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The recent explosion of high-throughput sequencing methods applied to RNA molecules
is allowing us to go beyond the description of sequence variants and their relative
abundances, as measured by RNA-seq. We can now probe for RNA engagement in
polysomes, for ribosomes, RNA binding proteins and microRNAs binding sites, for RNA
secondary structure and for RNA methylation. These descriptors produce a steadily
growing multidimensional array of positional information on RNA sequences, whose
effective integration only would bring to decipher the regulatory interplay occurring
between proteins, RNAs and their modifications on the transcriptome. This interplay
ultimately dictates the degree of mRNA availability to translation, and thus the occurrence
of cell phenotypes. However, several issues in data presentation are slowing down
effective integration. A standardization effort for new dataset types produced should
be urgently undertaken to solve these issues. Providing uniformed experimental details
along with datasets processed to be directly usable and employing shared formats would
greatly simplify integration efforts, strengthening hypotheses stemming from correlative
observations and eventually bringing to mechanistic understanding.
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PROBING THE BIOLOGICAL STATUS OF WHOLE
TRANSCRIPTOMES
The last 15 years have witnessed, starting with the advent of
microarray-based gene expression probing, an explosion of high-
throughput technologies for the characterization of biological
molecules. These technologies, affordable and relatively simple to
apply, are steadily paving the way for routine multi-omics stud-
ies. The latest of such technologies, high-throughput sequencing
(HTS) (Metzker, 2010), has quickly gained widespread acceptance
and concurrently enabled several different types of measure-
ments. Its sequence-based nature, permitting to pinpoint relevant
features on the genome or transcriptome of interest (position-
aware data), and its massively parallel data production capabilities
are now indeed applied to the study of a wide array of biological
questions. Applications focus on DNA (identification of sequence
and copy number variants, mapping of chromatin binding sites
by transcription factors and other proteins, chromatin topol-
ogy studies in nuclei, etc.) (Koboldt et al., 2013) and on RNA
(sequence variants of mRNAs and non-coding RNAs, expres-
sion levels, mapping of binding sites of RNA binding proteins
(RBPs), post-transcriptional modifications etc.), (Ascano et al.,
2013; Mutz et al., 2013). Translational regulation of gene expres-
sion, in particular, has lately been object of increasing interest: its
role in profoundly reshaping transcriptome variations and being
the determinant of plasticity in the nascent proteome (Vogel
et al., 2010; Stevens and Brown, 2013) is increasingly appreciated.
Consequently, omic approaches have been developed to investi-
gate which features of an mRNA may influence its translation rate,

which trans-factors play a role in such regulatory processes and
how these two aspects combine to yield the final protein levels. We
will focus on RNA-centered methods to examine the types of bio-
logical information they can provide; we will then look at how this
information should be integrated to allow us a better understand-
ing of both the global transcriptome dynamics and their effects on
phenotype.

As shown in Figure 1, such methods can be classified by their
descriptive capability, either molecular for the entire RNA or sub-
molecular for specific RNA portions, and the kind of description
they provide, quantitative, qualitative or both. The description of
entire transcripts is provided by RNA-seq (Mutz et al., 2013), an
HTS-based method which gives the sequence of coding and non-
coding transcripts, including mapping of alternative transcription
or termination sites, splice variants produced on the same locus
and the presence of expressed sequence polymorphisms. Since
different transcripts can be quantified in their relative abundance,
this type of information is both qualitative and quantitative. The
polysome profiling method (Arava, 2003; Gandin et al., 2014)
is based on the separation by sucrose gradient centrifugation of
cellular fractions containing polysomes and the subsequent quan-
tification of their mRNA relative (to the total lysate or to the
fractions not containing polysomes) abundance, which can be
performed by RNA-seq or by the more conventional microarray
analysis. The resulting information is a quantitative and qual-
itative description of the degree of polysomal engagement for
every transcript (by which the molecular nature of this method),
the so called translatome (Tebaldi et al., 2012); a calculation of
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FIGURE 1 | Techniques for positional whole-transcriptome probing. The figure displays techniques allowing to study transcriptomes at various observational
levels, with particular regard to positional information; all techniques, indicated by their representative feature on transcripts, are based on RNA-seq.

translational efficiency can be done by this assay. The qualita-
tive component of polysome profiling is given by computational
approaches which allow us to investigate the differential associ-
ation of mRNAs produced by the same gene locus (splice and
5′/3′ variants) with the polysomes (Frac-seq, Sterne-Weiler et al.,
2013), or which measure the effect of single-nucleotide poly-
morphisms on translational efficiency (Li et al., 2013). Ribosome
profiling (Ingolia, 2014) aims at providing a snapshot of mRNAs
under translation by scoring the transcript regions which are pro-
tected from nuclease attack by ribosomes. It is a RNA-seq-based
method of the submolecular type: obtainable information can be
integrated at the transcript level but has a positional content, so
that translation initiation and termination sites, potential trans-
lation stalling events, upstream ORF translation, can be derived
(Ingolia et al., 2011). Besides engagement in translation, another
type of general, qualitative description of transcript status is
the secondary structures pattern, recently become available to
profiling through nucleotide accessibility probing coupled with
RNA-seq (Ding et al., 2014; Rouskin et al., 2014; Talkish et al.,
2014; Wan et al., 2014). Eventually, a transcript component which
can be investigated is the poly(A) tail: two recent methods, PAL-
seq (Subtelny et al., 2014) and TAIL-seq (Chang et al., 2014),
exploit RNA-seq to characterize its length and potential modifi-
cations (such as uridylation and guanylation). The same principle
of nuclease protection exploited in ribosome profiling is then
systematically applied in locating RNA-associated “footprints” of
RBPs. The CLIP techniques family: HITS-CLIP, PAR-CLIP, and
iCLIP (Ule et al., 2003; Hafner et al., 2010; Konig et al., 2010)
and the CRAC approach (Granneman et al., 2009) exploit an UV-
induced crosslinking of RNA and associated proteins (with the
option of using photoactivatable nucleotides, as done in PAR-
CLIP) to enable the identification of RNA targets and binding

sites for single, immunoprecipitated RBPs. These are therefore
submolecular and essentially qualitative approaches. A variant
method, CLASH (Helwak et al., 2013), introduces a RNA liga-
tion step to locate sites where other RNAs are associated in trans
in a protein complex, allowing to experimentally identify miRNA
binding sites. CLIP methods can also be extended to consider
many RBPs at once: “global CLIP” approaches such as protein
occupancy profiling (Baltz et al., 2012) and PIP-seq (Silverman
et al., 2014) thus provide contact sites for all RBPs at once on a
transcriptome.

Coming finally to the most submolecular level, that of single
nucleotides, mRNA editing events (such as adenosine to inosine
conversions) can be revealed either by inosine chemical eras-
ing (ICE), as in Sakurai et al. (2014), or by directly looking for
sequence variants in RNA-seq reads (St. Laurent et al., 2013;
Bazak et al., 2014). Eventually, RNA 5-methylcytosine and N6-
methyladenosine nucleotide methylation can be detected with
single-nucleotide precision, respectively by bisulfite conversion
(Squires et al., 2012; Edelheit et al., 2013) and immunoprecipita-
tion (Dominissini et al., 2012; Meyer et al., 2012; Khoddami and
Cairns, 2013) or by other biochemical methods (Hussain et al.,
2013; Liu et al., 2013).

APPROACHES FOR THE INTEGRATION OF
TRANSCRIPT-CENTERED OMICS
Currently, several hundred papers employing the described
transcriptome-based omics methods have been published,
including a considerable number of pure RNA-seq datasets, sec-
ondary structure probing, editing and methylation profiles for
the most common cell lines and organisms (see Figure 1), and at
least 40 different CLIP or CLIP-like datasets (Dassi et al., 2014).
With such a huge amount of data available, the naturally arising
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question is how to integrate these different types of information
to obtain more insights than if considering single datasets in iso-
lation. Several works have approached this problem so far. As
shown in Table 1, they can be classified according to the different
perspectives adopted in doing so.

A first, post-experimental way of integrating these heteroge-
neous data sets consists in building a database presenting all the
collected data together, thus allowing users to prioritize and val-
idate potential connections. Mining the data, superimposed on
a reference genome, can be approached by looking for single
genes (as happens in genome browsers) or by studying interesting
gene lists (e.g., through functional enrichment or co-regulation
analyses). This road was taken by AURA/AURA2 (Dassi et al.,
2012, 2014), DORiNA (Anders et al., 2012), and starBase (Li
et al., 2014). The first provides RBP and miRNA binding sites,
cis-elements sites, RNA editing, and methylated nucleotides; the
second offers RBP binding sites and predicted miRNA targets; the
last includes RBP binding sites and miRNA interactions with cod-
ing and non-coding RNAs. While these databases are of general
interest and can be useful for a broad spectrum of preliminary
investigations, they still mostly contain data obtained in a lim-
ited set of particularly common model systems or cell lines (e.g.,
HEK293 cells): users will then likely need to trust this information

to hold in their system of interest or validate the interaction
in their specific conditions (e.g., for an RBP-mRNA interaction,
by integrating expression data to check whether it could indeed
occur, or by performing a RIP-qPCR assay in their system).

The second, most reliable method is obviously measuring sev-
eral mRNA features in the system under study, focusing on a
specific biological question, and then proceed by intersecting the
obtained data to generate hypotheses stemming from the corre-
lation of specific features. An intuitive example of this approach
is in profiling the transcriptome and the translatome (the last
through polysomal profiling, for instance) in various conditions
(e.g., drug treatment vs. control) to identify which genes are sub-
jected to translational control and the impact the treatment may
have on translational efficiency (computed as the translatome
vs. transcriptome ratio): this has already been done in a num-
ber of works (Genolet et al., 2011; Bates et al., 2012; Fu et al.,
2012; Tebaldi et al., 2012; Courtes et al., 2013; Dudek et al., 2013;
Willimott et al., 2013). A variation on this theme could include,
in parallel, a miRNAs profiling in the system to correlate differ-
ences in their levels with differences in translational efficiency,
generating candidate determinants of the latter changes (Clarke
et al., 2012). Another example is the secondary structure and
translational efficiency profiling of mRNAs in the system under

Table 1 | Current approaches for positional information integration on the transcriptome.

Name Description Scope Potential issues References

Integrated databases Collecting and presenting
available datasets of
heterogeneous types and
biological sources; allowing
users to mine the data
types in combination

Global over a vast number
of different data types

Data quality and processing
assessment not always
possible; achieving
database completeness and
constant content update is
particularly time-intensive

Anders et al., 2012; Dassi
et al., 2012, 2014; Li et al.,
2014

Multi-level profiling Performing various types of
measurements (i.e., mRNA
levels, RNA secondary
structure, RNA methylation)
in the same system of
interest (e.g., cell line) to
derive correlative patterns

Global over a limited
number of data types

Need very different
experimental and data
analysis expertise; results
applicability is limited to the
studied system

Genolet et al., 2011; Bates
et al., 2012; Clarke et al.,
2012; Dominissini et al.,
2012; Fu et al., 2012; Tebaldi
et al., 2012; Courtes et al.,
2013; Dudek et al., 2013;
Willimott et al., 2013; Zheng
et al., 2013; Ding et al.,
2014; Mao et al., 2014;
Wang et al., 2014a

Measurements & public
data exploitation

Performing a small number
of measurements (i.e.,
mRNA levels only) in the
system of interest, and
exploiting public data to
study genes derived from
these measurements (i.e.,
presence of translational
regulation) to infer and
validate potential regulatory
mechanisms and patterns

Over a small number
(dozens) of interesting
genes

Publicly available data on
the system one wants to
use may not be available;
further validation and/or
mechanistic experiments
may be needed

Mazza et al., 2013;
Avery-Kiejda et al., 2014;
Schueler et al., 2014; Wang
et al., 2014b

The table describes currently applied approaches to the integration of position-aware RNA datasets. Scope of the various approaches and associated potential issues

are outlined along with the references of works employing them.
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study, aiming at the identification of structural patterns con-
ferring translational advantages to the mRNAs containing them
(Ding et al., 2014; Mao et al., 2014). Along the same line is cou-
pling m6A methylation probing and RNA-seq measurements in
the same system: this allows us to understand whether methy-
lation alters mRNA level, stability and splicing patterns in the
conditions under investigation (Dominissini et al., 2012; Zheng
et al., 2013; Wang et al., 2014a).

The last integration method we describe is based on bridg-
ing the previous two approaches: combining a limited number
of direct measurements performed in the system of interest with
the wealth of data available in public databases such as the
ones described above (even though these data may not be pro-
duced in the same model). One may thus investigate whether,
for instance, an RBP or a miRNA is controlling a group of
mRNAs, whether the gene set under analysis is enriched with
a particular feature (e.g., a 3′UTR cis-element in the form of
a secondary structure, methylated nucleotides, etc.) or match
observed patterns for one feature type (e.g., presence of a sec-
ondary structure feature) with public data (e.g., presence of
trans-factor binding sites) to deduce general rules (e.g., prefer-
ence of a trans-factor for that given structural feature). While
this method leads to hypotheses that need validation as they
may not hold in the system of interest, it allows speeding up
the investigation and reducing the hypotheses space, conse-
quently lowering experimental uncertainty, time and cost. This
approach has been enabled just recently, due to the availability
of the databases discussed above. However, in the few published
works adopting it, it is usually applied to the integration of
data focused on a few specific mRNAs, which have been previ-
ously selected for their behavior as observed in the ongoing study
(Mazza et al., 2013; Avery-Kiejda et al., 2014; Wang et al., 2014b).
One exception is the recent work by Schueler and colleagues,
in which protein contact sites obtained by a global PAR-CLIP
on two cell lines are integrated with known RBP binding sites
to infer differential protein occupancy patterns (Schueler et al.,
2014).

Summing up, even though the approaches we have discussed
are useful examples of data integration applied to the structure
and the behavior of mRNAs, it is evident that these are still
early and limited efforts. Indeed, as also testified by the small
number of published works, there still is a significant lack of
accepted practices and standard procedures which could ren-
der these approaches of effective routine usage. Having built a
database focused on post-transcriptional regulation (Dassi et al.,
2014), we realized that processed data, as submitted by the
authors, vary widely in their processing level: if we take CLIPs
datasets as an example, some datasets include the definition of
sites bound by the studied RBP while others are limited to,
for instance, the indication of T > C conversions (for PAR-
CLIP); obviously this marked differences put additional burden
on whoever wants to use multiple datasets, produced in differ-
ent experiments, together, in order to generate new hypotheses.
Furthermore, methods are often described in many ways, with
different levels of detail, representing further obstacles in individ-
uating steps needed to make these datasets truly comparable. A
last general issue is the absence of a systematic way to evaluate

data quality and robustness, considering for example the pres-
ence of replicates, the number of supporting reads and other
parameters linked to specific techniques.

THE NEED FOR STANDARDIZATION
Given the outlined issues, we asked which steps could be taken
to improve the exploitability and the integration potential of the
RNA-centered high throughput data. We propose two simple,
preliminary actions. The first is the enforced use of standard file
formats with precisely defined fields, a relatively simple goal to
achieve. The second is the enforced provision of a minimal set
of information—enhancing dataset description, uniformity and
allowing quality evaluations—at submission time (similarly to
what was established and is currently enforced for microarrays
with MIAME and related initiatives; Brazma et al., 2001; Rayner
et al., 2006). This could be straightforwardly imposed by repos-
itories commonly used for high-throughput datasets submission
such as GEO (Barrett et al., 2013), ArrayExpress (Parkinson et al.,
2005), and SRA (Wheeler et al., 2008).

Concerning the first requirement, we need to deal with two
types of data: intervals (such as RBP and miRNA binding sites
obtained through CLIPs) and per-nucleotide intensities (contin-
uous values such as the ones produced by RNA methylation or
secondary structure probing assays). Intervals are most often rep-
resented by means of the Browser Extensible Data (BED) format:
its main advantage lies in the extreme simplicity of fields defini-
tion, which nevertheless allows a certain degree of detail, making
it also feasible to represent several datasets in a single file (by
for instance using the name field to distinguish the RBP/miRNA
and possibly specifying methods and data source publication in
the description field). Furthermore, BED files can be converted
to bigBed (Kent et al., 2010), the associated binary indexed for-
mat that is efficient to process and use with genome browsers
even for huge datasets. Concerning continuous values, they are
most often stored by means of either a format similar in nature
to BED, called bedGraph, or through another common option
called Wiggle (Kent et al., 2010). Both formats are stripped down
to the essential and are not really intended to allow mixing differ-
ent datasets in the same file; the file header however leaves room
for some description to be added; furthermore, both can be con-
verted to the binary indexed bigWig format (Kent et al., 2010),
similarly to what mentioned above for bigBed. Given the versatil-
ity and already widespread use of these two formats, coupled with
the storage and display efficiency, we propose that they should be
deemed as de facto standards and systematically required for new
data submissions.

For the second requirement (minimal set of parameters
describing a dataset), which information should be considered as
essential for the data to be exploited at their full potential? First of
all, in the case of CLIP datasets intervals representing binding sites
should be provided, rather than including raw per-nucleotide
data only. Many scientists would not or cannot go the extra mile
to compute intervals out of per-nucleotide data by themselves,
and would thus loose the opportunity to use them. Furthermore,
methods employed for data analysis should be described, at least
briefly, indicating how intervals or per-nucleotide intensities (e.g.,
in the case of secondary structure data) were computed from raw
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reads. Eventually, basic quality metrics such as the number of
replicates and the read depth supporting a given interval/position,
along with call significance p-values (where appropriate) should
also be provided to let the users judge on the data robustness,
eventually allowing the application of homogeneous stringency
filters when integrating multiple datasets. We believe that this
“information package” could be enough to describe the data
under study to an extent that will eventually make going back
to the raw data unnecessary: we therefore propose that these
information should be required when submitting a dataset of
this sort.

Pushing further on this proposal, we may also consider
the need for a dedicated repository storing transcriptome-
centric positional data. Similarly to what major journals ask
for microarrays-containing works, submission to this repository
could be a de facto requirement for publication and have an
unique ID assigned, to which direct reference could be made in
publications further easing data traceability. Using one of the
currently available databases as a repository of this sort could
also have the advantage of allowing us to display various datasets
together, integrated in a transcript-oriented way, thus providing a
first glimpse of the data along with the possibility to retrieve them.
Of course, this collection of proposals, which goes along the lines
of several other “reproducible research” initiatives, can become
a reality only if the majority of scientists in the field agree and
commit to sustain it by complying with these recommendations.

CONCLUSION
The availability of techniques based on high-throughput sequenc-
ing is fostering the investigation of the biological behavior of
transcriptomes with an unprecedented level of detail and a con-
tinuously increasing amount of available data types: the very
nature of this technology effectively allows us to pinpoint the
location of features responsible for known and unknown bio-
chemical properties of mRNAs and non-coding RNAs which may
ultimately influence mRNA translation. However, the integration
of these datasets is still in its infancy, with only a few approaches
and applications in the literature and a lot of room for improv-
ing and making these efforts much easier and useful. We think
that this process could be eased by committing to the introduc-
tion of standardization measures involving file formats, minimal
information to be provided for dataset description and, pos-
sibly, the setup of a dedicated data repository. The choice to
advance a proposal limited to transcripts biological features is
justified in our opinion by the momentum gained by studies in
post-transcriptional regulation of gene expression, by the several
RNA-seq-based techniques introduced in the last 2 years, and the
exponential growth of datasets of this type being released. We
therefore think that the effort needed to implement such proposal
could be worthy and fruitful. While certainly requiring coordina-
tion between laboratories studying the topic, initiatives like OBO
(Smith et al., 2007), MIAPE (Taylor et al., 2007), and BioBricks
(Smolke, 2009) have shown that it is possible to implement and
sustain a standardization effort aimed in our case at a better
exploitation of high-throughput data. Given the pace at which
these data are accumulating, we need for sure to urgently push
their integrated exploitation to its fullest extent.
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