output of MCN is a 256-dimensional vector
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too long. Therefore, we use the GRU-based model. GRU 
is a simplified version of LSTM and a special form of 
RNN. Unlike the complex network structure of LSTM, 
GRU combines the input gate and forgetting gate into 
an update gate, so the model parameters are reduced. 
One of the cores of GRU is gate mechanisms, which 
can effectively alleviate the time-consuming problem of 
LSTM. GRU has two inputs, one is the current amino 
acid feature, and the other is the hidden feature of previ-
ous amino acid. The processing flow of the two inputs is 
shown below.

Where ht is the hidden feature of t-th amino acid. xt is 
the feature of t-th amino acid. ht−1 is the hidden feature 
of the (t-1)-th amino acid in GRU or the initial hidden 
state at time 0. rt , zt , nt are the reset, update, and new 
gate, respectively. σ is the sigmoid function, * is the had-
amard product, and bir , bhr , biz , bhz , bin , bhn are the bias.

Although GRU can obtain good results on PPI tasks, 
the drawback is that it extracts sequence feature from 

(8)rt = σ
(

WirSt + bir +Whrh(t−1) + bhr
)

(9)zt = σ
(

WizSt + biz +Whzh(t−1) + bhz
)

(10)
nt = tanh

(

WinSt + bin + rt ∗
(

Whnh(t−1) + bhn
))

(11)ht = (1− zt) ∗ nt + zt ∗ h(t−1)

one side to another side. When the sequence is too long, 
the phenomenon of Long-Term Dependencies [36] will 
appear and affect the predictive accuracy of the model. 
Bidirectional GRU extracts feature from the left and the 
right of the sequence at the same time, which can solve 
the problem of Long-Term Dependencies. The process-
ing flow of Bidirectional Gated Recurrent Unit (BIGRU) 
and standard GRU is almost the same, but the difference 
is that ht has two parts from left to right and from right to 
left. The basic GRU and BIGRU are shown in Fig. 10 and 
the calculation method of BIGRU can be expressed as:

Where GRU(S, H) indicates the mentioned GRU network 
to process the sequence from one side to another side, St 
indicates the t-th amino acid feature, Ht−1 is the output 
feature of the (t-1)-th amino acid, and bt is the bias of the 
state of the hidden layer.

Siamese network
Siamese network was first proposed for signature and 
image matching [32], in which different inputs are 

(12)
−→
Ht = GRU

(

St ,
−→
H t−1

)

(13)
←−
Ht = GRU

(

St ,
←−
H t−1

)

(14)Ht = pt
−→
H t + qt

←−
H t + bt

Fig. 10 The inner structure of GRU and our MBC layer. The output of MBC is a 256-dimensional vector
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processed by the same network. Unlike other structures, 
the weights between the same networks are shared, and 
the parameters of the two networks are updated simulta-
neously. In the field of face recognition [37, 38], the input 
is the face picture information of two people, and the two 
networks respectively extract different parts of the two 
face pictures. Similar ideas can also be used in PPI work. 
Previous work [5] put two protein sequence features into 
two same models which share weights. Specifically, to 
capture complex relationship between two proteins they 
[5] employ a siamese CNN architecture with two identi-
cal CNN sub-networks that share the same parameters 
for a given pair of protein profiles. The reason for using 
such a structure in PPI is because extracting a pair of pro-
tein features in a model at the same time instead of put-
ting a pair of sequences into two same models with two 
sets of parameters can keep features consistent.

Inspired by previous work [5], our Embedding Layer, 
MCN-Layer, and MBC-Layer all use the structure of the 
siamese network. They share weights and have the same 
network structure. The embedding layer is designed as 
the siamese network because it can ensure the protein 
feature follow the same distribution, which can help the 
model easily extract more deeper information. The reason 
why the MCN-Layer and MBC-Layer are designed as the 
siamese netowrk are same, which is to guarantee the fea-
ture keeping consistent so the model can easily extract the 
effective and useful feature. The simple network is shown 
in Fig. 11.

Ensemble network
Ensemble network, in simple terms, is to combine multiple 
models together. This method often achieves better per-
formance than any single component learning algorithm 
in the predictive task [22, 23]. In our method, MCN and 
MBC can be regarded as two models respectively. Through 
our test, combining the two models together is better than 
using one of them alone. Different channels aim to extract 

different features of protein sequence, which involves local 
feature and global feature. In order to balance the contri-
bution of two channels, we introduce a hyperparameter β 
to give weight to the outputs of the two channels. Specifi-
cally, assuming that the weight of MBC is β , so the weight 
of MCN is 1-β . The feature matrix of protein1 is S1, and 
the feature matrix of protein2 is S2. After the processing of 
MBC and MCN, each output of different channels is mul-
tiplied with the corresponding weight. The calculation of 
the protein pair features is as follows:

Where X indicates the final features of the protein pair. [,] 
means the concatenation operation.

Prediction layer and loss function
After the feature extraction of the protein pairs, we get 
a 1024-dimensional vector. The feature vector contains 
four parts, which are the features of protein sequence S1 
extracted by MBC and MCN separately, and the features 
of protein sequence S2 extracted by MBC and MCN sep-
arately. The features of each part is 256-dimensional vec-
tor. In the prediction layer, multi-layer perceptron (MLP) 
is used to decide whether these two proteins will interact.

Where W1 ∈ R512∗1024 and W2 ∈ R2∗512 , X ∈ R1024∗1 , 
y ∈ R2∗1 , b is the bias. The out put of prediction layer is 
2-dimensional vector, indicating the probability of non-
interaction and interaction separately.

We utilize cross entropy loss as our loss function, and it 
is calculated as follows:

Where N means the total samples, yi means the probabil-
ity that the i-th protein pair interacts each other.

(15)
X = [(1 − �) ∗ [MCN (S1), MCN (S2)], � ∗ [MBC(S1), MBC(S2)]]

(16)y = W2

(

LeakyRelu (W1X + b)
)

(17)

Loss = −
1

N

N
∑

i=1

yi · log
(

p
(

yi
))

+
(

1− yi
)

· log
(

1− p
(

yi
))

Fig. 11 The simple example of siamese-based network
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