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Abstract

Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affect-

ing the swine industry worldwide. Genetic variation in host immunity has been considered

as one of the potential determinants to improve the immunocompetence, thereby resistance

to PRRS. Therefore, the present study aimed to investigate the breed difference in innate

immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi)

pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononu-

clear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred

DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be

differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h

vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vac-

cine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs

than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially

expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the

breed differences in vaccine responsiveness. The top biological pathways significantly

affected by DEGs of both breeds were linked to immune response functions. The network

enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as

potential regulatory genes for the functional network of PRRSV vaccine response specific

for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the

most potential hubs of Pi specific transcriptome network. In conclusion, our data provided

insights of breed-specific host transcriptome responses to PRRSV vaccination which might

contribute in better understanding of PPRS resistance in pigs.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically

important viral diseases of swine industry worldwide. PRRS is caused by a positive sense, sin-

gle-stranded RNA virus PRRS virus (PRRSV) having two genetically diverse strains namely

Type 1 (European) and Type 2 (North American) [1]. The clinical outcome of PRRSV infec-

tion varies widely from a mild, asymptomatic illness to a severe, clinical disease, depending on

the virulence of the virus and the immune status of the host [2]. PRRSV of either genotype

seems to inherently develop an imbalanced immune response characterized by aberrant inter-

feron (IFN) responses [3]. Variability of host immunity is likely responsible for inconsistency

of the clinical outcomes seen upon PRRSV challenge either to naive or previously immunized

pigs [4]. Therefore, severity of PRRSV infection is determined by hosts’ ability to overcome the

inherent propensity of PRRSV in preventing timely onset of innate immune response.

Innate immunity is the front-line host defense mechanism, which is typically developed

within hours of antigen exposure and may persist up to a few days [5]. An adequate and timely

activation of the innate immune system is essential for mounting a durable, protective immu-

nity [6]. Genes regulating the innate immune response to pathogenic infection are likely strong

candidates for host resistance to disease [5]. Since the vaccine antigen mimics a natural infec-

tion in term of activating host defense, innate immunity to vaccination has been considered as

a potential indirect measure of host resistance [7]. Innate immunity related genes, in particu-

lar, members of the guanylate-binding protein (GBP) gene family have been found as potential

candidate for host resistance to PRRSV [8, 9]. A major quantitative trait locus (QTL) for PRRS

resistance has been identified on Sus scrofa chromosome 4 (SSC4) where genes of the GBP

family are located [9]. Moreover, single nucleotide polymorphisms (SNPs) within GBP5 [10],

GBP1 [11] and ubiquitin specific protease 18 (USP18) [12] gene have been reported to be asso-

ciated with host resistance to PRRSV infection. Therefore, identification of genes and their

expression regulation associated with innate immunity to PRRSV vaccination are crucial for

the improvement of host genetic resistance.

Breed is one of the potential host determinants affecting immune responses to a variety of

pathogens or stressors in pigs. The existence of breed differences in relative resistance to

PRRSV infection in pigs has been reported in several studies [13–18]. Variations in host innate

immunity to European type PRRSV infection have been explored between Landrace and Pie-

train (Pi) pigs through global gene expression profiling of in vitro PRRSV infected pulmonary

alveolar macrophages (PAMS) [15]. Christopher-Hennings et al. [16] compared the presence

of virus in serum, semen and peripheral blood mononuclear cells (PBMCs) over time in adult

Hampshire (n = 3), Yorkshire (n = 3), and Landrace (n = 2) boars inoculated with a PRRSV

field isolate (SD-23983). Variations observed in the immune responses to PRRSV with a few

animals of each breed tested [16] reinforced the possibility of detecting statistically significant

breed-differences even with a relatively smaller study population. A population of lean type

pigs showed higher susceptibility to PRRSV as compared to that of non-lean type pigs [17],

similar results were also reported by a comparative evaluation of PRRSV infection between

German miniature and Pi pigs [18]. In a recent study, we also observed remarkable differences

between Duroc and Pi pigs in terms of transcriptome profiles of lung dendritic cells after in

vitro PRRSV infection [19]. All these above-mentioned works have raised the evidence for

genetic variation in host transcriptional response to PRRSV vaccination among porcine

breeds.

In order to characterize host responses, several studies evaluated the transcriptome profiles

of respiratory tissues/cells following in vitro and in vivo PRRSV infection [12–15, 20], perhaps

because of primary site of viral replication. It has been reported that intramuscularly
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administered PRRSV vaccine antigens bypass the lung tissue and enter into blood circulation

and initiate the immune reaction [21]. Therefore, blood-based investigation of molecular

mechanisms of host-vaccine interaction is worthwhile. Blood transcriptomics could provide a

quick insight into the complex biological processes linking between host genotypes and vac-

cine responses [22, 23]. Furthermore, breed variation in PRRSV vaccine-induced transcrip-

tome modifications at blood level among the porcine breeds has not yet been entirely

explored. Our previous study revealed temporal patterns of transcriptome alterations over the

first three days of immunization with a peak response at 24 h post vaccination in pigs [24].

Thus, the time point 24 h post vaccination was selected for identifying transcriptome signa-

tures of innate immune response to PRRSV vaccine. At 24 h post PRRSV vaccination, host

genetic variation in PRRSV between DL pigs [24] and Pi pigs [25] were observed. To investi-

gate whether host genetic variation impacts on vaccine-induced innate immunity, we com-

pared the global gene expression profiles of PBMCs collected immediately before and at 24 h

post PRRSV vaccination in purebred DL and Pi pigs.

Material and methods

Ethics statement

The research proposal was approved by the Veterinary and Food Inspection Office, Siegburg,

Germany (ref. 39600305-547/15).

Study design and data description

To explore the breed differences in PRRSV vaccine-induced gene expression profiles between

DL and Pi pigs, we analyzed 12 microarray data retrieved from two of our previous studies

[24, 25]. The microarray data analyzed here were generated in PBMCs collected before and at

24 h post PRRSV vaccination in three individual DL and Pi piglets. The raw data for DL and Pi

pigs are available through NCBI-GEO accession number GSE76254 [24] and GSE84516 [25],

respectively. Study piglets were female litter mates from both purebred DL and Pi breed, and

were housed at the Teaching and Research Station at Frankenforst, University of Bonn, Ger-

many. Piglets were maintained under same husbandry condition and were immunized with

the live attenuated PRRSV vaccine of EU strain (Porcillis PRRS, MSD Animal Health, Ger-

many) with a primary injection at 28 days old. Piglets were confirmed sero-negative at the

time of primary vaccination through PRRSV-specific antibody ELISA (PRRSV-AK screening,

SynLab Vet. GmbH, Standort Augsburg, Germany) screening. The whole blood samples col-

lected at 0 and 24 h post vaccination were subjected to PBMCs isolation through density gradi-

ent centrifugation with Histopaque1077 (Sigma-Aldrich, Germany). The total RNA was

extracted from PBMCs using the miRNeasy mini kit (Qiagen, Hilden, Germany) according to

the manufacturers protocol along with on column DNase treatment (Qiagen, Hilden, Ger-

many). After quality control, about 100 ng of total RNA was processed to synthesize the bio-

tin-labeled sense strand cDNA probes using the GeneChip WT PLUS Reagent kit (Affymetrix

Inc., Santa Clara, CA, USA) according to the manufacturer’s protocol. The microarray target

probes were hybridized onto the GeneChip Porcine Gene 1.0 ST array of 81/4 format (Affyme-

trix Inc., Santa Clara, CA, USA) followed by staining, washing and scanning using the Affyme-

trix GeneChip array processing facility at the Life & Brain Centre, University Hospital Bonn,

Germany. The microarray expressions of both datasets were technically validated through

qRT-PCR expression of selected differentially expressed genes in the same RNA sample as

used for microarray hybridization.

Breed-specific transcriptome signatures for PRRSV vaccination in pigs
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Statistical analysis of microarray data

The raw intensity data was processed for background correction and normalization with R/

Bioconductor software (v 3.1.2). The RMA (Robust Multi-array Average) based quantile nor-

malization of microarray data were performed using the oligo package [26]. For the differential

expression analysis, normalized microarray dataset was prepared for four pairwise compari-

sons: DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h. Differen-

tially expressed genes were determined using the linear analysis of microarray technique from

the limma package [27] with empirical Bayes adjustment to the variance, followed by Benja-

mini and Hochberg (BH) correction for multiple testing [27, 28]. Threshold criteria for genes

to be considered differentially expressed were set as false discovery rate (FDR) of<0.05 and

log2 fold-change either>1.5 or<-1.5. The hierarchical clustered heat map was generated

using the heatmap.2 function of ggplots package in R.

Functional annotation of differentially expressed genes

For the biological interpretation of the altered PBMC-transcriptomes between the two breeds,

significantly over-represented gene ontology (GO) terms and biological pathways were

explored using the InnateDB pathway analysis tool [29]. The InnateDB platform implements a

hypergeometric algorithm with Benjamini- Hochberg (BH) multiple test correction method

for overrepresentation analysis. First, the differentially expressed genes (DEGs) from microar-

ray data were converted to their human ensembl orthologues using the biological DataBase

network (bioDBnet) tool [30]. Then a list of ensembl gene identifiers was uploaded in Inna-

teDB web and the over-representation analysis was performed. GO terms and pathways were

considered significantly over-represented with an FDR of<0.05.

Network analysis for differentially expressed genes

To identify the potential regulatory genes of vaccine mediated immunity in a breed specific

manner, we performed network enrichment analysis with the DEGs more abundant in vacci-

nated PBMCs of DL compared to that of Pi pigs and vice versa using the NetworkAnalyst

online tool [31]. Human orthologous gene ensemble of the DEGs were imported as seed genes

and a default network was constructed based on the Walktrap algorithm taking only direct

interaction of seed genes (first-order interactors). The network size was then adjusted for

<500 seeds and nodes between 200 and 2000 using the reduce panel for high-performance

visualization. Two topological measures such as degree (number of connections to other

nodes) and betweenness centrality (number of shortest paths going through the node) were

taken into account for detecting highly potential hubs that could regulate the entire network.

The degree and betweenness estimates attributed to the diameter of particular nodes. There-

fore, larger diameter of a node indicates higher potential to be the network hub. In addition,

weighted network-based module detection was performed to cluster the genes of similar bio-

logical functions. The P value of a given network module was calculated using a Wilcoxon

rank-sum test of the”internal” (edges within in a module) and”external” (edges connecting the

nodes of other modules) degrees.

Results

In order to get comprehensive insights of vaccine-induced transcriptome differences between

piglets of DL and Pi breed, we compared the whole transcriptome profiles of PBMCs collected

immediately before (0 h) and 24 h after primary PRRSV vaccination. The transcriptome profil-

ing was performed with three individual biological replications for each sampling time points

Breed-specific transcriptome signatures for PRRSV vaccination in pigs
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in both breed groups using Affymetrix GeneChip Porcine Gene 1.0 ST array containing

394,580 probe sets representing a total of 19,212 known genes.

Abundance of differentially expressed genes in PBMCs after PRRSV

vaccination

At first, the characteristics of microarray expression data were determined using the principal

component analysis (PCA) plot (Fig 1). Interestingly, the results showed that microarray data

were very similar within a sampling time point of each breed, and clustered together indicating

the homogeneity of transcriptome profiles of a particular treatment condition (Fig 1). On the

other hand, samples from two breeds were located in two clearly separate zones (Fig 1). Then,

gene transcripts were considered differentially expressed with thresholds set as FDR<0.05 and

log2 fold-change either>1.5 or<-1.5. Four contrast pairs namely PBMCs of DL pigs between

before and 24 h post vaccination (DL-24h vs. DL-0h), PBMCs of Pi pigs between before and 24

h post vaccination (Pi-24h vs. Pi-0h), unvaccinated PBMCs between DL and Pi pigs (DL-0h vs.

Pi-0h) and vaccinated PBMCs between DL and Pi pigs (DL-24h vs. Pi-24h) were taken into con-

sideration for differential expression analysis. Following statistical analysis of RMA normalized

expression data obtained from both breeds together, 4,269 transcripts were found to be differen-

tially expressed in at least one of the four contrast pairs, while 2,459, 291, 3255 and 1,046 DEGs

were identified in the pairwise comparison of DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-

0h and DL-24h vs. Pi-24h, respectively. Notably, 59 genes were differentially expressed in all

four contrast pairs irrespective of vaccine responses and breed differences (Fig 2A). A total of

2,350 genes were differentially expressed in PBMCs at 24 h after vaccination in DL pigs while

only 182 genes were differentially expressed in Pi pigs after vaccination. Furthermore, a total of

721 DEGs showed more abundance in PBMCs of vaccinated DL pigs compared to that of Pi

pigs, among which 405 genes were altered solely by breed differences (Fig 2A).

Global expression patterns of DEGs between DL and Pietrain pigs

In PBMCs of vaccinated DL pigs, a large number of DEGs (2,186) were up-regulated com-

pared to the down-regulated ones (273) (Fig 2B). On the other hand, the majority of the altered

genes (260) in PBMCs of vaccinated Pi pigs were down-regulated, and only 31 genes were up-

regulated. In breed comparison before vaccination, 783 genes were up-regulated in PBMCs of

DL compared to Pi and 2,472 genes were down-regulated in DL compared to that of Pi pigs,

respectively. In breed comparison after vaccination, relatively higher number (933) of up-regu-

lated genes were observed in vaccinated PBMCs of DL pigs compared to those of Pi pigs (133)

(Fig 2B). The range of log fold changes of DEGs in the four contrasts includes -3.87 to 5.12;

-4.71 to 3.63; -5.87 to 6.41 and -3.89 to 6.72 in the contrasts of DL-24h vs. DL-0h; Pi-24h vs.

Pi-0h; DL-0h vs. Pi-0h and DL-24h vs. Pi-24h, respectively. The hierarchical heatmap (Fig 3)

demonstrated the distinct patterns of differential gene expression in PBMCs of DL and Pi pigs.

Sample dendrogram revealed that replicates were clustered together within each treatment

block tested. The DEGs were clustered in five major groups based on the similarities of biologi-

cal functions (Fig 3).

Mutually inclusive transcriptome response to PRRSV vaccine between DL

and Pi pigs

The transcripts showing differential expression shared between both breeds are summarized

in S1 Table. To identify the potential regulatory genes among the common DEGs between two

breeds, we performed the network enrichment analysis using the NetworkAnalyst tool [31].

Breed-specific transcriptome signatures for PRRSV vaccination in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0222513 September 19, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0222513


The seed genes of the network were ranked based on their degree and betweenness centrality

values to detect the most potential hub genes. The network of shared DEGs in PBMCs of

both DL and Pi pigs is presented in Fig 4. Based on two centrality measures, the most highly

interconnected hubs of functional network of the shared DEGs includes EIF3I (Eukaryotic

translation initiation factor 3, subunit I), RRS1 (Ribosome biogenesis regulator homolog

(S. cerevisiae)), ARPC1B (Actin related protein 2/3 complex, subunit 1B, 41kDa), BAG3

(BCL2-associated athanogene 3), ATP5J2 (ATP synthase, H+ transporting, mitochondrial Fo

complex, subunit F2), CSN2 (Casein beta), ASAP2 (ArfGAP with SH3 domain, ankyrin repeat

and PH domain 2), BUD31 (BUD31 homolog (S. cerevisiae)), DCTN3 (Dynactin 3 (p22)),

NACC1 (Nucleus accumbens associated 1, BEN and BTB (POZ) domain containing) and

SLC9A2 (Solute carrier family 9, subfamily A (NHE2, cation proton antiporter 2), member 2).

Fig 1. Principal component analysis (PCA) plot showing the sample characteristics based on microarray expression data. Each solid circle

indicates the normalized gene expression of one microarray sample and the color of the circle indicate treatment condition.

https://doi.org/10.1371/journal.pone.0222513.g001
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Relative expression values and centrality estimates of the hub genes of shared transcriptome

network are presented in Table 1. Surprisingly, the relative expressions of hub genes of shared

network were opposite in direction between DL and Pi pigs. Among the hub genes, the relative

expressions of SLC9A2, ASAP2, BAG3, NACC1, DCTN3, BUD31, ARPC1B and ATP5J2 were

up-regulated in PBMCs of vaccinated DL pigs but down-regulated in PBMCs of vaccinated Pi

pigs. In contrast, EIF3I was down-regulated in PBMCs of vaccinated DL pigs but up-regulated

in those of Pi pigs. The expression of CSN2 was down-regulated in both breeds after vaccina-

tion, while RRS1 showed up-regulation in both breeds. Gene ontology (GO) annotations

related to the hub genes include: protein complex binding, GTPase activity, sodium and

hydrogen ion exchange, calcium ion binding, poly (A) RNA binding, structural molecule

activity, transcription factor activity, actin binding, ATPase activity and translation initiation

activity (Fig 4).

Breed-specific transcriptome signatures for PRRSV vaccine responses

The breed-specific transcriptome signatures for PRRSV vaccine mediated immunity in

PBMCs were identified through network enrichment analysis of vaccine-induced DEGs in DL

and Pi pigs. The breed-specific transcriptome networks labeled with potential hub genes are

presented in Fig 5. The degree and betweenness centrality estimates along with the relative

expression of hub genes are provided in Table 2. The hub genes of DL specific transcriptome

network include ADAM17 (Alpha disintegrin and metalloproteinase), STAT1 (Signal trans-

ducer and activator of transcription 1), MMS19 (MMS19 Homolog, cytosolic iron-sulfur

Fig 2. Number of DEGs after PRRSV vaccination. (A) The intersecting venn diagram demonstrates the number of

DEGs identified at four contrast pairs such as PBMCs of DL pigs between pre and 24 h post vaccination (DL-24h vs.

DL-0h); PBMCs of PI pigs between pre and 24 h post vaccination (Pi-24h vs. Pi-0h); unvaccinated PBMCs between DL

and Pi pigs (DL-0h vs. Pi-0h), and vaccinated PBMCs between DL and Pi pigs (DL-24h vs. Pi-24h). (B) The bar graphs

depict the proportion of DEGs showed their expression either up regulated (red bars) or down regulated (green bars)

direction at four contrast pairs tested.

https://doi.org/10.1371/journal.pone.0222513.g002
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assembly component), RPA2 (Replication protein A2), BAD (BCL2 associated agonist of cell

death), UCHL5 (Ubiquitin C-terminal hydrolase L5) and APC (Adenomatous polyposis coli).

While FOXO3 (Fork head box O3), IRF2 (Interferon regulatory factor 2), ADRBK1 (Adrener-

gic beta receptor kinase 1), FHL3 (Four and a half LIM domains 3), PPP2CB (Protein phos-

phatase 2 catalytic subunit beta), MTOR (Mechanistic target of rapamycin), EIF3I (Eukaryotic

translation initiation factor 3 subunit), RPL8 (Ribosomal protein L8), DICER1 (Dicer 1, ribo-

nuclease III), FLNC (Filamin C) and NCOA6 (Nuclear receptor coactivator 6) were found to

be the most potential hubs of Pi specific transcriptome network.

GO and pathways enriched by breed-specific DEGs

To elucidate the biological relevance of breed-specific host transcriptome alterations following

PRRSV vaccination, we performed GO and pathway enrichment analyses for the genes show-

ing unique differential expression in vaccinated PBMCs in two breeds using the InnateDB tool

Fig 3. Hierarchical heat map showing differential gene expression over the contrast pairs. The figure includes

DEGs between vaccinated PBMCs of DL pigs compared to that of Pi pigs. The normalized log2 transformed values

determined by Affymetrix GeneChip porcine gene 1.0 ST array in PBMCs collected at 0 and 24 h post PRRSV

vaccination both in DL and Pi pigs. The cutoff values of log2 fold change as either>1.5 or<-1.5 and FDR<0.05 were

considered for statistical significance. Each column represents one array from each of replicate piglets.

https://doi.org/10.1371/journal.pone.0222513.g003
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[29]. Among the breed dependent DEGs, 913 were more abundant in PBMCs of DL pigs (S2

Table), and 133 were more abundant in PBMCs of Pi pigs (S3 Table). Top GO terms enriched

in vaccinated PBMCs of DL pigs compared to that of Pi pigs include cell surface receptor sig-

naling pathways, small molecules metabolic process, apoptotic process, extracellular matrix

organization, and response to drugs (Fig 6A, S4 Table). The GO for DEGs upregulated in vac-

cinated PBMCs of Pi pigs compared to that of DL pigs includes positive chemotaxis, cell prolif-

eration, inflammatory responses, positive regulation of endothelial cell proliferation and

innate immune response (Fig 6B, S5 Table).

Fig 4. Network of commonly altered genes after PRRSV vaccination both in DL and Pi pigs. The interconnecting

network showing the potential hub genes of the functional network of DEGs commonly observed in PBMCs of both

DL and Pi pig at 24 h after PRRSV vaccination. Each circle of the network indicates node (seed gene) and the diameter

of node accounted for its centrality estimates. Lines between nodes indicate the connectivity. The GO for

corresponding genes are provided within the parenthesis. The network centrality estimates and relative expression

values of major hub genes are provided in Table 1.

https://doi.org/10.1371/journal.pone.0222513.g004

Table 1. Network centrality estimates and relative expression of major hub genes of transcriptome network shared between DL and Pi breeds.

Gene symbol Network centrality Fold changes

Degree Betweenness DL Pi

EIF3I 79 25387 -1.743 1.771

RRS1 50 15702 2.005 1.619

ARPC1B 42 13702 1.769 -1.764

BAG3 39 12700 2.594 -1.664

ATP5J2 25 7719 2.468 -1.931

CSN2 22 9427 -3.041 -1.534

ASAP2 21 6625 2.435 -2470

BUD31 21 6495 2.202 -1.733

DCTN3 16 4970 1.780 -1.523

NACC1 16 4539 2.216 -1.607

SLC9A2 11 3279 2.340 -2.126

https://doi.org/10.1371/journal.pone.0222513.t001
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Biological pathways significantly affected by genes differentially expressed in vaccinated

PBMCs of DL pigs compared to those of Pi pigs include: signal transduction, protein metabo-

lism, extracellular matrix organization, cytokine signaling in the immune system, interferon

alpha/beta signaling and TNF receptor signaling pathway (Table 3, S6 Table). The pathways

significantly altered by DEGs up-regulated in vaccinated PBMCs of Pi pigs compared to those

of DL pigs include: innate immune system, signaling by FGFR in disease, TGF beta receptor,

JAK-STAT pathway and regulation and chemokine signaling pathway (Table 3, S7 Table).

Variation of PBMCs transcriptomes between unvaccinated DL and Pi pigs

Regardless of immunization, PBMCs transcriptome profiles of healthy control (before vaccina-

tion) pigs of DL and Pi breed also showed massive difference in transcript abundances (Fig 2).

Fig 5. Network of breed-specific altered transcriptome in PBMCs after PRRSV vaccination. The network DL-

specific DEGs is on the left panel (indicated by DL) and the Pi-specific transcriptome network is on the right panel

(indicated by Pi). The network centrality estimates and relative expression values of major hub genes are provided in

Table 2.

https://doi.org/10.1371/journal.pone.0222513.g005

Table 2. Relative expression and network centrality estimates of hub genes of breed-specific transcriptome

networks.

Gene symbol Fold changes Network centrality

Degree Betweenness

DL-specific network

ADAM17 3.242 38 8043

STAT1 4.062 37 6073

MMS19 2.386 21 4344

BAD 2.604 19 3254

RPA2 2.645 18 3204

UCHL5 2.824 20 3163

APC 2.717 21 3122

Pi-specific network

MTOR 3.214 7 282

FHL3 2.641 6 160

PPP2CB 2.712 6 97

EIF3I 3.812 5 90

RPL8 2.512 4 24

ADRBK1 2.971 4 16

https://doi.org/10.1371/journal.pone.0222513.t002
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A complete list of DEGs in PBMCs of unvaccinated DL compared to that of unvaccinated Pi

pigs is provided in S8 Table. The GO terms including ribosome, protein metabolism, catabolic

process, cellular response to lipid, vasodilatation, phospholipid efflux and cartilage homeosta-

sis were significantly enriched by the DEGs identified in PBMCs of unvaccinated DL pigs

compared to those of Pi pigs. The DEGs were involved in enrichment of pathways including

metal chelating activity, response to acetate, lactose biosynthetic process, tryptophan transport

and visual behavior in the PBMCs of unvaccinated DL pigs compared to those of Pi pigs.

Discussion

Innate host resistance to PRRS is becoming an area of great interest over the recent years

because of the possibility for disease-resistant pig breeding. There is a consensus for genetic

control of PRRS through improvement of host genetics by selective breeding for PRRS resis-

tance [32]. However, data on innate host resistance to PRRSV, as measured by replication of

the virus within the pig is very limited to date. To contribute in this scheme, one promising

way to go is the identification of host genotypes associated with improved innate immune

response following PRRSV vaccination [7]. In spite of considerably high heritability of disease

resistance, only a little has been addressed in breeding programs, as these are difficult to mea-

sure [33]. Hence, an alternative approach of estimating disease resistance is recommendable

through measuring host immunocompetence developed from vaccination [7]. To scrutinize

the breed-specific transcripts for vaccine mediated immunity, we compared the global gene

expression profiles of PBMCs collected before and after PRRSV vaccination in DL and Pi pigs.

Before vaccination, the healthy pigs of two breeds differed in their transcriptome profiles,

which suggest that differential gene expression levels may be caused by the genetic differences

between DL and Pi pigs, regardless of vaccine stimulation. Typically, DL pigs are more obese

and heavier while Pi are lean-type pigs. Healthy DL and Pi pigs differ considerably in terms of

growth rate, nutrient utilization and metabolic traits, as a result of their hepatic gene expres-

sion profiles [34]. Several researchers have also reported the genetic variation in immune traits

Fig 6. GO terms enriched by breed-specific DEGs. (A) Bar graphs showing the enriched GOs in the vaccinated

PBMCs of DL compared to that of Pi (B) and GOs in the vaccinated PBMCs of Pi compared to that of DL. The p value

of<0.05 was considered for statistically significant enrichment.

https://doi.org/10.1371/journal.pone.0222513.g006
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between healthy pigs [33]. Differences in gene expression between the experimental groups,

irrespective of infection, could be due to the different genetic makeup of two pig breeds. The

variation in number as well as in function of neutrophils, monocytes and lymphocyte subsets

in blood has been reported between healthy Meishan and Large White pigs [35]. Therefore, it

is reasonable that the PBMCs transcriptome profiles of healthy DL and Pi pigs differ irrespec-

tive of immunization.

Following vaccination, the DL pigs used in this study significantly differed from Pi pigs in

terms of transcriptional response to PRRSV vaccine, as evidenced by a higher number of

DEGs in PBMCs of DL pigs than that of Pi pigs (Fig 2A). These differences on PRRSV vaccine

induced global gene expression in PBMCs may be attributed by the host genotypes since the

genetic configuration of each breed can display their specific pattern of coping strategy against

Table 3. Top ten biological pathways enriched by breed specific differentially expressed genes in PBMCs follow-

ing PRRSV vaccination in DL and Pi pigs.

Pathway names p-value Genes involved

DL-specific pathways

Signal Transduction 0.005 ADAM17, APC, APOE, B4GALT1, BAD, CNGA1, CRHR1,

DNAL4, DRD2, DRD3, FLT4, FZD3, GFAP, GHRHR,

GLP1R, GPR68, GREM2, LGR6,OR10H3, OR2AE1,

OR4C46,

OR4K13, OR4N2, OR6J1, OR7C2, OR9K2, PSME3, PTPRU,

RDH8, RHOBTB2, SDC3, SDC4, SFRP1, SMO, STAT1,

TERT, UCHL5, VIPR2 and YWHAB

Metabolism 0.05 ACSL6, ALDH2, APOE, ATP5J2, B4GALT1, CA12, CERS3,

CYP17A1, DBT, DGUOK, DIO2, FBP1, GLP1R, GPAT2,

HK3, IP6K1, KCNJ11, LRPPRC, LYPLA1, MED27, MMS19,

MTMR7, NDUFS2, NDUFS3, NME2, PSME3, SDC3,

SDC4 and SQLE

Extracellular matrix organization 0.008 ADAM17, BMP1, SDC3, SDC4, TGFB2, TLL1 and TLL2

Cytokine Signaling in Immune system 0.08 ADAM17, HLA-C, IFNA6, MX1, STAT1, TNIP2 and

YWHAB

Wnt signaling pathway 0.002 APC, FZD3, SDC3, SDC4, SFRP1 and YWHAB

Apoptosis 0.007 ADAM17, APC, BAD, PSME3 and YWHAB

Glycolysis / Gluconeogenesis 0.02 ALDH2, ALDH3A1, FBP1 and HK3

Interferon alpha/beta signaling 0.05 HLA-C, IFNA60 and MX1

Antigen processing and presentation 0.08 HLA-C, HLA-DMB and PSME3

TNF receptor signaling pathway 0.09 ADAM17 and STAT1

Pi-specific pathways

Innate Immune System 0.001 ADRBK1, FOXO3, IRF2, MTOR and PPP2CB

Signaling by FGFR in disease 0.001 ADRBK1, FOXO3,MTOR and PPP2CB

TGF beta receptor 0.02 EIF3I, FOXO3 and MTOR

JAK STAT pathway and regulation 0.03 ADRBK1, IL1A and MTOR

Chemokine signaling pathway 0.07 ADRBK1 and FOXO3

IL2 signaling events mediated by PI3K 0.003 FOXO3 and MTOR

Validated targets of C-MYC

transcriptional-

0.01 DKK1 and FOXO3

repression

Cell-Cell communication 0.004 CDH13, FLNC and KIRREL2

Glucose metabolism 0.01 GYS1 and PPP2CB

Platelet homeostasis 0.02 P2RX1 and PPP2CB

https://doi.org/10.1371/journal.pone.0222513.t003
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stressors, which in turn leads to the variation of host resistance/susceptibility [34]. The global

up-regulation of altered genes observed in vaccinated DL pigs (Fig 2B) was suggestive for

PRRSV vaccine capacity to stimulate the immune system of DL pigs more effectively than Pi

pigs. The current breed-specific patterns of gene expression changes in PBMCs at early post

PRRSV vaccination are in agreement with the report of Ait-Ali et al. [15], who compared the

microarray-based gene expression profiles of PRRSV infected lung tissue obtained from Land-

race and Pi pigs. Landrace pigs showed a higher number of DEGs at 12 h post infection com-

pared to that of Pi pigs [15]. In a similar fashion, differences on host susceptibility between DL

and Pi pigs have also been reported in response to porcine circovirus infection [36]. The gene

expression differences observed here may be due to the genotype variation, demonstrated how

the different breeds react to the vaccine exposure within the 24 h of administration. However,

antibody responses at 4 weeks post vaccination were not significantly differed between DL and

Pi pigs [24, 25]. The gene expression differences observed here may be due to the genotype vari-

ation, demonstrating how the different breeds react to the vaccine exposure within the 24 h.

Perhaps for the generalized nature of innate immunity, these early stage gene expression

changes may not necessarily be similar with the vaccine-specific antibody response in the later

stages. Therefore, it is important to further elucidate the correlation between the DEGs pheno-

type early (hours) after vaccination and other phenotypes such as the vaccine-specific antibody

response, response to infection or ability to protect from challenge, at later stages (2–6 weeks) of

vaccination in the same individual. Even though it is not clear yet whether host responses based

on measurable pathogenesis is better than those based on protective attributes, transcriptome

signature of innate immune response to vaccination is of great importance because genes regu-

lating the early host response to vaccination, as mimicking the immune response to pathogenic

infection [21], are likely to be the potential candidate for host’s resistance to disease [5].

PRRSV vaccination resulted in a global down-regulation of transcriptomes in PBMCs of Pi

pigs (Fig 2B), indicating the suppression of immune system functions at 24 h post vaccination.

This is comparable to one of our previous studies, where we observed a global down-regulation

of altered transcriptomes in PRRSV infected dendritic cells obtained from Pi pigs compared to

those of Duroc pigs [19]. We observed that ubiquitin associated protein 2 and ubiquitin spe-

cific protease 45 were up-regulated in the PBMCs of DL pigs while the member of ubiquitin

family USP18 is known to be associated with host resistance to PRRS [12]. Variation of suscep-

tibility to PRRSV infection has also been reported in several comparisons among the pigs

obtained from purebreds and crossbreds [14, 18]. Hampshire-Duroc crossbred pigs were

found to be more susceptible to in vivo PRRSV infection than pigs of NE Index lines [17]. Sim-

ilarly, purebred Hampshire pigs showed significantly more severe lung lesions after in vivo

PRRSV infection than Duroc or Meishan pigs [14]. Therefore, variations observed between

PBMCs transcriptome profiles of DL and Pi pigs after PRRSV vaccination was a strong indica-

tion for breed differences in host response to PRRSV. However, it should be considered that

the present in vivo study was based on a single time point (24 h post vaccination) and three

biological replications in each breed. Though an in vitro study has proposed 24 h post stimula-

tion as a reference time point for exploring the transcriptional modifications in PBMCs linked

to innate immune responses [37], a time series investigation including higher number of ani-

mals and with more immunologically focused transcriptome analyses between DL and Pi pigs

would be rationale to confirm the genetic differences in vaccine-induced transcriptome

modifications.

Like other quantitative traits, immune response traits are likely regulated by multiple genes

which interact with each other through an interconnecting network [38]. Therefore, network-

based approaches have been considered more sensitive to find the regulatory gene molecules

for global transcriptome alterations [39]. Herein we performed the network analysis to
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scrutinize the regulatory genes from the list of vaccine induced DEGs which were common in

PBMCs of both breeds (Fig 4), DEGs which were more abundant in DL (Fig 5, left) and DEGs

which were more abundant in Pi pigs (Fig 5, right). The predicted hub genes of a transcrip-

tome network are likely to promote or inhibit the expression of other connecting genes to

maintain the biological function [39]. Many genes showed differential expression in PBMCs of

both DL and Pi pigs after PRRSV vaccination, but their directions (up or down) of expression

changes were opposite in two breeds. Eight out of top ten hub genes of the shared network

(Fig 4) were up-regulated in DL, while only EIF3I was up-regulated in Pi, only CSN2 was

down-regulated in both breeds and RRS1 was mutually up-regulated in both breeds (Table 1).

This was an indication of functional variation even within the common DEGs between breeds.

Opposition in expression regulation of the same genes between breeds, may be caused by the

variation of functional regulation of individual genes as reported by Xing et al. [13]. The GO

terms linked to hub genes of the shared network indicated their involvement in cellular

immune response to infection (Fig 4). The genomic locations of hub genes are distributed over

SSC 1, 3, 4, 7 and 5, while the QTLs for PRRSV susceptibility have already been identified on

SSC 1, 4 and 7 [9, 40]. Among the hub genes, SLC9A2, NACC1 and EIF3I are known to be

involved in cancerous growth [41] while RRS1, DCTN3, ARPC1B and BAG3 are reported to

be associated with host immune response [42, 43]. However, to our knowledge, these genes

have not yet been functionally linked well to the PRRSV vaccine mediated immunity in pig. It

is therefore important to analyze the expression patterns of these hub genes in other porcine

breeds following PRRSV vaccination.

Involvement of DL-specific network hub genes (Fig 5) in the enrichment of pathways

including signal transduction, extracellular matrix organization, cytokine signaling, apoptosis

and TNF receptor signaling pathway (Table 3), indicated their potentiality to regulate the

PRRSV vaccine-induced innate immunity. Among the hub genes of DL-specific network,

ADAM17 was significantly up-regulated in PBMCs of DL pigs (Table 2) and participated in

most of the DL-specific enriched pathways (Table 3). ADAM17 is one of the best characterized

of the ADAM enzymes, functionally involved in ectodomain shedding, a post-translational

modification, of various transmembrane proteins: EGFR ligands, proinflammatory cytokines

like TNF and its receptor TNFRI, adhesion molecules and the amyloid precursor protein like

APP (reviewed in [44]). ADAM17 takes part in the proinflammatory process through ectodo-

main shedding of the TNF precursor [45] and cell proliferation through activating EGFR [46].

Especially, ADAM17 mediates the down-regulation of CD163 expression [47], a putative cellu-

lar receptor that facilitates the entrance of PRRSV into host macrophages through endocytosis

[48]. Therefore, the overexpression of ADAM17 in DL pigs compared to Pi pigs could explain

the relatively higher PRRS-resistance capacity of DL pigs. Next to ADAM17, another DL-spe-

cific hub gene, STAT1, a protein coding gene of the signal transducer and transcription activa-

tor (STAT) protein family, was more abundant in PBMCs of DL pigs compared to those Pi pigs

after PRRSV vaccination. The STATs mediate the cellular responses to interferons (IFNs), cyto-

kines and other growth factors involved in antiviral innate immunity [49], and have been linked

with PRRSV immunity [50]. Another hub gene MMS19 is an essential component of the cyto-

plasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals, having functions in

nucleotide excision repair, a major cellular defense mechanism against DNA damage [51], indi-

cating its potential to be involved with PRRSV immunity. Likewise, functional involvement of

other hub genes including RPA2 [52] and BAD [53] in cellular immunity suggested their poten-

tial role in PRRSV vaccine induced transcriptome alterations in DL pigs.

On the other hand, FOXO3 was found to be a highly interconnected hub gene in the

PBMCs of PRRSV vaccinated Pi pigs as compared to those of DL pigs. FOXO3 belongs to the

fork head family of transcription factors and functions as a trigger for apoptosis through
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expression of genes necessary for cell death and participates in post-transcriptional regulation of

MYC transcription factor [54] which has been reported to be associated with host response to

PRRSV [55]. Next to FOXO3, IRF2 was also up-regulated in PBMCs of Pi pigs which is known to

be associated with suppression of Type I interferon response, a potent antiviral innate immunity

[56]. Among other Pi-specific hub genes: ADRBK1 is known to be involved in neuroinflamma-

tion and multiple sclerosis [57]; FHL3 is involved in regulating integrin-mediated cytoskeletal

events [58]; PPP2CB is known to be involved in bladder cancer [59]. Although, most of the hub

genes of both DL- and Pi-specific transcriptional networks were individually involved with the

immune response trait, however, they exert function through participating in different pathways

and in different directions also (Table 3). These suggested that the immune system of DL pigs

responded to gene expression changes in such a way that differed from Pi pigs.

Activation of PRRSV vaccine induced interferon response was more prominent, at least to

some extent, in the DL pigs compared to those of Pi pigs as indicated by up-regulation of

STAT1 as in DL-network, and by down-regulation of IRF2 in the Pi-network. Moreover, the

interferon alpha/beta pathways (IFN6, MX1) were up-regulated in PBMCs of vaccinated DL

pigs (Table 3) but not in the case of Pi pigs. The type I IFNs secreted from vaccine-pulsed

PBMCs, may interact with a subset of naive T-cells to promote their conversion into virus-spe-

cific IFN secreting cells, thereby inducing the cell mediated interferon response [60]. The

induction of a type I interferon response was reported to be observed early after in vitro

PRRSV infection in alveolar macrophages of Landrace pigs [15]. Concordantly, the expression

of myxovirus resistance 1 (MX1) has been reported to be up-regulated in PRRSV infected pul-

monary alveolar macrophages over 24 h post infection period [61]. We therefore speculate that

the potential network hubs identified might play an important role in the host susceptibility/

resistance to PRRSV infection.

Conclusions

This study reported the host genetic variation in PRRSV vaccine mediated innate immunity

between DL and Pi pigs using genome-wide transcriptome profiles of PBMCs. A higher num-

ber of gene transcripts showed differential expression in DL pigs early after PRRSV vaccina-

tion as compared to those of Pi pigs. Functional analyses of breed-specific alterations

elucidated the differences in molecular mechanisms of PRRSV vaccine-induced innate immu-

nity development between DL and Pi pigs. Notably, over expression of ADAM17 in PBMCs of

vaccinated DL pigs is an indication for relatively higher PRRS-resistance capacity as compared

to that of Pi pigs. ADAM17 plays crucial role in blocking the PRRSV entrance to macrophage

through down-regulating the CD163 expression. Although, our data provide an evidence of

breed-specific immunity and valuable information for improving PRRS resistance in pigs,

time series investigation including higher number of animals and with more immunologically

focused transcriptome analyses between DL and Pi pigs could be carried out to get further

insights on genetic contribution of the anti-PRRSV immunity in pigs. In addition, exploring

the correlation between immunotranscriptome alterations in the early (hours) stage and other

immune response phenotypes such as vaccine-specific antibody titre, response to infection or

ability to protect from challenges in the later stages (2–6 weeks) of vaccination in the same

individual are also interesting topics for future research.
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