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Abstract

There is great interest in identifying the neurophysiological underpinnings of speech production. 

Deep brain stimulation (DBS) surgery is unique in that it allows intracranial recordings from 

both cortical and subcortical regions in patients who are awake and speaking. The quality of 

these recordings, however, may be affected to various degrees by mechanical forces resulting 

from speech itself. Here we describe the presence of speech-induced artifacts in local-field 

potential (LFP) recordings obtained from mapping electrodes, DBS leads, and cortical electrodes. 

In addition to expected physiological increases in high gamma (60–200 Hz) activity during 

speech production, time-frequency analysis in many channels revealed a narrowband gamma 

component that exhibited a pattern similar to that observed in the speech audio spectrogram. 

This component was present to different degrees in multiple types of neural recordings. We show 

that this component tracks the fundamental frequency of the participant’s voice, correlates with 

the power spectrum of speech and has coherence with the produced speech audio. A vibration 

sensor attached to the stereotactic frame recorded speech-induced vibrations with the same pattern 
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observed in the LFPs. No corresponding component was identified in any neural channel during 

the listening epoch of a syllable repetition task. These observations demonstrate how speech-

induced vibrations can create artifacts in the primary frequency band of interest. Identifying 

and accounting for these artifacts is crucial for establishing the validity and reproducibility of 

speech-related data obtained from intracranial recordings during DBS surgery.
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1. Introduction

Invasive brain recordings performed in awake patients undergoing clinically indicated 

neurosurgeries provide a unique opportunity to study speech production with better spatial 

and temporal precision than noninvasive neuroimaging methods. One of the advantages of 

intracranial recordings is a much higher signal-to-noise ratio (SNR) and larger measurable 

frequency range. This allows examination of frequency bands above 70 Hz that are 

typically unattainable with noninvasive methods due to volume conduction effects and 

a sharp attenuation in power at higher frequencies when passing the skull (Mukamel 

and Fried, 2012). Many assume that a higher SNR in the intracranial recordings makes 

them less susceptible to artifacts frequently observed in non-invasive recordings, such as 

electro-myographic artifacts due to eye, jaw, lip and tongue movement (Flinker et al., 2018; 

Lachaux et al., 2003; Llorens et al., 2011). Comprehensive quantitative examination of 

the quality of the signal and identification of potential sources of artifacts in intracranial 

recordings, however, have received very little attention. Several types of artifacts found in 

scalp EEG have been described in intracranial recordings, such as eye movement artifacts 

in fronto-anterior regions (Ball et al., 2009), and facial and mouth movement artifacts in 

electrodes close to temporal muscles (Otsubo et al., 2008). This suggests that movement 

artifacts can contaminate intracranial LFP recordings acquired to study the neural control of 

speech production.

Neural activity in the high gamma frequency band (60–200 Hz) tracks specific features 

of speech perception and production. For example, increased power in the high gamma 

frequency range has been observed in the superior temporal gyrus in response to auditory 

stimuli (Crone et al., 2001; Hamilton et al., 2018; Mesgarani et al., 2014), and in Broca’s 

and motor cortices during speech production (Edwards et al., 2010; Flinker et al., 2015; 

Mugler et al., 2018). High gamma activity recorded from the Rolandic cortex (pre and 

postcentral gyri) has been shown to track articulatory and/or acoustic features of speech 

sounds (Bouchard et al., 2013; Cheung et al., 2016; Chrabaszcz et al., 2019; Conant et al., 

2018). Some recent advances have even made it possible to reconstruct speech from the 

brain’s activity in the high gamma band (Anumanchipalli et al., 2019; Martin et al., 2019; 

Moses et al 2021), pointing at its potential utility for brain-computer interfaces to develop 

speech prostheses. Contamination of the neural signal with audio acoustics therefore is a 

potential barrier to decoding the true electrophysiological correlates of speech production.
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Given the impact that speech dysfunction can have in patients with movement disorders, and 

the fact that the role of subcortical regions in speech production are not well understood, we 

recently developed a strategy to simultaneously record from the cortex and the subcortical 

implantation target during DBS surgery. With the patient’s consent, it is possible to 

temporally place an electrocorticography (ECoG) electrode strip on the surface of the brain, 

a technique that has been used safely in over 500 patients (Panov et al., 2017; Sisterson et 

al., 2021). Here, we report the systematic identification and quantification of speech-induced 

artifacts in several types of intracranial electrophysiological recordings obtained using a 

speech production task performed during DBS implantation surgery. We show that this 

artifact is caused by mechanical vibrations induced by the produced speech, and that it 

can also be found in a ‘blank’ headstage pin not connected to any electrode. The results 

presented in this study encourage careful assessment of possible audio-induced artifacts 

in intracranial recordings obtained during speech production research. Additionally, we 

provide suggestions for data collection and analysis that may reduce the potential for false 

discoveries.

2. Materials and methods

2.1. Participants

Participants were English-speaking patients with Parkinson’s disease (21 M/8F, age: 

65.6±7.1 years, duration of disease: 6.1±4.1 years) undergoing awake stereotactic 

neurosurgery for implantation of DBS electrodes in the subthalamic nucleus (STN). 

Dopaminergic medication was withdrawn the night before surgery. All procedures were 

approved by the University of Pittsburgh Institutional Review Board (IRB Protocol 

#PRO13110420). All patients provided informed consent to participate in the study.

2.2. Behavioral task

Participants performed a syllable triplet repetition task intraoperatively, repeating aloud 

sequences of CV syllables presented auditorily through earphones. Triplets were presented 

at either low (~50 dB SPL) or high (~70 dB SPL) volume and participants were instructed to 

produced them at matching volume. Phonetic coding of the produced speech audio was done 

manually for all participants. See supplementary materials for details.

2.3. Neural recordings

As part of the standard clinical DBS implantation procedure, functional mapping of the 

STN was performed with microelectrode recordings (MER) and LFPs were recorded from 

macroelectrode rings located 3 mm above the tip of the microelectrode (Alpha-Omega 

Engineering, Nof HaGalil, Israel). The microelectrodes were oriented on the microtargeting 

drive system using three trajectories of a standard cross-shaped Ben-Gun array with 2 mm 

center-to-center spacing (Central, Posterior, Medial), and referenced to the metal screw 

holding one of the guide cannulas used to carry the microelectrodes. Prior to initiating MER 

mapping, one or two high-density subdural electrocorticography (ECoG) strips with 54 or 

63 contacts were placed through the standard burr hole, targeting the left superior temporal 

gyrus (covering also the ventral sensorimotor cortex) and left inferior frontal gyrus. Two or 

three sessions of the task were performed by each subject while the microelectrodes were 
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positioned at different depths within the STN. After the left DBS lead was successfully 

implanted, a final session of the speech task was performed by some participants, providing 

LFP data from DBS leads. ECoG and DBS lead recordings were acquired with a Grapevine 

Neural Interface Processor equipped with Micro2 Front Ends (Ripple LLC, Salt Lake City, 

UT, USA) and referenced to a sterile stainless-steel subdermal needle electrode placed 

on the scalp, approximately at the location of Cz in a standard EEG montage. Electrode 

localization was performed as previously described (Horn and Kuhn, 2015; Randazzo et al., 

2016). See Supplementary Material and Table S1 for additional information.

The clinical setup evolved during the collection of this dataset, between subjects 22 and 

23, transitioning from a traditional stereotactic frame to the use of robotic stereotactic 

assistance (Faraji et al., 2020). This change resulted in modification of the stereotactic 

frame’s mechanical coupling to the electrode micro-drive.

2.4. Vibration sensor

A shielded piezoelectric vibration sensor (model SDT1–028 K, TE Connectivity Company) 

was fixed to the stereotactic frame using a sticky pad for the duration of one experiment. 

This sensor was selected for its flat transfer function at frequencies above 30 Hz. The signal 

from the sensor was captured without amplification as an analog input to the Grapevine 

system.

2.5. Electrophysiological data preprocessing

Data processing was performed using custom code based on the FieldTrip toolbox 

(Oostenveld et al., 2011) implemented in Matlab, available at (github.com/Brain-

Modulation-Lab/bml). Recordings from the Grapevine, Neuro-Omega and Zoom-H6 

systems were temporally aligned based on the stimulus and produced audio channels using 

a linear time-warping algorithm. Continuous alignment throughout the entire recording 

session was achieved with sub-millisecond precision. Data was low-pass filtered at 250 

Hz using a 4th order non-causal Butterworth filter, down-sampled to 1 kHz and stored as 

continuous recordings in FieldTrip datatype-raw objects in mat containers. This frequency 

range is well-suited for analyses in the canonical frequency bands normally used to explore 

cognitive functions. All annotations, including descriptions of each session (duration, type of 

subcortical recording, depth of the MER recordings), details of the electrodes (active time 

intervals, channel names, coordinates in native and MNI space, anatomical labels), phonetic 

coding at the phoneme, syllable and triplet level, and times of stimulus presentation were 

stored in annotation tables.

An automatic data cleaning procedure was used to remove segments of data with 

conspicuous high-power artifacts. First, a 1 Hz high-pass 5th order non-causal Butterworth 

filter was applied to remove low frequency movement related artifacts. The power at 

frequencies in different canonical bands (3 Hz for δ, 6 Hz for θ, 10 Hz for ɑ, 21 Hz 

for β, 45 Hz for ɣL and 160 Hz for ɣH ) was estimated by convolution with a Morlet wavelet 

with a width parameter of 9. For each frequency, the maximum power in 1-s time bins was 

calculated, log-transformed and the mean (x̄) and standard deviations (σ) of the distribution 

were estimated using methods robust to outliers. A time bin was defined as artifactual if its 
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maximal log-transformed power in any band exceeded x̄ + 3σ for that band. Note that this 

resulted in thresholds at least 10-fold higher than the mean power. Channels were entirely 

discarded if more than 50% of the time-bins were classified as containing artifacts. Blocks 

of channels sharing a headstage connector were entirely discarded if more than 50% of those 

channels were defined as artifactual.

For each trial, 3 different behavioral epochs were defined: stimulus presentation or listening 

epoch - the 1.5-s long window during which syllable triplets were presented auditorily; 

speech production epoch - the variable time during which subjects repeated the syllable 

triplet; baseline epoch - a 500-ms time window centered between speech offset of one trial 

and stimulus onset of the following.

2.6. Time-frequency plots

Time-frequency analyses for neural and audio data were performed using the Short Time 

Fourier Transform (STFT) method with a 100 ms Hanning window and a frequency step of 

2 Hz, based on multiplication in the frequency domain as implemented by FieldTrip. Trials 

were aligned to speech onset and Z-scored relative to a 500-ms baseline epochs included in 

every trial. Frequencies up to 250 Hz were used for this analysis as that covers the canonical 

frequency bands normally used to explore cognitive functions.

2.7. Spectrogram correlation analysis

To index the degree of similarity between the audio spectrogram and the time-frequency 

spectrogram of a neural channel calculated by the STFT method, a correlation between these 

two matrices was calculated. This correlation was computed as the normalized sum of the 

element-by-element products of the two matrices.

r =
∑m ∑n Am, n − A Bm, n − B

∑m ∑n Am, n − A 2 × ∑m ∑n Bm, n − B 2 , (1)

where A represents the audio spectrogram and B the time-frequency spectrogram of data at a 

given neural channel.

2.8. Coherence analysis

Phase relationship between the audio signal and the neural signal at a given channel was 

quantified using a metric of inter-trial phase consistency (ITPC) (Cohen, 2014). First, 

the audio and the neural signals were band-pass filtered between 70 and 240 Hz using 

a 5th order non-causal Butterworth filter. This frequency range contains the fundamental 

frequency of the voice in humans and the narrowband component studied in this work. A 

notch filter was applied to remove line noise and its harmonics. For each individual epoch 

of interest (noted by the index e) and neural channel (X), a complex value φe was calculated 

following

φe = 1
∣ Xe ∣ ∣ Ae ∣ ∑k

Se, k Ae, k, (2)
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where Se = Xe + iH(Xe) is the analytic signal, H(Xe) is the Hilbert transform of the neural 

data for the epoch e, and Ae is the audio signal for that epoch. The sum is taken for every 

sample k within the epoch. ∣Xe∣ and ∣Ae∣ are the Euclidean norms of the neural and audio 

signals for epoch e. The absolute value and phase of φe represents the degree of correlation 

and phase relationship between the neural and the audio channels for epoch e. If there 

is inter-trial phase consistency, the mean value of φ across trials (noted as ⟨φ⟩) will be 

significantly different from 0. To quantify this, the ITPC index was defined as

ITPC = ∣ 〈φ〉 ∣
StdErr(φ) , (3)

where the standard error of φ is defined as StdErr(φ) = ∑e ∣ φe − 〈φ〉 ∣2 ∕ N, and the sum is 

taken over the N epochs considered for the neural channel of interest. Note that this metric 

was calculated independently for the speech production, listening and baseline epochs.

2.9. Significance threshold for coherence index

To define a threshold of significance for the coherence index, a Monte Carlo simulation 

was performed to obtain the distribution of coherence index under the null hypothesis of 

no consistent phase relationship between the neural and the audio channels. To this end, a 

random time jitter uniformly distributed between −100 and 100 ms was applied to the neural 

data before calculating each φe value. 22,000 independent randomizations were calculated 

using data from all electrodes in the dataset. This analysis resulted in a significant threshold 

for the coherence index of 3.08 that corresponds to the 99.99 percentile of the distribution. 

Thus, a coherence index greater than 3.08 suggests significant correlation of inter-trial phase 

consistency between the audio and the neural signal.

2.10. Objective assessment of acoustic contamination

A recent study by Roussel et al. (2020), comparing intracranial recordings collected 

from human subjects during speech perception and production at five different research 

institutions found that spectrotemporal features of the recorded neural signal are highly 

correlated with those of the sound produced by the participants or played to participants 

through a loudspeaker. The method proposed by Roussel et al. for quantifying the extent 

of acoustic contamination in an electrophysiological recording was applied to the data 

using the open source toolbox developed by the authors (Roussel et al., 2020) (https://

doi.org/10.5281/zenodo.3929296). Briefly, the method correlates the power of the neural 

data and audio across different frequency bins, thus creating a correlation matrix for every 

combination of frequencies of the two channels. Significantly higher correlation coefficients 

at matching frequencies of the two channels (i.e., on the diagonal of the matrix), compared 

to non-matching frequencies, are considered to be evidence of acoustic contamination. A 

permutation test is used to determine the significance threshold. The method was applied 

to data from individual electrodes, and the False Discovery Rate was adjusted according to 

(Benjamini and Hochberg, 1994).
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2.11. Testing the spatial distribution of coherence over the brain

We used hierarchical bootstrapping (Saravanan et al., 2020) to test whether any particular 

brain region displayed an average coherence that was significantly different from the rest 

of the brain. Specifically, we built a null distribution of average coherence across brain 

regions by calculating the mean coherence accounting for subjects as one hierarchical level 

but ignoring brain regions within subjects. We then calculated the average coherence for 

the 15 brain regions (as parcellated by the MMP1 atlas) that had coverage in 10 or more 

subjects, with 3 or more electrodes per subject. Each distribution was built using subjects 

as the hierarchical level and electrodes were restricted to those within that particular brain 

region. Bootstrapping was performed weighing each subject by the number of electrodes 

present in that region. The distributions were then all compared to the null distribution 

and the significance threshold was adjusted using an FDR correction for 15 comparisons. 

Resampling number was set to 10,000 for all bootstrap samples.

3. Results

3.1. Narrowband high gamma component in neural recordings during speech production

We averaged spectrograms time-locked to the speech onset across trials for each audio and 

neural channel. Representative examples of the averaged spectrograms for each recording 

type are provided in Fig. 2. Fig. 2A shows the spectrogram for the produced audio, in 

which the fundamental frequency (F0) of the participant’s voice (at around 120 Hz) and 

its first harmonic (at around 240 Hz) can be easily discerned as an increase in power at 

the corresponding frequencies. The 3 peaks of power in the spectrogram at different times 

correspond to the three produced syllables. A similar narrowband component occurring 

around the frequencies of the participants’ F0 also appeared in some electrodes during the 

speech production epoch. For example, this narrowband component can be readily observed 

in the time-frequency plot for one ECoG electrode shown in Fig. 2B, but not for another 

ECoG electrode from the same subject shown in Fig. 2C. Thus, while both electrodes 

show an increase in speech-related gamma activity, the increase in gamma activity in the 

electrode in Fig. 2B is remarkably similar to the narrowband component in the audio 

spectrogram (Fig. 2A), overlapping with it in frequency, time, and overall shape. Similar 

narrowband components in the high gamma frequency range were also identified in some 

of the LFP recordings extracted from the micro electrodes (Fig. 2D), macro electrodes (Fig. 

2E) and from the DBS leads (Fig. 2F). Thus, this narrowband speech-related component 

can be observed in different electrophysiological recordings collected simultaneously with 

different acquisition devices. Furthermore, this narrowband component can co-occur with 

speech-related broadband gamma activity as shown in Fig. S1.

3.2. The narrowband high gamma component correlates with the fundamental frequency 
of the voice

Because of the striking similarity between the neural data and speech spectrogram, we set 

out to quantify the identified narrowband high gamma component and its relationship with 

the produced audio further, using different analytical approaches. First, we asked whether 

the observed overlap in the frequency range between the narrowband component and the 

produced speech audio was consistent across participants. To this end, we calculated the 
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Welch power spectrum of the audio and neural data during the speech production epochs 

(Fig. 3A), identified at which frequencies peak power within the F0 range (70–240 Hz) 

occurs in both types of spectra, and correlated the obtained frequency values. For each 

subject, we used data from single trials of the LFP signal extracted from one of the micro 

channels of the subcortical mapping electrodes, selected for having a prominent narrowband 

high gamma component.

As can be seen in Fig. 3B, there is a strong correlation (Spearman’s ρ=0.98, p-value < 10−6, 

intercept = 1.4±5.1 Hz, slope = 0.99±0.4) between the fundamental frequency of the voice 

and the peak frequency of the narrowband component across participants. Furthermore, 

the relation not only is linear, but also has a slope not significantly different from 1, 

meaning that the frequency of peak high gamma power in the neural data corresponds to the 

fundamental frequency of the voice.

3.3. Spectrogram cross-correlation between audio and neural data

To further characterize the distribution of this narrowband component across electrodes and 

recording sessions, we developed two different and complementary measures of similarity 

between the neural signal and the audio signal. The first metric consists of correlating 

the time-frequency spectrogram of a neural channel across times and frequencies with the 

spectrogram of the produced audio. A schematic representation of the method is shown 

in Fig. 4A. For each subject, the correlation coefficient between the spectrogram of the 

produced audio and the spectrogram of neural recordings was calculated (Eq. (1)). We found 

widespread correlation between spectrograms obtained from intracranial recordings and 

spectrograms of the produced audio, reaching correlation coefficients of up to 0.8 (Fig. 4B). 

The strength of correlations was variable across subjects, recording sessions, and electrodes. 

Also note that strong correlations were present in different types of intracranial recordings, 

albeit with a varying consistency.

3.4. Consistent phase relationship between audio and neural data

The method described above compares similarity of time-frequency resolved power between 

neural and audio data but does not take into account the phase information of the signals. 

Therefore, we developed a complementary metric to quantify the phase relationship between 

the neural data and the produced audio, that is, a measure of coherence or inter-trial phase 

consistency (ITPC) with the produced audio. This metric is based on dot products of the 

analytic signal of the neural channel and the produced audio, as schematized in Fig. 5A. For 

each epoch, a complex value representing the magnitude of the correlation and the phase 

relationship of the neural signal with the audio is obtained (Eq. (2)) If the mean of these 

complex values is significantly different from zero, this serves as evidence of a consistent 

phase relationship between the neural data and the produced speech (Fig. 5B). We used the 

absolute value of the mean of these complex values, normalized by their standard error, as 

an index of coherence (Eq. (3)). This method is computationally efficient and well suited 

for narrowband signals as the one characterized here. We calculated a significance threshold 

using a Monte Carlo simulation in which we applied random time jitters before calculating 

the coherence index (see details in Methods Section).
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As observed in Fig. 5C, there is widespread coherence across many subjects and all 

electrode types during the speech production epoch. Around 50% of the analyzed electrodes 

show significant coherence with the audio during the speech production epoch (Table 

1). Importantly, no significant coherence with the speech audio was observed during the 

baseline or listening epochs (Table 1). Coherence of the neural signals with the stimulus 

audio in all behavioral epochs, including the listening epoch, was negligible (Table 1). This 

suggests that only production of speech sounds was contaminating the neural signal.

The distribution of the coherence indices across electrodes for each recording session can 

be classified as (i) having no or little coherence between neural channels and the produced 

speech (e.g., subjects 06, 03, 21); (ii) having homogenous coherence across electrodes, 

(e.g., subjects 02, 04); and (iii) having heterogeneous coherence across electrodes (e.g., 

subjects 14, 28). While for the homogeneous case both the amplitude of the coherence 

(∣<φ>∣) and the phase relationship with the produced speech are similar across the neural 

electrodes, in the heterogeneous recording sessions these values may change substantially 

across electrodes (Fig. 5D).

Our syllable triplet repetition task contained trials cued at either low or high volume, 

and participants were instructed to repeat them aloud at matching intensity. All but two 

of the participants achieved significant modulation of their voice intensity as assessed by 

measuring the sound pressure level (SPL, relative to background noise) during production 

of vowels (Fig. S2A). The distributions of SPL for high and low trials significantly 

overlapped and the mean difference between these conditions ranged from 1 to 5 dB for 

most participants (Fig. S2A). Neural recordings from participants that achieved modulation 

of their voice intensity showed significant differences in their coherence with the audio 

between high and low trials in 88% of the cases (Fig. S2B). We were unable to correlate the 

prevalence of the artifact to the absolute speech volume across participants due to the lack of 

an absolute volume calibration of the microphone.

3.5. The speech acoustic component can be detected in the neural data by different 
quantification methods

The spectrogram correlation index (Fig. 4) and the coherence index (Fig. 5) are highly 

correlated with each other, as can be observed in Fig. 6A (Spearman’s ρ = 0.7, p < 1e-6). 

In applying the method proposed by Roussel et al. (2020), the power of the neural data 

was correlated with the audio across different frequency bins to create a correlation matrix 

(Fig. 6B). High correlation coefficients on the diagonal of this matrix indicate acoustic 

contamination (see details in the Methods Section). Electrodes classified as contaminated 

based on this method are indicated by red triangles in Fig. 6A. As can be observed, these 

points tend to have high spectrogram correlation index and coherence index above the 

significant threshold (Fig. 6A). This result suggests that the spectrogram correlation index, 

the coherence index, and the method developed by Roussel et al. have similar sensitivity in 

identifying speech-related artifacts in our dataset.
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3.6. Coherence indices are independent of anatomic location

Next, we asked if there is any spatial structure of the coherence index. To this end, we 

performed a hierarchical bootstrapping analysis accounting for the nested nature of the data 

(electrodes within anatomical regions within subjects) and found that none of the regions (as 

defined by the Multi Modal Parcellation 1 in Glasser et al. (2016)) show values of coherence 

significantly higher than the average distribution over the entire brain (see methods for 

detail). All cortical electrodes with their corresponding coherence values are plotted on 

a standard brain in Fig. 7A. Electrodes with high coherence with the produced audio do 

not cluster on any specific neuroanatomical region. Similarly, no spatial clustering of the 

coherence index can be observed in the STN from micro-electrode recordings (Fig. 7B), 

recordings from the macro rings situated 3 mm above the tip of the micro-electrodes (Fig. 

7C) or from DBS leads recordings (Fig. 7D).

3.7. Speech-related vibrations can be detected in non-neural data

The experiments described above demonstrated that some neural recordings show time-

frequency patterns similar to the produced audio recordings. This suggests that there is 

contamination of the electrophysiological neural data with the speech audio signal. If this 

is the case, we expect to find the same kind of contamination in "blank" electrodes not 

in contact with the brain. Most of the ECoG strips used in our experiments contained 63 

contacts laid out in a 3 × 21 arrangement (Fig. 8A). These contacts were connected to 

the amplifier’s front-end through 4 cabrio-type connectors, each containing 16 pins. This 

resulted in the last pin of the 4th cabrio connector (#64) not connected to any electrode on 

the brain. Instead, the wire connected to this pin runs the length of the cable and ends within 

the silicon rubber matrix of the ECoG strip. We recorded the signal from this "blank" pin 

as it provides a control for non-neural sources of noise affecting the neural signal. Using 

the same time-frequency method as before, we analyzed the recorded signal from this blank 

ECoG headstage pin. As can be observed in Fig. 8B, a narrowband component similar to 

that observed in some neural recordings is also present during speech production in the 

recordings from the blank headstage pin. It is interesting to note that the frequency of peak 

power recorded from this pin is slightly lower than the fundamental frequency of the voice 

(Fig. 8C), although the component has the same timing and overall pattern (note the power 

increase around the first harmonic of the F0). As shown in the bottom row of the Fig. 5C, 

labeled ‘Blank’, signals from the blank headstage pins show significant coherence with the 

produced speech audio in the same recording sessions that showed strong coherence with the 

produced speech audio in other electrode types (see also Fig. 4B and Table 1).

These results strongly suggest that the source of the observed narrowband component is 

not neural. Among possible sources of this component are speech-induced vibrations of 

the stereotactic frame, cables, connectors and/or acquisition chain. To address this question, 

we attached a piezoelectric vibration sensor to the stereotactic frame (Fig. 8D) during data 

collection in one subject (subject DBS3029). The recorded signal from the piezoelectric 

sensor was analyzed in the same way as other types of recordings. A strong narrowband 

component was observed at the time corresponding to the production of the first syllable, 

in the same frequency range as the fundamental frequency of the voice (Fig. 8E). The 

attenuated power observed during the time of the production of the second and the third 
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syllables might be due to the fact that in this particular participant speech intensity decreased 

across the produced syllable triplet, as seen in the audio spectrogram in Fig. 8F.

4. Discussion

We identified the presence of a narrowband high gamma component in the neural signals 

recorded from patients undergoing DBS implantation surgery that is consistent with a 

mechanically induced artifact. This component is widespread across many electrode types 

and is the most prominent feature in many electrode recordings. It occurs almost exclusively 

during cued speech production epochs and it has spectral and temporal characteristics 

strikingly similar to the produced speech audio. Indeed, a recent work shows the presence 

of acoustic contamination in ECoG recordings (Roussel et al., 2020). In the environment of 

DBS surgery, speech-induced vibrations conducted by the skull and stereotactic frame can 

impinge on the electrodes and/or signal acquisition chain affecting the recorded signal.

Several results support the interpretation that the observed narrowband high gamma 

component is an artifact due to speech-induced vibrations. First, the frequency of peak 

power of the narrowband component tracks the fundamental frequency of the voice 

across participants (Fig. 3). Second, the narrowband high gamma component is almost 

exclusively present during the cued speech production epoch, but not the listening epoch 

(Table 1). Thirdly, the time-frequency resolved power from the neural recordings strongly 

correlates with the produced audio spectrogram (Fig. 4). Fourth, significant inter-trial phase 

consistency between the produced audio and the neural data suggests similarities not only 

across the frequency domain, but also the temporal domain (Fig. 5). Fifth, most of the 

recordings that we classified as contaminated in our analysis were also classified as having 

acoustic contamination by the recently proposed method in Roussel et al. (2020) (Fig. 6 and 

Table 1). Sixth, there was no significant cortical localization of the coherence index (Fig. 

7). Finally, the narrowband high gamma component was also detected in "blank" pins of the 

headstage connector not connected to any electrode (Fig. 8B) and in the recording from a 

vibration sensor attached to the stereotactic frame (Fig. 8E). Taken together, these results 

strongly suggest the presence of speech-induced vibration artifact.

Although we cannot rule out the presence of physiological neural activity with the 

exact same spectral and timing characteristics as the observed narrowband high gamma 

component, we favor the interpretation that the narrowband component identified in this 

work is mainly, if not completely, due to the vibration artifact. It is worth mentioning that 

broadband gamma activity can be detected in many electrodes (see example in Fig. 2C), 

including some that also show the vibration artifact (see Fig. S1D).

These results are in line with a recent report by Roussel et al. (2020), in which the 

authors show evidence for acoustic contamination of ECoG recordings. The authors analyze 

multiple-center datasets collected in epilepsy patients in an extra-operative setting, finding 

that both produced and stimulus audio can affect ECoG recordings. Our work extends 

these findings, showing that the same kind of contamination can occur not only in the 

ECoG recordings, but can also affect other types of invasive neural recordings, such as 

those collected in the context of DBS implantation surgery. In addition, there are two key 
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differences to note between our results and those of Roussel et al. First, we only observe 

contamination when the patient is speaking, but not during auditory stimulus presentation. 

This difference may be due to the use of headphones in our recording setup as opposed to 

the use of loudspeaker in the work by Roussel et al., who found that acoustically isolating 

the speaker by placing it in a soundproof box reduced contamination of the neural signal. 

Second, in our recordings the affected signals are those corresponding to the F0 and to 

a lesser extent its harmonics. This could be explained by the fact that the stereotactic 

frame imposes some additional mechanical constraints, thus changing the way the vibration 

propagates.

Even though intracranial recordings in general are less prone to artifacts than extracranial 

recordings, it is recognized that the patient’s speech induces vibrations that affect MER. 

For example, a patent for a new micro-electrode design from AlphaOmega mentions that 

“various mechanical, noise and vibration, such as motor vibration, motion of the electrode 
within the tissue or voice of the subject, are detected by the electrode that acts essentially 
as microphone and is erroneously combined with the neural signal that is being recorded” 

(Alpha Omega Technologies, 2020). Therefore, a common practice has been to analyze 

the recordings only when the patient is not speaking. The introduction of “microphonic 

free” microelectrodes with improved shielding that reduces the effects of vibrations on the 

recordings, allows acquiring single unit activity while the patient is speaking (Alpha Omega 

Technologies, 2020). Besides the clear clinical advantage, this has opened the possibility of 

studying single unit activity of DBS target structures during speech production. Although 

the quantifications of single-unit firing can be reliably performed with these electrodes 

(Lipski et al., 2017, 2018), in light of our results it is clear that mechanical vibrations affect 

other intracortical recordings including those obtained with macro contacts on the shaft 

of the micro electrodes, recordings from ECoG strips and recordings from the clinically 

implanted DBS leads.

Interestingly, neural signals with similar characteristics to the narrowband high gamma 

component described in this work have been reported in the literature. The Frequency 

Following Response (FFR) in the auditory brainstem is a potential with spectrotemporal 

features resembling the stimulus audio that reflects sustained neural ensemble activity 

phase-locked to periodic acoustic stimuli (Bidelman, 2018; Marsh and Worden, 1968; Marsh 

et al., 1970; Rose et al., 1966). This brainstem response to auditory stimuli can be recorded 

from scalp electrodes by averaging over hundreds of trials, a technique that has become 

a powerful diagnostic tool in audiology and neurology known as the Auditory Brainstem 

Response (Hall, 1992; Jewett et al., 1970). In recent years several works based on scalp 

EEG, sEEG and MEG have reported cortical FFRs (Behroozmand et al., 2016; Bidelman, 

2018; Coffey et al., 2016).

In our data, there are two features that argue against the narrowband component being a 

true FFR. First, it only occurs during speech production and not during auditory stimulus 

presentation. Second, the narrowband artifact is not localized to the auditory cortex, or to 

any other cortical region (Fig. 7). In light of the results presented in this work and similar 

results recently published by Roussel et al, it is clear that caution should be taken when 

interpreting cortical FFR, due to the fact that this signal is exactly what would be expected 

Bush et al. Page 12

Neuroimage. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



if there was an artifact (e.g., vibration at electrodes or connectors, electromagnetic induction 

by speakers, electrical crosstalk in the amplifier or connectors).

Other reported sources of artifacts affecting intracranial recordings, including artifacts due 

to eye blinking (Ball et al., 2009) and other facial muscle contraction (Otsubo et al., 2008), 

have spectral characteristics distinct from the narrowband component described in this work; 

they show broadband spectrums that do not match that of the produced audio and are not 

expected to track the fundamental frequency of the voice or correlate with the power of the 

speech audio across time.

Acknowledging the existence of this speech-induced vibration artifact is an important first 

step to avoid overinterpreting spurious features of the data. Many important questions 

related to high-level cognitive processes, including the neural control of speech production, 

can only be answered by acquiring recordings that are likely to be affected by the described 

artifact, but several steps can be taken to identify it. First, methods that correlate the audio 

signal with the neural data can be used to detect the presence of acoustic contaminations. 

Second, recording from open headstage pins provides a control for non-neural sources 

affecting the signal. Third, vibration sensors can detect mechanical vibrations along the 

recording system that might affect the signal.

We observed marked heterogeneity in the magnitude of the artifact across subjects and, 

in some cases, between recording sessions for the same subject (Figs. 4 and 5). The time 

between consecutive recording sessions was of several minutes up to an hour, during which 

significant surgical events took place, like removing the mapping electrodes and implanting 

the DBS leads, repositioning of interconnector cables and irrigating the brain through the 

burr hole. These changes can influence the way the vibration artifact affects the recordings. 

We also observed significant spatial heterogeneity of this speech-induced vibration artifact 

across electrodes, suggesting that data-driven referencing schemes could be investigated as a 

method to remove this artifact from intracranial recordings.

Identifying and mitigating artifacts in intracranial recordings from awake patients is 

fundamental to achieving reliable and reproducible results in the field of human systems 

neuroscience. This, in turn, will lead to an improved understanding of the neural physiology 

and pathophysiology of uniquely human cognitive abilities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Intraoperative intracranial recording setup and speech task. A. Schematic representation 

of intracranial electrodes and syllable triplet repetition task. During the mapping phase of 

the DBS implantation surgery ECoG strips were temporarily placed through the burr hole, 

allowing simultaneous recording of cortical and subcortical LFPs and MER from the STN. 

Participants were instructed to repeat aloud CV syllable triples at a volume matching the 

auditory stimuli. B. Photograph of a participant performing the speech task.
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Fig. 2. 
A speech-related narrowband component in the high gamma frequency range was observed 

across different types of neural recordings. Time-frequency plots for the audio and different 

neural channels from subject DBS3014. The red vertical dashed line represents speech 

onset time, which was used to time-lock the data across trials. A. Average spectrogram of 

the produced speech audio, z-scored to baseline. B. ECoG strip 1 contact #54, showing 

a prominent narrowband high gamma component during the speech production epoch. C. 

ECoG strip 2 #55, showing a broadband activation during speech production (note that this 

activity begins before speech onset). D. Spectrogram for LFP signal extracted from the 

posterior micro electrode targeting the left STN. E. Spectrogram for LFP signal from the 

medial macro ring targeting the left STN. F. Spectrogram for the left DBS lead contact. 

Colorbars indicate scale of the z-scored spectral power for each panel.
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Fig. 3. 
The frequency of peak power of the high gamma narrowband component correlates with 

the fundamental frequency of the voice across participants. A. Welch power spectrums for 

the produced speech audio (top) and the LFP signal extracted from the micro tip of the 

subcortical mapping electrode by low-pass filtering at 400 Hz (bottom). The vertical dashed 

line represents the frequency of peak power identified in each spectrum. B. Correlation of 

the frequency of peak power in the range of 70–200 Hz between the audio and neural data. 

The solid line represents the best linear fit to the data; gray ribbon represents the confidence 

interval of the fit.
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Fig. 4. 
Spectrogram correlation between audio and neural data. A. A schematic representation of 

the spectrogram correlation approach. The electrode spectrogram (top) is multiplied by 

the audio spectrogram (middle) to give the cross-spectrogram (bottom). B. Distribution in 

the dataset of the power correlation with the audio for all neural recordings. The degree 

of correlation is color-coded in red; each pixel represents one electrode (y-axis) in one 

recording session (x-axis). Panels are defined by subject (organized in columns labeled 1 to 

32) and electrode type (organized in rows). ECoG strips are indicated by implantation order, 

with strip 1 targeting the STG and strip 2 targeting the IFG. Pixels in gray correspond to 

electrodes removed during artifact rejection or which were not available for a given session 

(e.g., ECoG strip 2 was not used in all subjects and recordings from the DBS leads were 

only acquired in the last session for a subset of subjects)
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Fig. 5. 
Inter-trial phase consistency (ITPC) reveals significant coherence of neural data with 

the produced speech audio. A. A coherence index is derived from multiplying the band-

pass filtered analytic neural signal (blue and orange lines for real and imaginary parts, 

respectively) with the produced speech signal (black line) using the internal product, 

resulting in a complex value φ for each trial. B. An example of φ values plotted on the 

complex plane for three behavioral epochs: baseline (green circles), listening (blue squares), 

and speech production (red triangles). The coherence index is related to the average 

value of φ, < φe >, represented as a red arrow for the speech production epoch. For the 

baseline and listening epochs < φe > approaches zero, indicating no coherence. The circled 

point corresponds to the traces shown in panel A. C. Coherence indices from the speech 

production epoch plotted for each electrode, recording session, and subject (as in Fig. 4B). 

The color of each pixel represents the coherence index for an electrode in each recording 

session. Electrodes are organized by type in the y-axis and sessions are organized by subject 

in the x-axis. Pixels in gray correspond to electrodes that were not present in the montage, 

or which were removed during artifact rejection. White pixels represent recordings that do 

not show significant coherence with the audio. ECoG strips are indicated by implantation 

order, with strip 1 targeted to the STG and strip 2 targeted to the IFG. D. Phase consistency 

of the neural data with the produced audio across contacts of the ECoG strips. In each 

polar plot, the angle between the radial lines and the horizontal axis represents the phase 

relation with the produced audio of an ECoG electrode. Red asterisks mark ECoG strips 

with homogeneous coherence, defined as those with at least 90% of the electrodes’ phases 

within 90° of each other
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Fig. 6. 
The spectrogram correlation index and the coherence index show strong correlation with 

each other and high consistency with the Roussel et al. (2020) method’s outcome. A. 

Relationship between the spectrogram correlation index and the coherence index for ECoG 

electrodes for one representative subject (DBS3024). Red triangles indicate electrodes with 

significant ‘acoustic contamination’ as assessed by the method developed by Roussel et 

al. (2020). B. Detection of acoustic contamination by the Roussel method is based on the 

cross-frequency correlation matrix, which indicates degrees of correlation of power across 

time for different frequencies of the neural and audio data. The shown matrix corresponds to 

ECoG electrode 2–31, indicated by an arrow in panel A
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Fig. 7. 
Increased Inter-trial Phase Consistency is not specific to any anatomical region. A. Lateral 

view of the localizations of cortical ECoG electrodes for the entire subject cohort (n = 29) 

plotted in MNI space (MNI152 Nonlinear Asymmetric 2009b (Fonov et al., 2011)). The 

color of the points represents the average coherence between neural and produced audio 

data for that electrode. B. Lateral view of the STN with points indicating the location of 

micro-electrode recordings indicating the coherence index for that electrode with the same 

color-scale as in A. Note the change of scale as compared to the cortex. C. Locations of 

macro rings relative to the STN. D. Location of DBS lead contacts relative to the STN. 

Panels B-D share the same scale.
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Fig. 8. 
The narrowband component is present in non-neural recordings. A. Schematic of the ECoG 

electrode strip showing the electrode contact and connector layout. 4 cables of 16 wires are 

used for the 63 electrodes, resulting in one headstage pin not connected to any electrode 

on the brain (marked as contact #64). B. Time-frequency plot of the signal recorded from 

the blank headstage pin (subject DBS3020). C. Spectrogram of the produced speech audio 

for the same subject as in B. D. A schematic representation of the montage of the vibration 

sensor on the stereotactic frame. E. Time-frequency plot of the signal recorded from the 

vibration sensor (subject DBS3029). F. Spectrogram of the produced speech for the same 

subject as in E. In panels B-C and E-F, zero marks the onset of the speech production.
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