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MiRNAs are key regulators of the mammalian transcriptome that have been increasingly
linked to degenerative diseases of the motor neurons. Although many of the miRNAs
currently incriminated as participants in the pathogenesis of these diseases are also
important to the normal development and function of motor neurons, at present there
is no knowledge of the complete miRNA profile of motor neurons. In this review, we
examine the current understanding with respect to miRNAs that are specifically required
for motor neuron development, function and viability, and provide evidence that these
should be considered as a functional network of miRNAs which we have collectively
termed MotomiRs. We will also summarize those MotomiRs currently known to be
associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy
(SMA), and discuss their potential use as biomarkers.
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INTRODUCTION

The expansion of non-coding RNA in higher organisms has been suggested to be a primary
determinant of biological complexity (Liu et al., 2013). The conventional understanding is that the
majority of the human genome is primarily transcribed into functional non-coding RNA, while
only ∼2% is dedicated to coding regions (Djebali et al., 2012). Therefore, it has been proposed
that the key to understanding human evolution and development lies within the highly dynamic
expression of the non-coding genome (Mattick, 2011; Liu et al., 2013; Peschansky and Wahlestedt,
2014).

MicroRNAs (miRNAs) are endogenous small non-coding RNAs which regulate gene
expression via formation of a ribonucleoprotein (RNP) complex with Argonaute (AGO) proteins
and complementary base pairing with their target mRNAs (Lee et al., 1993; Slack et al., 2000).
Despite the apparent simplicity of miRNA function, their expression and mRNA targets are highly
dependent on the stage of development, environmental cues, aging and cellular type. This highly
dynamic process allows for the fine-tuning of gene expression depending not only on the global
needs of the cell, but also somatotopically-specific needs such as the maintenance of the synaptic
junction or the response to neuronal injury (van Rooij et al., 2007; Wilczynska and Bushell, 2015).

The discovery that miRNAs are critical to motor neuron function and survival (Haramati et al.,
2010) led to the study of the participation of miRNAs in degenerative disorders of motor neurons,
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most prominently amyotrophic lateral sclerosis (ALS) and
spinal muscular atrophy (SMA) type I (Campos-Melo et al.,
2013; Ishtiaq et al., 2014; Emde et al., 2015; Luchetti et al.,
2015; Murdocca et al., 2016). In both, alterations of miRNA
expression have been observed, with ALS showing a profound
global dysregulation. However, our understanding of how motor
neuron specific miRNAs function synergistically to promote
motor neuron survival and how this balance is disrupted in
pathological conditions remains incomplete. In this review
article, we have examined the evidence for a discrete network of
miRNAs that are critical to the biology of motor neurons, which
we have termed MotomiRs, and evaluated those dysregulated in
motor neuron disease.

MOTOR NEURONS

Motor neurons are classified as either somatic or visceral.
Visceral motor neurons are responsible for innervating smooth
and cardiac muscle allowing for involuntary contractions. In
contrast, somatic motor neurons innervate skeletal muscle to
perform voluntary movement (Goulding, 1998; Guthrie, 2007).
This review will focus on somatic motor neurons (henceforth
referred to as ‘‘motor neurons’’) and their overall physiology at
the cellular and molecular level.

In general, motor neurons can be further grouped into
those whose projections remain within the central nervous
system (CNS) and those which do not. Upper motor neurons
(UMNs) are a group of descending supraspinal neurons, the
majority of which arise from the primary motor cortex,
premotor cortex and the supplementary motor area (Dum
and Strick, 2005; Nachev et al., 2008). UMNs arising within
these cortical regions course through the corticospinal tracts
with the majority (75%–90%) crossing at the level of the
medulla to ultimately innervate contralateral spinal motor
neurons. The remaining 10%–25% innervate ipsilateral spinal
motor neurons (Figure 1A). Spinal motor neurons, collectively
termed lower motor neurons (LMNs), in concert with the
muscle fibers that they innervate through their axonal terminals,
constitute the motor unit (Lemon, 2008; Welniarz et al., 2016;
Figure 1B).

Motor Neuron Development
During development, neural progenitor cells within the ventral
region of the neural tube differentiate into either interneurons,
glial cells or LMNs (Leber et al., 1990). Differentiation into
LMNs is a tightly regulated process governed by the coordinated
expression of a number of transcription factors. For example,
the expression of transcription factor NK6 homeobox 1 and 2
(Nkx6.1/6.2) in the absence of Iroquois Homeobox 3 (Irx3) and
Nkx2.2 expression promotes differentiation into motor neurons
(Briscoe et al., 2000). Nkx6.1/6.2 stimulates the expression of
oligodendrocyte transcription factor 2 (Olig2), specifically in
the motor neural progenitor domain, which then promotes
Neurogenin 2 (Ngn2) expression. This in turn leads to cell cycle
exit and the induction of motor neuron and pancreas homeobox
1 (Mnx1, also known as Hb9) and choline acetyltransferase

(ChAT). Both HB9 and ChAT are key markers of fully
differentiated LMNs (Arber et al., 1999; Novitch et al., 2001).
LMNs are then further differentiated into lateral, hypaxial, or
medial motor columns in response to the expression of either
the combination of Forkhead Homeobox 1 (FOXP1)/ISL LIM
Homebox 2 (ISL2), HB9/ISL1-2/ETS Variant 1 (ETV1), or
HB9/ISL1-2/LIM Homeobox 3 (LHX3), respectively. Generally,
differential expression of homeobox (hox) genes plays an
essential role in the rostrocaudal and dorsoventral patterning
of LMNs within the spinal cord tissue (Guthrie, 2007; Davis-
Dusenbery et al., 2014; Stifani, 2014).

Neural progenitor cells within the cortex also express a
wide array of genes which results in their differentiation
into UMNs. These include forebrain embryonic zinc finger-like
protein 2 (Fezf2) and LIM domain binding 2 (Ldb2) which have
been shown to determine UMN differentiation, and COUP-
TF1 interacting protein 2 (Ctip2) which is critical to promoting
axonal growth and guidance (Arlotta et al., 2005; Molyneaux
et al., 2005, 2007; Leone et al., 2017). The cascading expression
of genes during development is necessary for motor neuron
formation, and thus genes must be tightly regulated in a temporal
fashion to ensure the right genes are expressed at the right
time.

Axonal Transport
An individual motor neuron axon can extend for upwards of
a meter, giving rise to a unique set of metabolic demands.
Mitochondria, RNP granules, and vesicles must be positioned
at specific sites along the length of the axon depending on
somatotopic needs and thus requiring a high degree of regulation
(Figure 1C; Vuppalanchi et al., 2009; Lin and Sheng, 2015).
Critical to the integrity of the axonal projection are key
cytoskeletal proteins, including microtubules which provide the
highway that guides axonal transport and neurofilaments which
are key to maintaining the cytoskeletal architecture of the axon
and thus indirectly, the degree of myelination (Hirokawa et al.,
2010; Szaro and Strong, 2010). Further, axons and synapses
are highly dynamic structures which are constantly changing
in an activity-dependent manner and thus there is a constant
redistribution of mitochondria depending on localized energy
demands (Miller and Sheetz, 2004). This is especially true
for motor neurons as their axonal length requires precise
movement of mitochondria to meet their high energy demands
(Hinckelmann et al., 2013).

Beyond mitochondrial trafficking, the transport of mRNA
along the axon allows for somatotopically-specific protein
synthesis. To accommodate this, mRNAs and translational
machinery are incorporated into RNP granules and transported
to distal regions along the axon for localized translation (Sutton
and Schuman, 2006; Vuppalanchi et al., 2009). It is widely
accepted that during RNP transport that the mRNA within
the granule is translationally silent. This is suggested to be
largely mediated by various RNA-binding proteins (Bramham
and Wells, 2007). However, it has also been shown that
proteins essential for miRNA processing are found within
these RNP transport granules (Barbee et al., 2006), suggesting
post-transcriptional regulation of mRNA within RNPs is likely
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FIGURE 1 | Specific characteristics of motor neurons. Schematic showing the distinctive characteristics of motor neurons. (A) The glutamatergic synaptic
connection between lower motor neurons (LMNs) and upper motor neurons (UMNs). This synapse results in the excitation of the LMN depending of the influx of
Ca++ into the presynaptic neuron for the release of glutamate into the synaptic cleft. There, glutamate stimulates the influx of Na+ and Ca++ into the post-synaptic
LMN, which leads to its depolarization. (B) Transport across the long axon of motor neurons. Neurons must be constantly transferring mitochondria, vesicles and
RNPs granules to localized spots in the axon depending on the cells need. Transport is bidirectional along the axon where kinesin allows for anterograde transport,
dynein provides retrograde transport. This is crucial for the proper distribution of proteins, transcripts and organelles. (C) Neuromuscular junction. When the action
potential has reached the neuromuscular junction, there is an influx of Ca++ into the axonal bouton resulting in the synaptic release of acetylcholine. This causes the
efflux of K+ and the influx of Na+ leading to the depolarization of the muscle fiber. The influx of Na+ causes the opening of sodium voltage-gated channels along the
muscle fiber, allowing for the action potential to propagate through the muscle fiber (indicated by the golden arrows), generating the muscle contraction.

an interaction between RNA-binding proteins and regulatory
RNAmolecules, allowing for localized protein synthesis and even
mRNA degradation.

Regeneration
One of the fundamental differences between mature UMNs and
LMNs is the ability for LMNs to regenerate. In general, the
peripheral nervous system (PNS) in which LMNs reside provides
an environment where neurons can survive and regenerate
subsequent to axonal damage. This is not the case in the CNS
(Fitch and Silver, 1997; Fu and Gordon, 1997). This phenomenon
has been attributed to the lack of neurotrophic factors and
an abundance of inhibitory proteins present after a nerve
injury in the CNS (Schwab, 1996). For example, the increased

expression of neurotrophic factors brain-derived neurotrophic
factor (BDNF) and fibroblast growth factor 2 (FGF-2) and
their receptors—trkB and FGFR-1, respectively—promotes LMN
regeneration in response to a nerve injury. However, within the
CNS, the expression of these receptors and ligands are reduced
after nerve injury, creating a less permissive environment for
regeneration (Funakoshi et al., 1993; Kobayashi et al., 1996;
Lewin and Barde, 1996). Interestingly, ectopic expression of
BDNF within the CNS after a neuronal injury enhances the
regenerative capacity of the neurons, suggesting it is an essential
protein for nerve recovery (Giehl and Tetzlaff, 1996; Kobayashi
et al., 1997).

Further, the up-regulation of the expression of cytoskeleton
proteins including actin, tubulin and peripherin also assist with
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the regeneration of LMNs by restructuring the axon as it recovers
(Bisby and Tetzlaff, 1992; Chadan et al., 1994; Jiang et al., 1994).
However, there is a down-regulation in neurofilament expression
after a nerve injury, which has been shown to allow for efficient
transport of actin, tubulin and peripherin to distal regions of
the injured axon (Tetzlaff et al., 1996; Zhu et al., 1998). This
change in cytoskeleton proteins after an axonal injury is far less
robust within the CNS, and thus could be another reason why
regeneration is not able to occur within UMNs (Tetzlaff et al.,
1991; Kost and Oblinger, 1993). This tightly coordinated change
in the expression of cytoskeleton genes within the PNS allows for
efficient axonal repair, and thus, a transient network of regulatory
elements, such as miRNAs, must play an essential role in this
regenerative process.

MiRNAs

MiRNAs are evolutionary conserved non-coding RNAs
(ncRNAs) of 18–22 nucleotides that post-transcriptionally
regulate the expression of most mammalian genes. First
discovered in Caenorhabditis elegans 20 years ago, miRNAs are
the dominant class of small RNAs in somatic cells (Lee et al.,
1993; Ha and Kim, 2014). The human genome harbors more
than 2500 mature miRNAs that play major roles in a variety
of biological pathways such as apoptosis, cell proliferation,
development, differentiation and pathological processes.

Canonical Pathway of miRNA Biogenesis
Inmammals, themajority of miRNAs are encoded within introns
of either protein-coding or non-coding genes (Rodriguez et al.,
2004). Several miRNA loci close in proximity are generally co-
transcribed, thus constituting a miRNA cluster. Most miRNAs
are transcribed by RNA polymerase II (Pol II); however RNA
Pol III has been also shown to transcribe some viral and
human miRNAs (Pfeffer et al., 2005; Borchert et al., 2006).
MiRNA transcription is controlled by RNA Pol II-associated
transcription factors such as MYC ZEB1 and ZEB2 and
epigenetic regulators (Cai et al., 2004; Lee et al., 2004; Davis-
Dusenbery and Hata, 2010). Transcription products—primary
miRNAs that are over 1 kb in length (pri-miRNAs)—contain
a stem-loop structure in which mature miRNA sequences
are embedded. Similar to mRNAs, pri-miRNA transcripts
contain a 7-methyl guanylate cap at the 5′ end and a poly
(A) tail at the 3′ end (Davis and Hata, 2009). The nuclear
RNAse III-type endonuclease Drosha, and its essential cofactor
DiGeorge syndrome chromosomal region 8 (DGCR8), form the
microprocessor complex to target and cleave pri-miRNAs at
the stem-loop to release the ∼65 nt length precursor miRNA
(pre-miRNA; Lee et al., 2003; Denli et al., 2004; Gregory et al.,
2004; Han et al., 2004). The pre-miRNA is then exported to
the cytoplasm by exportin-5 and Ras-related nuclear protein
guanosine-5′-triphosphate (Ran-GTP; Yi et al., 2003; Bohnsack
et al., 2004; Lund et al., 2004). It has been reported that exportin-5
is necessary but not critical for miRNA maturation, suggesting
that other mechanisms complement its function (Kim et al.,
2016).

Pre-miRNA is cleaved by another RNAse III-type
endonuclease called Dicer, releasing the small miRNA duplex
(Hutvágner et al., 2001; Ketting et al., 2001). Dicer associates with
the cofactors human immunodeficiency virus transactivating
response RNA-binding protein (TRBP) and protein activator
of the interferon-induced protein kinase (PACT), which do not
seem to be essential for Dicer-mediated pre-miRNA processing
(Chendrimada et al., 2005; Haase et al., 2005; Lee et al., 2006,
2013). However, it has been shown that TRBP is an integral
cofactor for Dicer processing in RNA-crowded environments,
acting as a gatekeeper to preclude Dicer from engaging with
pre-miRNA-like substrates (Fareh et al., 2016). After Dicer
processing, the miRNA duplex is loaded into AGO proteins
(AGO 1–4 in humans) to form the RNA-induced silencing
complex (RISC). Subsequently, the miRNA is unwound into two
separate strands. The guide strand, which is determined during
the AGO loading step based on relative thermodynamic stability,
is usually much more prevalent and more biologically active than
the passenger strand (miRNA∗; Kawamata and Tomari, 2010;
Ha and Kim, 2014). After AGO-mature miRNA binding, AGO
seeks target mRNAs that are complementary to the miRNA
seed sequence. Of note, miRNA silencing likely occurs by
submicroscopic complexes in the cytoplasm that are constantly
exchanging with cytoplasmic RNA granules called P-bodies
(Leung and Sharp, 2013). Finally, an interesting observation
is that most mature miRNAs are also present in the nucleus,
indicating that mature miRNAs can shuttle between the nucleus
and cytoplasm. Exportin-1 and importin-8 have been shown to
mediate the translocation to the nucleus of not only miRNAs,
but also AGO proteins (Castanotto et al., 2009; Weinmann
et al., 2009). Within the nucleus, miRNAs can function in gene
activation, or in an unconventional manner regulating the
biogenesis and functions of miRNAs and long ncRNAs (Liang
et al., 2013; Figure 2).

Non-Canonical Pathways of miRNA
Biogenesis
Several alternative mechanisms of miRNA biogenesis have been
described besides the canonical pathway, although only about 1%
of conserved miRNAs are produced independently of Dicer or
Drosha in vertebrates (Ha and Kim, 2014). The most common
non-canonical pathway is used for mirtron production: miRNAs
encoded in introns at the exon junction site. Mirtron miRNAs
bypass the Drosha-DGCR8 complex. Pre-miRNAs are instead
generated by mRNA splicing, lariat debranching and trimming
(Berezikov et al., 2007; Ruby et al., 2007). Drosha-mediated
processing is also bypassed in the case of miRNAs derived from
shRNAs, tRNAs or tRNA-like precursors, small nucleolar RNAs
(snoRNAs) or snoRNA-like viral RNAs (Babiarz et al., 2008;
Ender et al., 2008; Cazalla et al., 2011).

In some cases, such as miR-451, miRNAs can also be
generated by Dicer independent miRNA biogenesis. After
Drosha cleavage, pre-miR-451 is directly loaded and sliced
by AGO2 (Cifuentes et al., 2010). Then, a poly(A)-specific
ribonuclease (PARN) trims down the 3′ end of pre-miR-451 to
produce the mature miR-451 (Yoda et al., 2013).
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FIGURE 2 | MiRNA biogenesis of canonical miRNAs. The first part of miRNA processing occurs in the nucleus. Primary miRNA (pri-miRNA) is transcribed by
RNA polymerase II or III (RNA pol II/III) and then cleaved by Drosha/DiGeorge syndrome chromosomal region 8 (DGCR8) to form precursor miRNA (pre-miRNA).
Pre-miRNA is exported to the cytoplasm by exportin-5 and then cleaved by Dicer. MiRNA duplex is loaded into argonaute proteins (AGO 1–4) and subsequently
unwound into two separated strands. For most miRNA targets, AGO is recruited to a complex that contains GW182 proteins (RNA-induced silencing complex, RISC)
that induces translational repression and degradation of the mRNA targets. TAR DNA-Binding Protein 43 (TDP-43) and FET family, RNA-binding proteins linked to
amyotrophic lateral sclerosis (ALS), interact with Drosha and/or Dicer, regulating miRNA processing at both primary and precursor levels.

Another class of miRNAs undergo Drosha and Dicer
dependent biogenesis but an additional processing step is
included in between the two RNases. Precursors of these
miRNAs carry a shorter (one-nucleotide long instead of two)
3′ overhang. Terminal uridylyl transferases (TUT2, TUT4 and
TUT7) target these pre-miRNAs and extend their 3′ end by
one nucleotide through monouridylation for efficient Dicer
processing (Heo et al., 2012; Figure 3). Of interest, TUTs can also
trigger pre-miRNA degradation through oligouridylation of 3′

trimmed pre-miRNAs and pre-let-7 (see ‘‘Regulation of miRNA
Expression’’ Section; Kim et al., 2015).

Regulation of miRNA Expression
MiRNA expression can be regulated at multiple levels.
Transcription is the first control point of the miRNA biogenesis.
Of note, one-third of intronic miRNAs have transcription
initiation regions independent of their host promoters. RNA
Pol II-transcribed miRNA promoters are generally similar to
mRNA promoters in terms of frequencies of CpG islands, TATA
elements, TFIIB recognition elements, initiator elements (Inr),

motif ten elements (MTE) and downstream promoter elements
(DPE). Also, some transcription factors that control mRNA
production regulate the transcription of miRNAs encoded in
introns of protein coding genes (Ozsolak et al., 2008; Davis and
Hata, 2009).

Changes in the methylation of miRNA promoters or miRNA
sequences can impact on the expression of miRNAs. The
methylation status of somemiRNA genes has also been suggested
to be key to the pathogenies of certain cancers. For example,
hypermethylation of the CpG island upstream of the tumor
suppressor miR-33b, is responsible for its down-regulation in
gastric cancer (Yin et al., 2016). Methylation of promoters of
the miR-200b cluster is associated with metastasis in advanced
breast cancer (Wee et al., 2012). Interestingly, methylation of
the 5′ monophosphate of pre-miR-23b and pre-miR-145 inhibits
the processing of these miRNAs by Dicer (Xhemalce et al.,
2012). This is because the interaction between Dicer and the
5′ monophosphate is necessary for the efficient processing of
pre-miRNAs (Park et al., 2011). MiRNA promoters are also
regulated by histone modifications. Some miRNAs have been
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FIGURE 3 | Non-canonical pathways of miRNA processing. For mirtron production, miRNAs encoded in introns at the exon junction site, miRNAs bypass
Drosha/DGCR8 and pre-miRNAs are instead generated by mRNA splicing, lariat debranching and trimming. In other cases, miRNAs can also be generated by Dicer
independent miRNA biogenesis. After Drosha cleavage miRNA is directly loaded and sliced by AGO2. Then, poly(A)-specific ribonuclease (PARN) trims down the 3′

end of pre-miRNA to produce the mature miRNA. A third class of miRNAs undergo Drosha and Dicer dependent biogenesis but an additional processing step is
included in between the two RNAses. Precursors of these miRNAs carry a shorter 3

′
overhang. Terminal uridylyl transferases (TUT2, TUT4 and TUT7) target these

pre-miRNAs and extend their 3
′

end by 1 nucleotide through monouridylation for efficient Dicer processing.

reported to be up- or down-regulated after the treatment with
histone deacetylase (HDAC) inhibitors (Saito and Jones, 2006;
Scott et al., 2006; Nasser et al., 2008). For instance, acetylation
regulates the expression of miR-133a during chronic pressure
overload-induced cardiac fibrosis (Renaud et al., 2015). Single
nucleotide polymorphisms (SNPs) in miRNA genes can also
affect miRNA biogenesis (Duan et al., 2007). For example,
SNPs in miR-1206 and miR-612 genes within two cancer risk
loci affect the expression of both mature miRNAs (Kim et al.,
2012).

RNA editing (adenosine to inosine catalyzed by adenosine
deaminase that acts on RNA; ADARs) also impacts on miRNA
processing. Let-7 pri-miRNA editing impairs the biogenesis of
this miRNA and drives leukemia stem cell self-renewal (Zipeto
et al., 2016). Another type of regulation of miRNA biogenesis is
by RNA-tailing (nucleotidyl addition to the 3′ end of RNA). For
example, LIN28 proteins recruit terminal uridylyl transferases
TUT4 and TUT7 C6 to induce oligouridylation of pre-let-7
(Heo et al., 2008, 2009; Hagan et al., 2009). This oligo-U tail
blocks Dicer processing, and facilitates miRNA decay by 3′-5′

exonuclease DIS3L2 (Chang et al., 2013; Ustianenko et al., 2013).

Some miRNA transcripts, like most mRNAs, are methylated
at N6-adenosine (m6A). This modification acts as a
mark for pri-miRNA processing. RNA-binding protein
hnRNPA2B1 binds to m6A, interacts with DGCR8, and
promotes pri-miRNA cleavage to produce pre-miRNA (Alarcón
et al., 2015). Finally, levels of certain miRNAs are controlled
by regulating miRNA stability. For instance, levels of miR-122
are stabilized by monoadenylation via the non-canonical
cytoplasmic poly(A) polymerase GLD-2 (TUT2) in mammals
(Katoh et al., 2009; D’Ambrogio et al., 2012). Moreover, a highly
complementary mRNA target can induce miRNA degradation
through 3′ addition of a single non-templated uridine followed
by 3′ to 5′ trimming of the miRNA with a 2′-O-methyl group
added by Hen1 enzyme in Drosophila (Ameres et al., 2010;
Baccarini et al., 2011).

Recently, another layer of complexity has been added
into miRNA regulation. Levels of mature forms of miR-122
are post transcriptionally regulated by modulating its
processing in a target-dependent manner during recovery
from starvation-related stress (Bose and Bhattacharyya,
2016).
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Mechanisms of Action of miRNAs
MiRNAs are able to regulate gene expression by several
mechanisms (Figure 4). In RNA silencing, miRNAs function as
a guide to recognize target mRNAs, whereas AGO proteins
function as effectors by recruiting factors that induce
translational repression and/or mRNA decay (Ha and Kim,
2014). The 5′ region of the miRNA (seed, nucleotides 2–8) is
crucial for target recognition through the complementary base
pairing of miRNA recognition elements (MREs) that are mostly
localized in the mRNA 3′untranslated region (UTR). Currently,
MREs in 3′UTRs are determined using prediction algorithms
and then validated with functional analysis. However, seedless
3′UTR MREs have been described, as well as MREs localized
within 5′UTRs and coding regions (Forman et al., 2008; Lal
et al., 2009; Moretti et al., 2010). To provide an alternative view
of human miRNA targets, a protocol termed cross-linking,
ligation and sequencing of hybrids (CLASH) was developed for
high-throughput identification of miRNA-target RNA duplexes
associated with AGO, and is independent of bioinformatic
predictors. Transcriptome-wide data set revealed that binding
of most miRNAs to their targets includes the seed region, but
around 60% of seed interactions are noncanonical. Of interest,
seed interactions are generally accompanied by non-seed base
pairing (Helwak et al., 2013).

MiRNAs down-regulate target mRNAs through translational
repression and mRNA destabilization (Figures 4A,B), with
mRNA destabilization dominating most miRNA-mediated
repression (Hendrickson et al., 2009; Guo et al., 2010; Eichhorn
et al., 2014). Although miRNAs inhibit translation at the
initiation step, the exact mechanism is still unclear. Three
mechanisms have been proposed: (i) PABP displacement
mediated by GW182 (Moretti et al., 2012; Zekri et al., 2013);
(ii) recruitment of the translational repressors through GW182
(Meijer et al., 2013; Kamenska et al., 2014; Waghray et al., 2015);
and (iii) dissociation of eukaryotic initiation factor-4A (eIF4A)
from the cap-binding complex eIF4F (Fukao et al., 2014; Fukaya
et al., 2014).

At the same time, mRNA destabilization is a consequence of
miRNA-mediated deadenylation of target mRNAs which causes
these mRNAs to undergo decapping and 5′–3′ decay (Rehwinkel
et al., 2005; Behm-Ansmant et al., 2006;Wu et al., 2006).MiRNAs
promote mRNA decay by recruiting the deadenylase complex
CCR4–NOT or PAN2–PAN3 on the target mRNA via GW182
(Braun et al., 2011; Fabian et al., 2011). Also, miRNAs promote
mRNA decay through the dissociation of PABP, increasing the
accessibility of the poly(A) tail to deadenylases (Moretti et al.,
2012).

Beside well-known down-regulatory functions, there is
increasing evidence that miRNAs can also induce up-regulation
of their targets (Vasudevan et al., 2007; Campos-Melo et al.,
2014; Valinezhad Orang et al., 2014). MiRNAs, similar to
double stranded RNAs (dsRNAs), have been implicated in
gene activation triggered by promoter-targeted small RNAs,
known as RNA activation (RNAa; Figure 4C). For instance, the
expression of cyclin B1 (Ccnb1) depends on RNAa by miRNAs
and components ofmiRNAbiogenesis inmouse cells. Chromatin
immunoprecipitation (ChIP) analysis had shown that AGO1 is

selectively associated to the Ccnb1 promoter and miR-744,
which induces Ccnb1 expression, increases enrichment of RNA
Pol II and trimethylation of histone 3 at lysine 4 (H3K4me3)
at the Ccnb1 transcription start site. At a functional level,
short-term expression of miR-744 enhances cell proliferation,
but prolonged overexpression causes tumor suppression (Huang
et al., 2012).

Finally, the up-regulation of certain mRNA transcripts can
also be mediated by miRNA binding to mRNA 3′UTRs, resulting
in either translation activation or RNA stability enhancement
(Figure 4D). For example, miR-346-dependent up-regulation
of telomerase reverse transcriptase (TERT) occurs through the
binding of miR-346 to TERT mRNA 3′UTR. When miR-346 is
bound to the TERT mRNA 3′UTR, its middle sequence motif
forms a ‘‘bulge loop’’, facilitating the G-rich RNA sequence
binding factor 1 (GRSF1)-mediated recruitment of TERTmRNA
to polysomes to promote translation (Song et al., 2015). A similar
mechanism of GRSF1 interaction with AGO2 in a miR-346-
dependant manner, leading to up-regulate the expression of
AGO2, has been described for cervical cancer (Guo et al., 2015). It
has also been reported that miR-466l uses the binding sites of the
RNA-binding protein tristetraprolin (TTP) in the IL-10 3′UTR
AU-rich elements, thus preventing TTP-mediated IL-10 mRNA
degradation in macrophages (Ma et al., 2010).

MiRNAs IN MOTOR NEURON FUNCTION:
MotomiRs

Transgenic mouse models containing loss of Dicer function
set the foundation for the importance of miRNA regulation
within motor neurons. These experiments showed that in early
development, loss of Dicer function within motor neuron
progenitor cells leads to aberrant motor neuron development
in the lateral motor column, while in adult mice, loss of Dicer
expression in motor neurons resulted in progressive motor
neurodegeneration (Haramati et al., 2010; Chen and Wichterle,
2012). With these two studies, it became apparent that the
production of miRNAs is a critical factor to overall motor neuron
function and survival. There is very little known about the
miRNome (the full spectrum of miRNAs being expressed) of
motor neurons. However, as we further discover miRNAs related
to motor neuron development and degeneration, it becomes
increasingly evident that there are specific miRNAs needed for
motor neuron viability (Table 1). In the following section, we
will review the known miRNAs associated with motor neuron
homeostasis.

Motor Neuron Differentiation
As previously described, motor neuron development is a
highly dynamic process that requires precise expression of
particular genes at the right time. MiRNAs play an essential
role in the temporal expression of genes during motor
neuron differentiation. For example, activation of miR-9
within the developing chick results in the repression of the
transcription factor onecut1 (OC1), which helps to drive
differentiation of neural progenitor cells into spinal motor
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FIGURE 4 | Mechanisms of action of miRNAs. (A) MiRNAs promote mRNA degradation by recruiting deadenylases on the target mRNA via GW182 and also
through the dissociation of PABP, increasing the accessibility of the poly(A) tail to deadenylases. (B) MiRNAs inhibit translation at the initiation step, however the exact
mechanism is still unclear. Three mechanisms have been proposed; (i) PABP displacement mediated by GW182; (ii) recruitment of the translational repressors
through GW182; and (iii) dissociation of eukaryotic initiation factor-4A (eIF4A) from the cap-binding complex eIF4F. (C) MiRNAs also induce up-regulation of their
targets. MiRNAs have been implicated in gene activation triggered by promoter-targeted small RNAs, known as RNA activation (RNAa). (D) Up-regulation of certain
transcripts can also be mediated by miRNA binding to mRNA 3

′
untranslated regions (3′UTRs), resulting in either translation activation or RNA stability enhancement.

MiR-346-dependent up-regulation of telomerase reverse transcriptase (TERT) occurs through the binding to TERT mRNA 3′UTR and is mediated by G-rich RNA
sequence binding factor 1 (GRSF1). MiR-346 facilitates the recruitment of TERT mRNA to ribosomes to promote translation. In another example, miR-4661 uses the
binding sites of the tristetraprolin (TTP) in the IL-10 3′UTR preventing TTP-mediated IL-10 mRNA degradation in macrophages.

neurons (Luxenhofer et al., 2014). However, the activation of
miR-9 not only leads to spinal motor neuron differentiation,
but sustained expression of miR-9 later in development specifies
a subset of motor neurons into the medial motor neuron
column via suppression of Forkhead Box P1 (FoxP1; Otaegi
et al., 2011). Thus, miR-9 is needed for both spinal motor
neuron differentiation and localization. Beyond differentiation,
miR-9 has also been shown to regulate axonal development
within mouse models through the suppression of microtubule
associated protein 1B (MAP1B; Dajas-Bailador et al., 2012).

AlthoughmiR-9 is crucial for motor neuron specificity during
development, other miRNAs have been reported to participate
in the process. MiR-218 is activated upon the co-expression
of motor neuron specific transcription factors Isl1 and Lhx3,
and directly suppresses TEA Domain Transcription Factor
1 (Tead1), Solute Carrier Family 6 Member 2 (Slc6a1),
B-cell lymphoma/leukemia 11A (Bcl11a), Lhx1, Paired box
2 (Pax2) and FoxP2 (Thiebes et al., 2015). Suppression of
the latter three genes diverts neural progenitor cells away
from interneuron differentiation and towards motor neuron
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TABLE 1 | List of current MotomiRs and their function.

MotomiR Genes shown to regulate Role within motor
neurons

Organism/Cell
models used to
describe function

References

miR-9 OC1, FoxP1, NEFH,
MAP1B, MCPIP1

Development,
cytoskeleton
maintenance, cell
survival

Chick, mouse
neuronal precursor
cells, mouse

Haramati et al.
(2010), Otaegi et al.
(2011),
Dajas-Bailador
et al. (2012),
Luxenhofer et al.
(2014) and Xu et al.
(2016)

miR-124 REST, Stat3, Kfl6 Development,
regeneration

Mouse Visvanathan et al.
(2007) and Nagata
et al. (2014)

miR-146a∗, miR-524, miR-582, miR-b1336, and miR-b2403 NEFL Cytoskeleton
maintenance

In vitro interactions
done in HEK293T
cells

Campos-Melo et al.
(2013) and Ishtiaq
et al. (2014)

miR-218 Tead1, Foxp2, Lhx1,
Slc6a1, Bcl11a, SLC1A1

Development,
membrane
excitability, NMJ
synaptic
connections

Mouse Amin et al. (2015)
and Thiebes et al.
(2015)

miR-8 FasIII, Nrg, wg, lar Synaptic plasticity Drosophila Nesler et al. (2013)
and Lu et al. (2014)

miR-958 and miR-289 lar Synaptic plasticity Drosophila Nesler et al. (2013)

miR-375 PAX6, CCND2, p53 Development, cell
survival

Human neural
progenitor cell
cultures

Bhinge et al. (2016)

miR-310–313 Khc-43 Synaptic vesicle
release

Drosophila Tsurudome et al.
(2010)

miR-128 and miR-20a PDZ-RhoGEF Axonal growth,
regeneration

Rat cortical neuron
cultures

Sun et al. (2013)

miR-153 SNAP-25 Axonal growth,
synaptic vesicle
release

Zebrafish Wei et al. (2013)

miR-196 Hoxb8 Development Drosophila Asli and Kessel
(2010)

miR-183 mTOR Neurite growth Rat primary spinal
motor neuron
cultures

Kye et al. (2014)

miR-206 BDNF, HDAC4 NMJ Regeneratoin Mouse Williams et al.
(2009) and Miura
et al. (2012)

In bold: miRNAs related to amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

differentiation. However, miR-218 expression alone cannot push
neural progenitor cells towards motor neuron differentiation;
therefore, miR-218 must be working in concert with other
miRNAs or other regulatorymolecules to establishmotor neuron
identity (Thiebes et al., 2015).

While the activation of Isl1 and Lhx3 transcription factors is
required for the expression of motor neuron specific miRNAs,
inhibition of RE1-silencing transcription factor (REST) is also
required to promote motor neuron identity via activation
of miR-375 (Bhinge et al., 2016). REST silencing has been
shown to be mediated by miR-124 during development to
promote neurogenesis (Visvanathan et al., 2007). Once REST
is silenced, as demonstrated in REST knock-out mice, there
is an increase in the expression of miR-375. MiR-375 directly
targets PAX6 and Cyclin D2 (CCND2) transcripts, silencing their
expression which in turn promotes motor neuron differentiation

(Bhinge et al., 2016). However, PAX6 is also necessary for the
production of neural progenitor cells (Bel-Vialar et al., 2007).
Thus, miR-124 must silence REST activity in a timely manner
to promote the expression of miR-375, which in turn, must
also suppress PAX6 activity in a timely manner to allow for the
formation of post-mitotic spinal motor neurons (Visvanathan
et al., 2007; Bhinge et al., 2016).

Beyond regulating PAX6 and CCND2 levels, miR-375 also
reduces tumor suppressor p53 protein levels. This interaction
is considered necessary for motor neuron survival as p53 is
a pro-apoptotic gene (Bhinge et al., 2016). DNA damage in
developing motor neurons leads to an increased expression
of p53, which ultimately results in programmed cell death
(Lavin and Gueven, 2006). Conversely, overexpression of
miR-375 can prevent cell death within developing motor
neurons even after a cell has experienced DNA damage
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(Bhinge et al., 2016). Thus, not only is miR-375 needed for motor
neuron differentiation, but sustained expression of this miRNA
appears to be critical for preventing apoptosis via inhibition
of p53.

As previously mentioned, Hox genes play an essential role in
the spatial patterning of neurons within both brain and spinal
cord tissue, and thus it is not surprising that miRNAs are
involved in the precise regulation of Hox genes in a spatial and
temporal manner during development (Mallo and Alonso, 2013).
In particular, expression of miR-196 at a specific time during
development is required for proper motor neuron differentiation
in chick embryos via down-regulation of Homeobox B8 (Hoxb8).
Failure to clear Hoxb8 in a spatial and temporal manner leads
to the abolition of motor neuron genesis within the chick neural
tube leaving cells in a neural progenitor cell state. However,
the inhibition of miR-196 alone does not lead to sustained
expression of Hoxb8 throughout the neural tube as might be
expected, suggesting other miRNAs or regulatory elements are
working in concert with miR-196 to silence Hoxb8 expression
and promote motor neuron development (Asli and Kessel,
2010).

Cytoskeletal Integrity
Neurofilaments are the main cytoskeletal intermediate filaments.
Described on the basis of their molecular weights, the
individual neurofilament subunit proteins (low, medium and
high molecular weight neurofilament subunits; NFL, NFM
and NFH, respectively) must maintain a specific stoichiometry
(Carpenter and Ip, 1996). The loss of this specific stoichiometry
leads to neurofilament aggregation, loss of axonal integrity
and neuronal apoptosis (Szaro and Strong, 2010). While
the full complement of miRNAs involved in the regulation
of neurofilament expression remains to be characterized, it
is known that miR-9 regulates the expression of NEFH
mRNA (Haramati et al., 2010). Reduced levels of miR-9
within rodents has been linked to the loss of NEFH mRNA
suppression and motor neuron death (Haramati et al., 2010).
Our group subsequently demonstrated that miR-146a∗, miR-
524-5p, miR-582, miR-b1336 and miR-b2403 are critical
regulators of NEFL expression (Campos-Melo et al., 2013;
Ishtiaq et al., 2014). We studied those miRNAs capable
of destabilizing NEFL mRNA which are up-regulated in
ALS spinal cord, as well as those miRNAs capable of
stabilizing NEFL mRNA that are down-regulated. We described
a pool of miRNAs, and by inference, the NEFL miRNA
network, that is altered in a manner which would be
predicted to disrupt neurofilament stoichiometry in ALS motor
neurons.

NMJ Function and Plasticity
In Drosophila models, miR-8 is the most widely studied miRNA
in reference to the NMJ. At the NMJ, miR-8 was first suggested
to play an essential role in NMJ connectivity and expansion by
limiting the post-synaptic expression of a highly-conserved actin
regulatory protein—Enabled (Ena). This affect by miR-8 reduces
actin polymerization on the post-synaptic terminal, and creates

presynaptic arbors optimizing bouton connectivity (Loya et al.,
2009, 2014).

MiR-8 is also involved in regulating cell adhesion molecules
(CAMs) at both the pre- and post-synaptic membranes in order
to coordinate synaptic connections at the NMJ (Lu et al., 2014).
Post-synaptically, miR-8 regulates Fasciclin III (FasIII) while the
pre-synaptic expression of miR-8 regulates Neuroglian (Nrg)
expression. While miR-8 has no direct target within the 3′UTR
of FasIII or Nrg transcripts, the deletion of miR-8 leads to
decrease levels of these two CAMs (Lu et al., 2014). This suggests
that miR-8 likely targets and silences upstream transcripts that
negatively regulate CAM molecules to produce strong synaptic
connections at the NMJ.

Consistent with this theory, Nesler et al. (2013) showed that
five miRNAs acted in an activity-dependent manner at the NMJ
within Drosophila larvae, including miR-8. Further, the authors
showed that miR-8 directly targets and supresses Wingless (Wg)
expression which is an essential gene for NMJ development
and plasticity, while miR-8, along with miR-289 and miR-958,
silenced Leukocyte-antigen-related-like (Lar) expression, which
is important for synaptic growth and motor axonal extension
(Kaufmann et al., 2002; Koles and Budnik, 2012; Nesler et al.,
2013). This suggests that miR-8, miR-289, and miR-958 are
crucial for motor connectivity and plasticity at the NMJ in
Drosophila through the regulation of Wg and Lar. Further, loss
of neuronal expression of miR-8, miR-289, and miR-958 reduced
synaptic growth at the NMJ in an activity-dependent manner
(Nesler et al., 2013). While the latter study also discussed miR-1
and miR-314 as miRNAs that change expression in an activity-
dependent manner at the NMJ, the loss of these twomiRNAs had
no effect on NMJ activity.

MiRNA cluster (miR-310/313) has also been shown to
be necessary for NMJ function (Tsurudome et al., 2010).
In Drosophila larva, the loss of miR-310/313 induces the
enhancement of excitatory synaptic release, which can be
reversed by the re-introduction of miR-310/313 cluster. MiR-
310/313 regulates a signal transduction pathway by directly
targeting and silencing kinesin heavy chain 43 (Khc-43) mRNA,
leading to the indirect regulation of Bruchpilot (Brp) and
Cacophony (Cac) proteins. Khc-43 promotes Brp expression
which in turn localizes Cac to the NMJ, promoting calcium
influx and acetylcholine release (Tsurudome et al., 2010).
Hence, the regulation of the Khc-43 pathway via miR-
310/313 is critical to provide control of muscle activation at the
NMJ.

Another miRNA involved with NMJ neurotransmitter release
is miR-153. The motor system within zebrafish requires precise
regulation of synaptosome associated protein 25 (SNAP-25),
which is required for neurotransmitter release (Wei et al.,
2013). SNAP-25 expression is post-transcriptionally suppressed
by miR-153 specifically within motor neurons, which in turn
reduces synaptic vesicle release to regulate muscle activation
(Wei et al., 2013).

The motor neuron specific miRNA, miR-218, has been
predicted to target and suppress 333 mRNA molecules (termed
TARGET218) within the motor neuron transcriptome to
elicit and maintain neuromuscular synapses, membrane
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excitability and motor neuron survival. Of note, solute
carrier family 1 member 2 (Slc1a2) mRNA, a glutamate
re-uptake receptor, was the most up-regulated gene after
miR-218 suppression (Amin et al., 2015), suggesting
this miRNA may play an essential role in preventing
neuronal excitoxicity—a major contributor to motor
neurodegeneration.

Finally, miR-206 is a skeletal muscle specific miRNA which
plays an essential role in NMJmaintenance and regeneration (Ma
et al., 2015). After an acute nerve injury in wild-type mice, the
up-regulation of miR-206 suppresses HDAC4mRNA expression
via direct interactions with the 3

′

UTR, and promotes the
expression of fibroblast growth factor binding protein (FGFBP1;
Williams et al., 2009). Subsequently, FGFBP1 is released into
the extracellular matrix to potentiate FGF-7 bioactivity, which
acts on the distal axon to promote re-innervation (Beer et al.,
2005). Others have also described miR-206 to be a negative
regulator of BDNF within skeletal muscle (Miura et al., 2012; Ma
et al., 2015). This is intriguing, as despite the fact that miR-206
has been described as a skeletal muscle specific miRNA, it has
also be shown to be expressed within spinal motor neurons
(Chakrabarti et al., 2014). As previously mentioned, expression
of FGFs and BDNF in motor neurons are necessary components
of regeneration, and thus one could speculate that miR-206 likely
regulates the expression of BDNF and FGFs within spinal motor
neurons to facilitate neurotrophic signaling between muscle
fibers and motor axons after an acute nerve injury.

Regeneration
Both miR-9 and miR-124 are highly enriched within neurons
in the human brain and spinal cord tissue, suggesting that
they are critical for neuronal function. However, during motor
neuron regeneration there is a shift in the expression of
these two miRNAs. For example, during motor neuron injury
miR-124 is suppressed, which allows for the up-regulation of
signal transducer and activation of transcription 3 (Stat3) and
Kruppel like factor 6 (Klf6)—two genes crucial for motor neuron
regeneration (Nagata et al., 2014). Further, miR-9 has been
shown to be down-regulated in the early stages of a nerve injury,
but up-regulated in the later stages. This expression pattern
of miR-9 is inversely correlated with zinc finger CCCH-Type
containing 12A (MCPIP1) expression—a pro-apoptotic gene (Xu
et al., 2016). The initial down-regulation of miR-9 is considered
necessary to initiate cell regeneration, but in order for the
cell to regenerate, miR-9 must be up-regulated to prevent the
expression of pro-apoptotic genes, otherwise programmed cell
death will be initiated. Studies with both miR-9 and -124 suggest
a shift in miRNA expression must be made constantly depending
on the need of the cell to maintain homeostasis. Therefore,
miRNAs needed to sustain motor neuron function may not
be the same miRNAs needed for motor neuron recovery,
emphasizing the highly dynamic network of miRNA gene
regulation.

MiR-128 and miR-20a also appear to be necessary for the
development and regeneration of PNS neurons, including motor
neurons (Sun et al., 2013). Heat shock protein family B member
1 (HspB1) expression has been shown to be enhanced during

neuronal regeneration, while the Ras homolog family member
A (RhoA) pathway is suppressed which is considered necessary
for neuronal recovery (Fournier et al., 2003; Ma et al., 2011).
In vitro studies within rat cortical neurons have shown that in
order to promote neurite growth, HspB1 must reduce RhoA
activity by promoting the expression of miR-128 and miR-20a.
These two miRNAs do not interact with RhoA mRNA directly,
rather they target Rho Guanine Nucleotide Exchange Factor 11
(PDZ-RhoGEF) leading to its suppression. The silencing of PDZ-
RhoGEF via miR-128 and miR-20a reduces RhoA activity, and
hence promotes neurite growth (Sun et al., 2013). The authors
concluded that this pathway is critical for neuronal development,
but further suggested that these miRNAs may be necessary for
neuronal regeneration as the inverse correlation of HspB1 and
RhoA activity is also seen in regenerating motor neurons (Ma
et al., 2011; Huelsenbeck et al., 2012).

Beyond the RhoA pathway, mechanistic target of rapamycin
(mTOR) is a serine/threonine protein kinase which is
functionally a part of two complexes (mTOR complex
1 [mTORC1] and mTOR complex 2 [mTORC2]), and
has been described in several cellular processes including
axonal regeneration (Berry et al., 2016). Key regulators
of the mTOR pathway include miR-183 which directly
supresses mTOR expression, and even regulates the ratio of
mTORC1/2 complexes. The overexpression of miR-183 inhibits
neurite outgrowth via regulation of the mTOR pathway (Kye
et al., 2014). While it has not been determined if miR-183
basal levels are required for motor neuron survival, mTOR’s
involvement in the maintenance of the cellular cytoskeleton
and mitochondrial biogenesis/removal would suggest precise
regulation of this pathway is likely crucial (Loewith et al.,
2002; Zhu et al., 2013). Therefore, the overexpression of miR-183
maybe toxic to motor neurons, but based on what we know about
the mTOR pathway, basal levels and/or transient expression of
miR-183 might be crucial for overall motor neuron maintenance
and cellular regeneration.

MotomiRs
Several miRNAs have been implicated as being critical for motor
neuron development, maintenance, regeneration and survival;
which we have termed MotomiRs. Among the MotomiRs, only
miR-218 has been described as a motor neuron specific miRNA.
MiR-218 is predicted to regulate a large group of genes within
the motor neuron transcriptome and its involvement in several
motor pathways shows how critical this miRNA is to motor
function (Amin et al., 2015; Thiebes et al., 2015). Despite
miR-218 being the only describedmotor neuron specific miRNA,
other miRNAs may have motor neuron specific functions. The
miRNA regulatory network is a highly dynamic system from
cell to cell, as the same miRNA might target different genes
between two cell lines depending on the transcripts being
expressed. Thus, if we are ever to appreciate the complexity of
this highly dynamic network in motor neurons, it will be critical
to understand its miRNome, their targets, and what specific
networks they regulate (Berezikov, 2011). Further, we will have
to understand the transient nature of miRNAs within motor
neurons (Pothof and van Gent, 2011); when and where are they
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expressed, and what their expression patterns are at different
time periods (e.g., age differences, stress vs. basal conditions,
developing vs. mature cells, excited vs. unexcited neurons, health
vs. disease, etc.). Answering these questions will be essential
in understanding the spatiotemporal expression patterns of
MotomiRs, which transcripts are targeted at a particular time and
finally how changes to this complex MotomiR network leads to
disease.

MiRNAs IN MOTOR NEURON DISEASES:
DYSREGULATION, DIAGNOSIS AND
THERAPY

Given the pivotal roles of miRNAs in regulating motor neuron
differentiation, structure, activity and cytoskeletal integrity,
it is not surprising that alterations in the expression of
miRNAs have been increasingly linked to human motor
neuron degenerative disorders. These alterations can be in
the miRNAs and/or MREs such as changes in the expression,
editing and methylation, mutations and SNPs, and also
alterations in competing endogenous RNAs (ceRNAs) involved
in the regulation of the interaction of miRNAs and their
targets.

Spinal Muscular Atrophy (SMA)
SMA is an autosomal recessive disease characterized by
progressive loss of lower motor neurons and atrophy of muscle
(Burghes and Beattie, 2009). Proximal SMA has an incidence of
∼1:10,000 newborns and is the most frequent SMA type (Wirth
et al., 2006). SMA is caused by homozygous deletion or mutation
of survival motor neuron 1 (SMN1, Lefebvre et al., 1995). SMNhas
been found to play roles in RNAmetabolism, specifically in small
nuclear RNP (snRNP) biogenesis, alternative splicing, trafficking
of RNA-binding proteins and translation of target mRNAs in
neurites. SMN also binds to fragile X mental retardation protein
(FMRP), KH-type splicing regulatory protein (KSRP) and fused
in sarcoma/translocated in liposarcoma (FUS/TLS), which are
important for miRNA biogenesis and function (Gubitz et al.,
2004; Piazzon et al., 2008; Tadesse et al., 2008; Trabucchi et al.,
2009; Akten et al., 2011; Fallini et al., 2011, 2014; Hubers et al.,
2011; Yamazaki et al., 2012).

In fact, several lines of evidence have involved miRNAs in
SMA. It was reported that mice lacking the miRNA-processing
enzyme Dicer selectively in motor neurons display hallmarks
of SMA (Haramati et al., 2010). Also, SMN protein has been
shown to alter miRNA expression and distribution in neurons
(Kye et al., 2014; Wang et al., 2014). Specifically, miR-183
is increased in neurites of SMN-deficient neurons. Inhibition
of miR-183 expression in the spinal cord of an SMA mouse
prolongs survival and improves motor function of Smn-mutant
mice (Kye et al., 2014). SMN protein also down-regulates the
expression of miR-9a. Interestingly, miR-9a levels have shown
a positive correlation with SMA severity (Wang et al., 2014). A
more recent study has shown that miR-431, involved in motor
neuron neurite length, also plays a role in the SMA motor
neuron phenotype. By integrating miRNA:mRNA profiles, it was

observed that miR-431 expression is highly increased in spinal
motor neurons and a number of its putative mRNA targets are
significantly down-regulated in motor neurons after SMN loss
(Wertz et al., 2016). Another miRNA involved in SMA motor
neuron phenotype is miR-375. Besides its role in neurogenesis,
miR-375 protects neurons from apoptosis in response to DNA
damage. Motor neurons from a SMA patient have shown
reduced levels of miR-375, elevated p53 protein levels, and higher
susceptibility to DNA damage induced apoptosis (Bhinge et al.,
2016).

Recently, the first vertebrate system allowing transgenic
spatio-temporal control of the smn1 gene was developed using
stable miR-mediated knockdown technology in zebrafish.
The expression of anti-smn1 miRNAs in motor neurons
reproduced most hallmarks observed previously in the
ubiquitous knockdown model. In addition, smn1 knockdown
in zebrafish motor neurons is sufficient to induce late-onset
motor neuron degeneration (Laird et al., 2016). Finally, the
potential use of miR-9, miR-206 and miR-132 as biomarkers in
SMA has been proposed. It was shown that there is differential
expression of all three miRNAs in spinal cord, skeletal muscle
and serum samples in SMAmice, while only miR-9 and miR-132
were differentially expressed in serum samples of SMA patients
(Catapano et al., 2016).

Amyotrophic Lateral Sclerosis (ALS)
ALS is a fatal, adult-onset, neurodegenerative disease that has an
incidence of 1–2 cases in 100,000 people. ALS is characterized
by the progressive loss of both UMNs and LMNs, resulting
in paralysis and death 3–5 years after onset in most patients
(Strong et al., 2005). About 10% of ALS cases are familial, almost
always transmitted as dominant trait and frequently with high
penetrance (Taylor et al., 2016).

Of the greater than 50 ALS-associated genes described to
date, many are linked to RNA metabolism (Droppelmann et al.,
2014). Several encode for RNA-binding proteins that have roles
in miRNA biogenesis, including TAR DNA-Binding Protein
43 (TDP-43) which is a heterogenous nuclear RNP (hnRNP)
that participates in RNA transcription, pre-mRNA splicing and
miRNA processing (Lagier-Tourenne et al., 2010). Mutations
in TDP-43 gene (TARDBP) account for ∼4% of familial and
1.5% of sporadic ALS cases (Mackenzie et al., 2010). TDP-43
interacts with Drosha andDicer, regulatingmiRNA processing at
both primary and precursor levels in the nucleus and cytoplasm,
respectively (Figure 2; Kawahara and Mieda-Sato, 2012).

Members of the FET family of RNA- and DNA-binding
proteins, consisting of FUS/TLS, Ewing Sarcoma (EWS)
Breakpoint Region 1 and TATA-Binding Protein Associated
Factor 15 (TAF-15), also participate in miRNA biogenesis.
FET proteins have roles in transcription, alternative splicing
and in maintenance of genome stability (Svetoni et al., 2016).
Of interest, all FET proteins interact with Drosha (Gregory
et al., 2004). FUS/TLS binds to pri-miRNAs and helps with
Drosha recruitment to chromatin for efficientmiRNAprocessing
(Figure 2; Morlando et al., 2012). EWS regulates the expression
of Drosha and miRNAs, although the mechanism is unknown
(Kim et al., 2014). TAF15 is required for post-transcriptional
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regulation of the expression of the onco-miR-17 family, which in
turns controls the gene expression of cell cycle regulatory genes
(Ballarino et al., 2013).

Numerous studies in ALS models, including those harboring
mutations in copper/zinc superoxide dismutase (mtSOD1), and
patient samples have demonstrated a disruption of miRNA
expression in ALS (Williams et al., 2009; Butovsky et al., 2012;
Koval et al., 2013; Parisi et al., 2013; Zhou et al., 2013; Marcuzzo
et al., 2014; Toivonen et al., 2014; Dobrowolny et al., 2015).
The most consistent observation from the mtSOD1 mice is the
upregulation of miR-9 and miR-206 (Williams et al., 2009; Zhou
et al., 2013; Toivonen et al., 2014; Dobrowolny et al., 2015).
Specifically, miR-9 expression is up-regulated in mtSOD1 mouse
spinal cord (Shi et al., 2004; Zhao et al., 2009; Tan et al., 2012;
Zhou et al., 2013; Dobrowolny et al., 2015), while miR-206
expression is up-regulated in muscle in both mtSOD1 and SMA
mouse models (Valsecchi et al., 2015). Of note, mtSOD1 disease
progression is accelerated with down-regulation of miR-206
expression (Williams et al., 2009).

Dysregulation of miRNA expression has been described
in spinal cord, brain, iPSC, muscle, blood and cerebrospinal
fluid (CSF) of ALS patients. We obtained the first miRNA
profile of human spinal cord tissue and observed a massive
down-regulation of miRNAs in ALS (Campos-Melo et al., 2013).
This disruption was subsequently shown to be specific to motor
neurons (Emde et al., 2015).The reduction of miRNA levels
has been observed to be a consequence of the inhibition of
DICER pre-miRNA processing activity (Emde et al., 2015). Of
note, the down-regulation of miRNAs has been observed also in
other ALS-derived tissues such as in motor cortex, fibroblasts,
serum /plasma and CSF (Wakabayashi et al., 2014; Freischmidt
et al., 2015; Raman et al., 2015; Takahashi et al., 2015; Benigni
et al., 2016). Also, a consistent up-regulation of miR-206 in
muscle (Russell et al., 2013; de Andrade et al., 2016) and in
serum samples of ALS patients has been reported (Toivonen
et al., 2014; de Andrade et al., 2016). The latter appears to
correlate with the rate of clinical deterioration (de Andrade et al.,
2016). Although studies in larger cohorts are necessary, these
results suggest that miR-206 could be a potential biomarker
for ALS.

CONCLUSION

Considering the critical function of miRNAs in neuronal
differentiation, function and survival, it is easy to speculate that
every neuronal cell type has to have its own miRNA profile.
Motor neurons in particular are highly specialized cells that
require tight regulation of gene expression for their normal

function, which is in a fundamental way accomplished by
MotomiRs. MotomiRs pivotal role in maintaining motor neuron
homeostasis is fairly evident from the fact that alterations in
their levels are linked to motor neuron malfunction and disease.
Moreover, TDP-43 and FUS/TLS are well known proteins
associated with ALS, but are also essential for miRNA processing,
further supporting the involvement of the miRNA pathway in
motor neuron impairment.

In the past few years miRNAs have emerged as the next
generation of potential biomarkers and therapeutic tools for
neurodegenerative diseases. The stability of miRNAs in biofluids,
dysregulation in disease and their mature detection technologies
make them suitable for diagnosis, disease classification and
progression, and evaluation of drug effectiveness, among others.
The fact that miRNAs regulate the vast majority of the
transcriptome has led to the development of nanocapsules
for tissue-specific delivery of miRNAs mimics and antisense
oligonucleotides (anti-miRNAs) with specific targets, converting
miRNAs into an attractive option for disease intervention
strategies (Basak et al., 2016). Of the MotomiRs described in this
review, miR-9, miR-206, miR-183 and miR-375 could potentially
be explored as biomarkers and therapeutic targets for SMA and
ALS, while miR-183 and miR-375 may be contributing to the
specificity of SMA detection.

MiRNAs have an enormous diagnostic potential as
non-invasive biomarkers and therapeutic tools of motor neuron
diseases; however, we must first understand the transcriptome
networks which are regulated by MotomiRs both in health and
disease if we are to appreciate the complexity of this system
within motor neurons. The field is still in its infancy, but the
inclusion of large cohorts and specificity in the studies will
certainly help to validate their use in the upcoming medicine era.
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