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Whole-body diffusion-weighted MRI (WBDWI) is a 
noninvasive tool used for staging and response eval-

uation in oncologic practice and is at the core of emerg-
ing response criteria in advanced prostate and breast 
cancers (1–4). WBDWI has recently been incorporated 
into the National Institute for Health and Care Excel-
lence guidelines for assessing myeloma-related bone 
disease (5,6). Through its sensitivity to water diffusion 
within tissue, WBDWI is a sensitive tool that radiolo-
gists can use to review the extent of disease within the 
skeleton. Moreover, use of WBDWI enables the voxel-
wise quantification of the change in the apparent diffu-
sion coefficient (ADC), providing a potential marker for 
tumor response assessment (7).

WBDWI is typically performed through a series of se-
quential imaging stations from the head to the midthigh, 
with each station consisting of 30–50 axial sections, with 

images acquired by using two to three diffusion weightings 
(1,8). Therefore, WBDWI accounts for more than 50% 
of the acquisition time of conventional whole-body MRI 
studies with a 1-hour duration. In the context of the ever-
increasing capacity pressures on MRI departments, reduc-
ing acquisition times would facilitate the wider adoption 
of clinical WBDWI, reduce costs, and improve the patient 
experience (9,10).

In this proof-of-concept study, we hypothesized that the 
use of U-Net deep learning architectures could allow five-
fold to 10-fold reduction in imaging times by recovering 
fully sampled WBDWI images with a high signal-to-noise 
ratio (SNR) from undersampled images with a low SNR. 
U-Net–inspired architectures (11) can contextualize image 
features at multiple spatial resolutions and then upsample 
them to increase the resolution of the output. Applications 
include automatic segmentation (12), lesion classification 
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Purpose:  To use deep learning to improve the image quality of subsampled images (number of acquisitions = 1 [NOA1]) to reduce 
whole-body diffusion-weighted MRI (WBDWI) acquisition times.

Materials and Methods:  Both retrospective and prospective patient groups were used to develop a deep learning–based denoising image 
filter (DNIF) model. For initial model training and validation, 17 patients with metastatic prostate cancer with acquired WBDWI 
NOA1 and NOA9 images (acquisition period, 2015–2017) were retrospectively included. An additional 22 prospective patients with 
advanced prostate cancer, myeloma, and advanced breast cancer were used for model testing (2019), and the radiologic quality of 
DNIF-processed NOA1 (NOA1-DNIF) images were compared with NOA1 images and clinical NOA16 images by using a three-point 
Likert scale (good, average, or poor; statistical significance was calculated by using a Wilcoxon signed ranked test). The model was also 
retrained and tested in 28 patients with malignant pleural mesothelioma (MPM) who underwent lung MRI (2015–2017) to demon-
strate feasibility in other body regions.

Results:  The model visually improved the quality of NOA1 images in all test patients, with the majority of NOA1-DNIF and NOA16 im-
ages being graded as either “average” or “good” across all image-quality criteria. From validation data, the mean apparent diffusion coef-
ficient (ADC) values within NOA1-DNIF images of bone disease deviated from those within NOA9 images by an average of 1.9% (range, 
1.1%–2.6%). The model was also successfully applied in the context of MPM; the mean ADCs from NOA1-DNIF images of MPM devi-
ated from those measured by using clinical-standard images (NOA12) by 3.7% (range, 0.2%–10.6%).

Conclusion:  Clinical-standard images were generated from subsampled images by using a DNIF.
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three different b values, at three orthogonal diffusion-encoding 
directions without averaging, and the individual direction im-
ages were retained (number of acquisitions = 1 [NOA1]). This 
acquisition was repeated three times, and a “trace-weighted” 
image (NOA9) was computed for each b value to derive the 
clinical-quality images (method illustrated in Fig 1). Data were 
randomly split into training (n = 14) and validation (n = 3) 
sets. These data were used in a previous publication investi-
gating the utility of multiple image acquisitions (NOA1) for 
estimating whole-body ADCs through weighted least-squares 
approximation, along with voxel-wise characterization of the 
uncertainty in the derived ADCs (21).

Test WBDWI dataset.—WBDWI data were prospectively ac-
quired after the acquisition of the training WBDWI dataset over 
a 2-month period (May and June 2019) in a separate sample 
of 22 consecutive patients with advanced prostate cancer (n = 
17, all men), myeloma (n = 3, all men), and advanced breast 
cancer (n = 2, all women) who required clinical evaluation for 
suspected metastatic disease (age range, 39–84 years). Inclusion 
criteria were any patient undergoing whole-body MRI for clini-
cal management of secondary bone disease who was deemed fit 
by the referring radiologist for an additional 5 minutes of im-
aging time; the exclusion criteria were any contraindication to 
MRI, including patient claustrophobia. For each patient, images 
were acquired by using two WBDWI protocols within the same 
study (the patient remained on the couch between protocols): 
the first protocol was the same as that performed for the training 
dataset, except that only a single acquisition at a single diffusion-
encoding direction (NOA1) was obtained; the second protocol 
was an institutional clinical protocol (NOA16; parameters are 
presented in Table 1). The approximate acquisition times for 
these protocols were 5 minutes and 22–25 minutes, respectively. 
Patients also underwent whole-body Dixon imaging and sagittal 
T1-weighted and T2-weighted anatomic spine imaging as per 
standard clinical care (1,8). Images were acquired by using a 1.5-
T Siemens Aera system.

Mesothelioma dataset.—To demonstrate the feasibility of our 
approach for smaller field-of-view imaging, we retrospectively 
evaluated data from a sample of 28 patients (four women and 
24 men; age range, 52–85 years) imaged for the presence of 
MPM as part of a single-center study investigating the value of 
DWI in MPM (February 2015 to November 2017). Patients 
underwent lung MRI with a 1.5-T Siemens Avanto system. 
Imaging parameters are provided in Table 1; data were ran-
domly split into a training dataset of 20 and a validation data-
set of eight.

Deep Learning Architecture
We developed our quickDWI method by training a deep learn-
ing–based denoising image filter (DNIF) model to generate 
clinical-grade diffusion-weighted images (NOA9) from images 
acquired by using one diffusion-encoding direction and one sig-
nal average with b values of 50, 600, or 900 sec/mm2 indepen-
dently (DNIF-processed NOA1 [NOA1-DNIF] images; original 

(13), image reconstruction (14), quantitative susceptibility map-
ping (15), artifact reduction (16), and image denoising (17,18). 
We trained our model on a sample of patients with advanced 
prostate cancer and subsequently tested it on a separate prospec-
tive sample of patients with advanced prostate cancer, advanced 
breast cancer, and myeloma. In addition, to test the feasibility of 
the technique for diffusion-weighted MRI (DWI) acquisitions 
obtained over a smaller field of view, we retrospectively ana-
lyzed a sample of patients with malignant pleural mesothelioma 
(MPM) (19).

Materials and Methods

Patient Population and Imaging
These studies were reviewed and approved by our local research 
ethics committee. The ethics committee waived the require-
ment of written informed consent for participation.

Training WBDWI dataset.—WBDWI was performed with a 
1.5-T Siemens Aera system at three b values (50, 600, and 900 
sec/mm2) (3) in 17 men with suspected advanced prostate can-
cer over four to five axial imaging stations (October 2015 to 
September 2017; parameters are presented in Table 1). This 
retrospective sample included consecutive patients (age range, 
49–82 years) with metastatic prostate cancer that required 
clinical evaluation of known metastatic bone disease by using 
WBDWI. For each section position, images were acquired at 

Abbreviations
ADC = apparent diffusion coefficient, DNIF = deep learning–based 
denoising image filter, DWI = diffusion-weighted MRI, MAE = 
mean absolute error, MPM = malignant pleural mesothelioma, 
MSE = mean-squared error, NOA = number of acquisitions, NOA1-

DNIF = DNIF-processed NOA1, PSNR = peak SNR, RDM = relative 
difference of means, SNR = signal-to-noise ratio, SSIM = structural 
similarity, WBDWI = whole-body DWI

Summary
A developed model, called quickDWI, enabled accelerated acquisi-
tion protocols for whole-body diffusion-weighted MRI of metastatic 
prostate, breast, and myeloma bone disease by using deep learning, 
resulting in images that were comparable with clinical-standard im-
ages.

Key Points
	n A U-Net–based architecture can successfully reduce the magnitude 

of noise present in diffusion-weighted MR images; the average 
mean absolute error of all validation images acquired at b values of 
50, 600, and 900 sec/mm2 was reduced from 0.87 3 10-3 to 0.53 
3 10-3.

	n The algorithm significantly improved the radiologic image quality 
of fast but noisy whole-body MRI data in 22 patients with bone 
disease (P , .01).

	n The algorithm could reduce whole-body diffusion-weighted MRI 
times from 25–30 minutes to approximately 5 minutes.

Keywords
Image Postprocessing, MR-Diffusion-weighted Imaging, Neural 
Networks, Oncology, Whole-Body Imaging, Supervised Learning, 
MR-Functional Imaging, Metastases, Prostate, Lung
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where a is the weight of each loss function and LMAE/SSIM is 
the combined loss. We empirically set a to 0.7 after experi-
mentation with different values.

The training WBDWI dataset provided a total of 59 400 
training images (14 patients  3 three directions 3 three acqui-
sitions 3 three b values) 3 [(80 sections 3 one patient with 
acquisition at only abdomen or pelvis stations) 1 (160 sections 
3 12 patients) 1 (200 sections 3 one patient)]. This dataset 
also provided a total 15 120 validation images (three patients). 
The mesothelioma dataset provided 43 200 training images (20 
patients) and 15 120 validation images (eight patients). The im-
ages were normalized from a range of 0–939 to a range of 0–1 
prior to input into the model. All code was written in Python 
(version 3.6.5.) by using the Keras and/or TensorFlow libraries.

Data Analysis

Training WBDWI dataset.—As a measure of similarity to the 
NOA9 images, the MSE, SSIM, and peak SNR (PSNR) were 
computed for the NOA1-DNIF and NOA1 images across all b-val-
ue images from all three validation patients (calculated by using 
scikit-learn version 0.14.2). A monoexponential, least-squares fit-

acquired images are referred to as NOA1 images), as illustrated 
in Figure 1. For this purpose, we adapted a convolutional neural 
network based on the U-Net architecture (11), which has been 
modified to solve regression problems. A NOA1 image of 256 3 
208 pixels in size was provided as input into the network (post-
linear interpolation) and was grayscale normalized from a range 
of 0–4095 to a range of 0–1. After empiric experimentation, a 
linear activation was used for the last layer, whereas a rectified 
linear unit activation function was used in all preceding layers. 
We constrained the weights incident to each hidden unit to have 
a norm value of less than or equal to 3, the weights of the lay-
ers were randomly initialized by using He normal initialization 
(22), and the network was trained with a batch size of 36 for 15 
epochs and optimized by using the Adam algorithm (23) with a 
learning rate of 0.001. The network was trained by using a Tesla 
P100 PCIE, 16-GB graphics processing unit card (Nvidia), and 
the trained algorithm was applied by using a MacBook Pro lap-
top (Apple) with a 2.9-GHz Intel Core i7 central processing unit 
(16-GB–2133-MHz random access memory with a low-power 
double data rate of 3).

We experimented with three cost functions that measured the 
similarity between the NOA1-DNIF images and the clinical-grade 
(NOA9 and NOA12) images used as the ground truth: the mean-
squared error (MSE) (24), the mean absolute error (MAE), and 
a combination of the MAE and the structural similarity (SSIM) 
index (25):

Table 1: Imaging Parameters for Included Studies

Parameter
Training Dataset  
(n = 17)

Test Dataset (n = 22)
Mesothelioma Dataset  
(n = 28)Clinical Protocol Quick Protocol

Imager 1.5-T Siemens Aera 1.5-T Siemens Aera 1.5-T Siemens Aera 1.5-T Siemens Avanto
b Values (sec/mm2) 50, 600, 900 50, 600, 900 50, 600, 900 100, 500, 800
Gradient directions
  (normalized)

(−1,0,0), (0,1,0), (0,0,1) Four-scan trace (tetrahedral 
encoding) (20)

(0,0,1) (−1,0,0), (0,1,0), (0,0,1)

NSA* 3 3 1 2 (b = 50 sec/mm2); 2 (b = 600 
sec/mm2); 4 (b = 900 sec/
mm2)

1 4 3 1

Echo time (msec) 79 64 79 92
Repetition time (sec) 12.7 6.2 12.7 6.0
Acquisition matrix† 128 3 104 (256 3 208) 134 3 108 (268 3 216) 128 3 104 (256 3 

208)
128 3 92

Resolution (mm2)‡ 1.68 3 1.68 1.6 3 1.6 1.68 3 1.68 3 3 3
Sections per station 40 (4–5 stations) 40 (4–5 stations) 40 (4–5 stations) 30 (2 stations)
Section thickness (mm) 5 5 5 5
Readout bandwidth
  (Hz/pixel)

1955 2330 1955 1860

Parallel imaging GRAPPA (R = 2) GRAPPA (R = 2) GRAPPA (R = 2) GRAPPA (R = 2)

Note.—All images were acquired axially by using a spin-echo planar technique. GRAPPA = generalized autocalibrating partial parallel 
acquisition, NSA = number of signal averages.
* When individual acquisitions are retained, the NSA is displayed as the “number of repeat acquisitions” 3 the “NSA per acquisition.” All 
acquired gradient directions were retained individually such that for the training dataset, there were three directions 3 three acquisitions = 
nine images per b value.
† Numbers in parentheses represent the final image dimensions following interpolation (when applicable).
‡ The resolution is presented following image interpolation (when applicable).
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where ADC1-DNIF/NOA1 represents the mean ADC within the 
defined regions of interest for the NOA1-DNIF or NOA1 im-
ages, respectively. Furthermore, we calculated the coefficient 
of variation as the standard deviation divided by the aver-
age ADC, and the mean absolute voxel-wise difference be-
tween the NOA1-DNIF or NOA1 ADC maps and the NOA9 

ting algorithm was used to calculate ADC maps by using data 
from all three b values for the NOA1, NOA9, and NOA1-DNIF im-
ages. A radiologist delineated regions of bone disease on the NOA9 
images by using an in-house semiautomatic segmentation tool for 
WBDWI studies of advanced prostate cancer (26) for all valida-
tion patient images, and the resulting regions of interest were cop-
ied onto the derived ADC maps. The mean ADCs within regions 
of bone disease were compared across the three imaging schemes 
by calculating the relative difference of means (RDM) between 
NOA1-DNIF or NOA1 ADC maps and NOA9 ADC maps:

Figure 1:  (Top) Generation of “clinical-standard” images, z (number of acquisitions = 9 [NOA9]), from the single acquisition images, xij 
(NOA1), is achieved by computing the geometric average over the different directions, j, and computing the arithmetic average over the result-
ing trace-weighted images, yi (NOA3). Such operations mimic the processing performed by most clinical imagers when acquiring whole-body 
diffusion-weighted MR images. In clinical images, only the averaged images (z) are retained, whereas all other data are removed to reduce 
storage requirements. (Bottom) Our deep learning–based denoising image filter’s (DNIF’s) U-Net–like architecture for processing the input of 
noisy diffusion-weighted images from a single acquisition (NOA1) at a random b-value direction, x1j, to predict image z (DNIF-predicted z 
[zpred]) is shown. The network extracts multiscale features from the NOA1 image and subsequently reconstructs the image by using the acquired 
clinical-standard (NOA9) image as the ground truth. The mean absolute error (loss [L]) is used as the cost function to evaluate the perceived 
closeness of zpred to the acquired clinical-standard (ie, ground truth or NOA9) image, z. Apparent diffusion coefficient (ADC) maps derived from 
DNIF-processed images are calculated as a subsequent step by using a least-squares fitting approach after the individual denoised b-value 
images are estimated by using our model. conv = convolution, DWI = diffusion-weighted MRI, ReLU = rectified linear unit.
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monoexponential, least-squares fitting algorithm. Anatomic 
images were not provided to ensure a blinded reading. The 
radiologists qualitatively scored the contrast-to-noise ratio, 
SNR, and image artifacts of the b = 900 sec/mm2 images and 
the ADC maps independently by using a three-point Likert 
scale (1 = poor, 2 = adequate, and 3 = good). To assist in the 
qualitative assessment of the SNR and contrast-to-noise ra-
tio metrics, the radiologists reported the average pixel values 
within regions of interest around a single site of disease sur-
rounded by healthy tissue and background air on b = 900 sec/
mm2 images.

Mesothelioma dataset.—We compared two versions of the 
DNIF model: a version incorporating direct application of 
the WBDWI dataset model without updating of the model 

ADC maps. The distributions of ADC measurements within 
disease were compared for all methods by using violin plots; 
negative calculated ADCs were included in this analysis be-
cause they convey important information regarding the dis-
tribution of imaging noise.

Test WBDWI dataset.—The DNIF was directly applied to the 
test WBDWI dataset without further retraining. Two radiolo-
gists with 1 year (A.C.) and 10 years (D.M.K.) of experience 
with using WBDWI for the assessment of metastatic disease 
reviewed the NOA16, NOA1, and NOA1-DNIF images of all 22 
patients (readers were blinded to patient clinical details, and 
images were presented in random order). In each case, radiol-
ogists had access to all b-value images (50, 600, and 900 sec/
mm2), and the ADC maps were calculated offline by using a 

Figure 2:  (Left) Example images from each of the three validation patients in the training whole-body diffusion-weighted MRI dataset. High-b-value images (b = 900 sec/
mm2: top row in each patient example) are displayed alongside apparent diffusion coefficient (ADC) maps (bottom row in each patient example) for the clinical-standard 
(number of acquisitions = 9 [NOA9]) images, the fast-acquisition images (NOA1), and the deep learning–based denoising image filter (DNIF)–processed NOA1 (NOA1-DNIF) 
images. In addition, difference maps are shown between the clinical-standard images and the NOA1-DNIF or NOA1 images (NOA1-DNIF − NOA9, for example). All equivalent 
images are displayed by using the same windowing settings. (Right) Violin plots of the ADC distributions within segmented bone disease for the same three patients (example 
segmentation regions are displayed as red contours on NOA9 ADC maps). It is clear that there is a reduction in the range of ADCs resulting from DNIF-processed images. 
Furthermore, ADCs are shown to be equivalent, as indicated by the relative difference of ADC means from NOA9 measurements (displayed as a percentage above NOA1 
and NOA1-DNIF violin plots).
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parameters (WBDWI model) and a version that was retrained 
from scratch with 20 of the patients with MPM (lung mod-
el). The MSE, SSIM, and PSNR scores were calculated for 
all eight validation patients, as they had been for the train-
ing WBDWI dataset. Regions of disease were delineated on 
axial b = 50 sec/mm2 images for all eight validation patients 
by using 3D Slicer (27) and were then copied onto ADC 
maps calculated from NOA12, NOA1, and NOA1-DNIF imag-
es. The mean ADCs within disease were compared across all 
four imaging schemes by using the same RDM, coefficient of 
variation, and mean absolute voxel-wise difference scores that 
were used for the training WBDWI dataset; ADC distribu-

tions were compared by using violin plots (including negative 
ADC values).

Statistical Analysis
For the test WBDWI dataset, we calculated the statistical 
significance of differences between radiologist ratings of im-
age quality for NOA1-DNIF compared with NOA1 images and 
for NOA12 images compared with NOA1 images by using 
a Wilcoxon signed rank test. Comparisons were made for 
each image-quality metric, each observer, and for b = 900 
sec/mm2 images and ADC maps independently. We used the 
“wilcoxon” function in the SciPy Python package (version 
1.2.1) to perform our evaluations, assuming a two-sided al-
ternative hypothesis. Calculated P values were corrected for 
multiple comparisons by using the Benjamini-Hochberg 
procedure, and a P value of less than .05 was chosen to indi-
cate significance.

Table 2: Image and Bone Disease Statistics for NOA1 
and NOA1-DNIF Images for Three Validation Patients 
from Training WBDWI Dataset

Parameter NOA1 NOA1-DNIF

Image statistics
  MSE
    P1 2.96 3 10−6 1.56 3 10−6

    P2 2.00 3 10−6 8.48 3 10−7

    P3 1.80 3 10−5 1.49 3 10−5

  SSIM
    P1 0.998 0.9985
    P2 0.998 0.999
    P3 0.980 0.985
  PSNR
    P1 55.3 58.1
    P2 57.0 60.7
    P3 47.4 48.3
Disease statistics
  RDM (%)
    P1 1.44 2.06
    P2 0.34 1.05
    P3 1.92 2.61
  CoV (%)
    P1 9.0 1.6
    P2 6.3 1.9
    P3 11.7 7.2
  MAVD
    P1 109.8 95.1
    P2 152.7 129.3
    P3 147.6 145.8

Note.—Data are shown as the median values calculated across 
all b = 50 sec/mm2, b = 600 sec/mm2, and b = 900 sec/mm2 
images for each patient. ADC = apparent diffusion coefficient, 
CoV = difference from the ground truth ADC coefficient of 
variation, DNIF = deep learning–based denoising image filter, 
MAE = mean absolute error, MAVD = mean absolute voxel-
wise difference, MSE = mean-squared error, NOA = number of 
acquisitions, NOA1-DNIF = DNIF-processed NOA1, P = patient, 
PSNR = peak signal-to-noise ratio, RDM = relative difference of 
means, SSIM = structural similarity index, WBDWI = whole-
body diffusion-weighted MRI.

Figure 3:  Example axial b = 900 sec/mm2 images and apparent diffusion co-
efficient (ADC) maps for the unfiltered (number of acquisitions = 1 [NOA1]) images, 
clinical-standard (NOA16) images, and deep learning–based denoising image fil-
ter (DNIF)-processed NOA1 (NOA1-DNIF) images for three of the patients in the test 
whole-body diffusion-weighted MRI dataset.

http://radiology-ai.rsna.org
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Results

Performance of the Deep Learning Network
Within 15 epochs, the network minimized the MAE, resulting 
in a change from 0.87 3 10−3 to 0.53 3 10−3, and minimized 
the LMAE/SSIM metric, resulting in a change from 0.39 3 10−2 to 
0.11 3 10−2. Both cost functions resulted in the same MAE 
solution (0.53 3 10−3). Interestingly, the network reached a 
better solution for the MSE through using either the MAE cost 
function or the LMAE/SSIM cost function than through trying to 
minimize the MSE directly (MSE from MAE: 1.89 3 10−6 vs 
MSE from LMAE/SSIM 1.88 3 10−6 vs direct MSE: 2.7 3 10−6). 
Through visual inspection of the training WBDWI dataset, an 
expert radiologist (N.T., 101 years of experience) concluded 

that the network trained on the MSE cost function resulted in 
oversmoothing of the images without preserving edges, and so 
we used the MAE in all further training.

The network required 8 hours of training on the WBDWI 
data when using a Tesla P100 for PCIE 16-GB graphics process-
ing unit card. In terms of computational efficiency, the trained 
network requires approximately 1 second to process a single low-
SNR image on our MacBook Pro laptop with a 2.9-GHz Intel 
Core i7 central processing unit (16-GB–2133-MHz random ac-
cess memory with a low-power double data rate of 3).

Model Performance on the Validation WBDWI Sample
After initial training of the denoising model on the 14 patients 
with prostate cancer, the model was assessed on the three pa-

Figure 4:  Bar plots for the observer rating study of the test whole-body diffusion-weighted MRI dataset for each image-
quality criterion: the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR), and image artifacts. Results are shown for b 
= 900 sec/mm2 images and apparent diffusion coefficient (ADC) maps separately. In all cases, the majority of fast-acquisition 
(number of acquisitions = 1 [NOA1]) datasets received a “poor” quality score for both b = 900 sec/mm2 images and ADC 
maps, whereas for the NOA16 dataset, the majority of cases received an “average” or “good” score. The use of the deep 
learning–based denoising image filter (DNIF) consistently increases the number of cases scoring as average or good for 
datasets obtained through just one acquisition. A significant difference in the image-quality scores is observed in all cases 
when comparing NOA16 images with NOA1 images and when comparing DNIF-processed NOA1 (NOA1-DNIF) images with 
NOA1 images. p† = pairwise comparison of NOA16 scores minus NOA1 scores by two-tailed Wilcoxon signed rank test, p‡ 
= pairwise comparison of NOA1-DNIF scores minus NOA1 scores by two-tailed Wilcoxon signed rank test.
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tients in the validation dataset. An example of the DNIF being 
applied to each of the three validation patients from this sam-
ple (b = 900 sec/mm2 images and ADC maps) is illustrated in 
Figure 2; the DNIF was able to reduce the influence of imag-
ing noise in the output image compared with the input NOA1 
image, resulting in superior image quality in the subsequently 
calculated ADC maps. The NOA1-DNIF images had improved 
quantitative metrics compared with the original NOA1 images 
for the MSE (5.8 3 10−6 vs 7.7 3 10−6; P , .001), SSIM 
(0.994 vs 0.992; P , .001), and PSNR (55.7 vs 53.2; P , 
.001) (Table 2). For all three validation patients within this 
sample, violin plots of ADCs within segmented regions dem-
onstrated the ability of the DNIF model to reduce the range 
of calculated ADC measurements as a result of improving the 
SNR; the mean ADCs measured within bone disease from 
NOA1-DNIF images deviated from the mean ADC calculated 
by using NOA9 images by an average RDM of 1.9% (range, 
1.1%–2.6%) (within previously reported repeatability limits 
for mean ADC measurements [27]). The NOA1-DNIF images 
also had a smaller average difference from the ground truth 
ADC coefficient of variation than did the NOA1 images (3.5% 
vs 9.0%), and the mean absolute voxel-wise difference was 

also smaller (123.4 vs 136.7). Detailed results are presented 
in Table 2.

Model Performance on the Test WBDWI Dataset
The model was then assessed on a test dataset of 22 patients 
with advanced prostate cancer, advanced breast cancer, or my-
eloma-related bone disease. Application of the DNIF was suc-
cessful in all patients. Visual improvements in image quality 
in terms of the contrast-to-noise ratio for high-b-value images 
and the resulting ADC maps were observed for all patients; 
results for six selected patients are illustrated in Figure 3, and 
examples from all patients are presented in Appendix E1 (sup-
plement). Radiologist review of these images is summarized in 
Figure 4. The majority of NOA1 images (both b = 900 sec/
mm2 images and ADC maps) were graded as “poor” by both 
radiologists across all quality criteria, whereas the majority of 
NOA16 and NOA1-DNIF images were graded as either “average” 
or “good.” Statistically significant differences were observed in 
all comparisons (NOA16 vs NOA1 images and NOA1-DNIF vs 
NOA1 images) for all quality metrics and for both radiologists 
independently. The average quality scores (6 the standard er-
ror from the three-point quality scale) of the ADC maps ob-

Table 3: Images Defined as “Clinically Usable” (Rated “Average” or “Good”) by 
Both Radiologists

Parameter NOA1 NOA1-DNIF NOA16

b = 900 sec/mm2

  SNR
    R1 0/22 (0.0) 17/22 (77.3) 21/22 (95.5)
    R2 0/22 (0.0) 21/22 (95.5) 19/22 (86.4)
  CNR
    R1 8/22 (36.4) 18/22 (81.8) 21/22 (95.5)
    R2 3/22 (13.6) 21/22 (95.5) 20/22 (90.9)
  Image artifacts
    R1 3/22 (13.6) 13/22 (59.1) 19/22 (86.4)
    R2 11/22 (50.0) 19/22 (86.4) 19/22 (86.4)
ADC map
  SNR
    R1 3/22 (13.6) 18/22 (81.8) 21/22 (95.5)
    R2 0/22 (0.0) 21/22 (95.5) 19/22 (86.4)
  CNR
    R1 8/22 (36.4) 18/22 (81.8) 22/22 (100.0)
    R2 2/22 (9.1) 21/22 (95.5) 20/22 (90.9)
  Image artifacts
    R1 3/22 (13.6) 14/22 (63.6) 20/22 (90.9)
    R2 11/22 (50.0) 19/22 (86.4) 19/22 (86.4)

Note.—Data are shown as proportions with percentages in parentheses. These results indicate 
the ability of the DNIF to provide clinically usable images from images with clinically subop-
timal quality, as the majority of DNIF images are considered to be usable, which is in contrast 
with NOA1 images, of which the majority are considered “not usable.” ADC = apparent diffu-
sion coefficient, CNR = contrast-to-noise ratio, DNIF = deep learning–based denoising image 
filter, NOA = number of acquisitions, NOA1-DNIF = DNIF-processed NOA1, R = reader, SNR 
= signal-to-noise ratio.
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tained from NOA1-DNIF images were higher than the scores of 
the ADC maps obtained from NOA1 images (SNR, 2.25 6 
0.10 vs 1.07 6 0.04 [P , .005]; contrast-to-noise ratio, 2.45 
6 0.11 vs 1.25 6 0.07 [P , .005]; image artifacts, 1.91 6 
0.1 vs 1.34 6 0.08 [P , .005]). Table 3 presents the percent-
age of images defined to be clinically usable (average or good) 
by either radiologist; the majority of images were defined to 
be clinically usable for NOA16 and NOA1-DNIF images, whereas 
this was not the case for NOA1 images.

Performance of the Pretrained WBDWI and Retrained Lung 
Model on the Mesothelioma Dataset
Next, two different models were assessed on the mesothelioma 
dataset: the original pretrained WBDWI model and the model 
retrained on a subset of patients from the mesothelioma da-

taset (lung model). Figure 5 compares results for three of the 
validation patient datasets from the mesothelioma dataset, 
demonstrating NOA1 images filtered by using both the WB-
DWI model and the lung model. The lung model improved 
all three quantitative metrics (MSE, SSIM, and PSNR) in all 
eight test patients (Table 4). Analyzing the ADC distributions 
from all imaging techniques (Fig 6 and Table 4) revealed low 
RDM scores, with average values of 2.0% (range, 0.4%–8.4%) 
for NOA1 images and 3.7% (range, 0.2%–10.6%) and 4.0% 
(range, 0.1%–11.2%) for NOA1-DNIF images derived from the 
lung model and the WBDWI model, respectively. In one pa-
tient (patient 3), the mean ADC of disease from NOA1-DNIF 
images deviated from the mean ADC from NOA12 images by 
approximately 11%. However, a similar variation was observed 
for NOA1 ADC maps, indicating that this deviation was not 

Figure 5:  Three patient example datasets from the test arm of the mesothelioma dataset. High-b-value images (b = 800 sec/mm2: top row in each patient example) are 
displayed alongside apparent diffusion coefficient (ADC) maps (bottom row in each patient example) for the clinical-standard (number of acquisitions = 12 [NOA12]) images, 
the fast-acquisition (NOA1) images, and the deep learning–based denoising image filter (DNIF)-processed NOA1 (NOA1-DNIF) images from the pretrained whole-body 
diffusion-weighted MRI (WBDWI) model and the retrained lung model (which was retrained by using data acquired specifically in patients with malignant pleural mesothe-
lioma). In addition, difference maps are shown between the NOA12 images and the NOA1-DNIF or NOA1 images (NOA1-DNIF − NOA12, for example). All equivalent images 
are displayed by using the same windowing settings. Although a clear improvement in image quality is observed when using the pretrained WBDWI, a further improvement is 
seen from the lung model. In particular, improved disease contrast can be observed in high-b-value images and ADC maps, with sharper tissue boundaries (green and orange 
arrows, respectively) being demonstrated. In a few cases, some bias is observed in the ADC calculations obtained by using the DNIF lung model (red arrow); this occurs in 
regions of motion (eg, near the diaphragm) where the NOA12 image signal will average out in regions that move (effective acquisition time on the order of minutes), whereas 
NOA1 images represent more of a snapshot in time (acquisition time on the order of tens of milliseconds).
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due to the application of the DNIFs. In all cases, application of 
the DNIFs (NOA1-DNIF images) reduced the presence of ADC 
measurement outliers in filtered images compared with NOA1 
images. The NOA1-DNIF ADC maps also had a smaller average 
difference from the ground truth ADC coefficient of variation 
and had a smaller mean voxel-wise difference in most cases 
(Table 4).

Discussion
Our DNIF improved image quality in subsampled WBDWI 
acquisitions as demonstrated within our test datasets of im-
ages from patients with metastatic prostate, breast, or my-
eloma-related bone disease. Initial results indicate that ADC 
measurements made by using DNIF-processed images fall 
within the typical limits of repeatability for mean extracra-
nial ADC measurements (28) and are therefore comparable 
with those made by using fully sampled WBDWI images (in 
tumors for which isotropic water diffusion can be assumed). 
This indicates that DNIF-derived ADC estimates in bone 
disease might have a level of clinical image quality that is suf-
ficient for monitoring the treatment response (26,29); repeat 
baseline measurements acquired by using our method would 
be required to fully test this hypothesis. In our blinded study 
based only on anatomic images from an independent set of 
22 patients, two expert radiologists deemed the majority of 
DNIF-processed images as “usable” for the clinical setting, 
whereas the original noisy images from which they were de-
rived were mostly “not usable.”

A major advantage of our approach is that the acquisition 
of training data needed for deriving the DNIF can be adopted 
by any imaging center, providing adaptable solutions that are 
trained to a particular manufacturer and/or imager. We have 
demonstrated that our method can be adapted to other dis-
eases investigated by using DWI, such as MPM. Although the 
WBDWI-trained DNIF can be used to improve image quality 
of single-acquisition DWI images obtained in the context of 

MPM, the technique can be improved by acquiring disease-
specific training data.

Understanding the inner workings of any deep learning al-
gorithm is critical if such technologies are to be embraced in 
the health care sector, and this understanding is required to 
support application for medical regulatory approval. In Appen-
dix E1 (supplement), we provide some evidence for how our 
DNIF may be working; we provide preliminary evidence that 
the DNIF is nonlinear, spatially variant, nonlocal, and edge pre-
serving. We posit on the basis of these results that the DNIF is 
learning about the complex relationships among pixels within 
the image in terms of their relative position and relative intensity. 
Moreover, we suggest that the DNIF learns about anatomic po-
sition to tune the degree of smoothing it performs at a particular 
body location. This is evidenced by the improvements observed 
when retraining the DNIF for our MPM data; because of respi-
ratory motion within the thoracic cage, the algorithm tended 
to oversmooth images in this region when using the WBDWI-
trained DNIF.

During training, the neural network minimizes a cost func-
tion that measures the similarity between the DNIF-processed 
images and the clinical-standard images used as the ground 
truth. The correct assessment of image similarity by algorithms 
is an ongoing problem in the computer vision field. The default 
choice, the MSE, is predominantly used for its simplicity and 
well-understood properties but has limitations, including the as-
sumption that noise has a Gaussian distribution and is not de-
pendent on local image characteristics (30). Furthermore, this 
metric, although valid for other applications, produces images 
that do not correlate well with human perception of image qual-
ity (two images with a very low MSE can look quite different 
to a human observer) (24). In this study, we investigated the 
MAE and combined it with a metric that can be used to more 
closely resemble human perception, the SSIM (25). In our fu-
ture studies, we aim to further explore other approaches, such as 
the use of a perceptual loss (as deep features have been shown to 

Table 4: Image and Bone Disease Statistics for NOA1, NOA1-DNIF (Lung Model), and NOA1-DNIF (WBDWI Model) Images for 
Eight Validation Patients from Mesothelioma Dataset

Parameter NOA1 NOA1-DNIF (Lung Model) NOA1-DNIF (WBDWI Model)

Image statistics
  MSE 14.3 3 10−6 (7.7 3 10−6 to 28.5 

3 10−6)
9.4 3 10−6 (2.8 3 10−6 to 26.9 3 

10−6)
15.2 3 10−6 (6.3 3 10−6 to 41.6 3 

10−6)
  SSIM 0.993 (0.983–0.996) 0.995 (0.985–0.998) 0.99 (0.973–0.995)
  PSNR 48.8 (45.5–51.2) 51.2 (45.7–55.5) 48.9 (43.8–52.0)
Disease statistics
  RDM (%) 2.0 (0.4–8.4) 3.6 (0.2–10.6) 4.0 (0.1–11.2)
  CoV (%) 19.4 (10.2–32.5) 6.2 (1.9–11.2) 6.1 (1.0–11.6)
  MAVD 332.8 (233.3–405.3) 236.7 (186.8–285.1) 275.2 (219.2–352.7)

Note.—Data are shown as the median values with ranges in parentheses calculated over all b = 50 sec/mm2, b = 600 sec/mm2, and b = 900 
sec/mm2 images for each patient. ADC = apparent diffusion coefficient, CoV = difference from the ground truth ADC coefficient of varia-
tion, DNIF = deep learning–based denoising image filter, MAVD = mean absolute voxel-wise difference, MSE = mean-squared error, NOA 
= number of acquisitions, NOA1-DNIF = DNIF-processed NOA1, PSNR = peak signal-to-noise ratio, RDM = relative difference of means, 
SSIM = structural similarity index, WBDWI = whole-body diffusion-weighted MRI.
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Figure 6:  Violin plots of the apparent diffusion coefficient (ADC) distributions within segmented disease for all eight test patients in the mesothelioma dataset; example 
segmentation regions are displayed as red contours on the clinical-standard (number of acquisitions = 12 [NOA12]) ADC maps in Figure 5. Some differences were observed 
in these distributions, particularly at ADCs greater than 2 × 10-3 mm2/sec (patients 3 and 4, for example). Further investigation revealed that this was likely due to bulk motion, 
because NOA1 (and hence deep learning–based denoising image filter [DNIF]-processed NOA1 [NOA1-DNIF]) images are effectively snapshots in time (acquisition time on 
the order of tens of milliseconds), whereas the NOA12 image signal averages out motion over the 12 repeat measurements. In regions of pleural mesothelioma, where bulk 
free water flows as a result of convection from one imaging section to another, this could result in incomplete T1 relaxation of the water as it flows from one section to the next, 
leading to regions of spurious signal suppression on each section excitation. WBDWI = whole-body diffusion-weighted MRI.

correlate better with human perception than do manual metrics 
[31,32]) and generative adversarial network architectures (33), 
while also comparing these approaches with traditional denois-
ing algorithms (34,35).

The encouraging findings of our proof-of-concept study 
warrant further investigation through multicenter studies 

comprising larger patient populations to understand the ef-
fect of the technique on diagnostic accuracy. Deep neural 
networks typically benefit from the addition of training data 
from other institutions, MRI vendors, and different proto-
cols and would offer a filter that produces images that are of 
clinical quality such that it would enable evaluation of any 
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WBDWI study. Our approach could exploit the concept of 
“transfer learning.” By using the weights from our DNIF as 
an initialization, an individual site may not need to acquire 
much data to train a network specific to that site. Future 
studies could also investigate the value of working directly 
with acquired raw k-space data for improving single-shot 
WBDWI image quality by using contemporary methods in 
machine learning, such as Automated Transform by Manifold 
Approximation (36,37). In a few patients, we found some 
differences between the calculated ADCs from DNIF im-
ages and the calculated ADCs from clinical images, especially 
for images acquired at b values greater than 2 3 10-3 mm2/
sec. This appears to be due to the fact that the DNIF images 
capture a snapshot in time (tens of milliseconds per b-value 
image), whereas the clinical images comprise an average of 
nine or 12 repeat acquisitions obtained over approximately 5 
minutes, thus averaging out motion effects. In some respects, 
this is encouraging, because it warrants further exploration 
of the use of DNIF for fast-acquisition, breath-hold ADC 
measurements in the abdomen and chest.

We conclude that deep learning methods, such as our quick-
DWI approach, are able to improve the quality of WBDWI 
images from subsampled data, potentially reducing acquisition 
times by a significant amount (from approximately 25 minutes 
to 5 minutes in our test study). Such time savings would reduce 
imaging costs, rendering WBDWI appropriate for screening 
studies and reducing patient imaging time and/or discomfort, 
which could aid in the widespread adoption of WBDWI.

Acknowledgments: The authors thank Nuria Porta, PhD, Principal Statistician at 
the Institute of Cancer Research, London, for her insightful advice on the statistical 
analysis of our study.

Author contributions: Guarantor of integrity of entire study, M.D.B.; study con-
cepts/study design or data acquisition or data analysis/interpretation, all authors; man-
uscript drafting or manuscript revision for important intellectual content, all authors; 
approval of final version of submitted manuscript, all authors; agrees to ensure any 
questions related to the work are appropriately resolved, all authors; literature research, 
K.Z.P., C.M., D.J.C., D.M.K., M.D.B.; clinical studies, N.T., A.C., S.C., D.J.C., 
D.M.K., M.D.B.; experimental studies, K.Z.P., M.D.B., statistical analysis, K.Z.P., 
M.D.B.; and manuscript editing, K.Z.P., N.T., C.M., D.J.C., Y.J., D.M.K., M.D.B. 

Disclosures of Conflicts of Interest: K.Z.P. Activities related to the present ar-
ticle: disclosed no relevant relationships. Activities not related to the present ar-
ticle: disclosed no relevant relationships. Other relationships: a patent has been 
submitted to the UK Intellectual Property Office directly regarding the work de-
scribed in this article. N.T. disclosed no relevant relationships. A.C. disclosed no 
relevant relationships. C.M. disclosed no relevant relationships. S.C. disclosed no 
relevant relationships. D.J.C. disclosed no relevant relationships. J.C.H. disclosed 
no relevant relationships. Y.J. disclosed no relevant relationships. D.M.K. Activi-
ties related to the present article: institution received grant from NIHR Clinical 
Research Facilities. Activities not related to the present article: disclosed no relevant 
relationships. Other relationships: disclosed no relevant relationships. M.D.B. Ac-
tivities related to the present article: disclosed no relevant relationships. Activities 
not related to the present article: consultant for Bayer. Other relationships: a pat-
ent has been submitted to the UK Intellectual Property Office directly regarding 
the work described in this article; a patent has been granted for work in a broadly 
relevant field (US10885679B2). This patent is also pending in Japan and Europe 
(JP2019513515A/EP3443373A1).

References
	 1.	 Padhani AR, Lecouvet FE, Tunariu N, et al. METastasis reporting and data 

system for prostate cancer: practical guidelines for acquisition, interpretation, 
and reporting of whole-body magnetic resonance imaging-based evalua-
tions of multiorgan involvement in advanced prostate cancer. Eur Urol 
2017;71(1):81–92.

	 2.	Eiber M, Holzapfel K, Ganter C, et al. Whole-body MRI including diffusion-
weighted imaging (DWI) for patients with recurring prostate cancer: techni-
cal feasibility and assessment of lesion conspicuity in DWI. J Magn Reson 
Imaging 2011;33(5):1160–1170.

	 3.	Koh DM, Blackledge M, Padhani AR, et al. Whole-body diffusion-weighted 
MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 2012;199(2):252–262.

	 4.	Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted 
MR imaging in cancer: current status and research directions. Radiology 
2011;261(3):700–718.

	 5.	Chantry A, Kazmi M, Barrington S, et al. Guidelines for the use of imaging in the 
management of patients with myeloma. Br J Haematol 2017;178(3):380–393.

	 6.	Myeloma diagnosis and management: NICE guideline [NG35] and appen-
dices. National Institute for Health and Care Excellence Web site. https://
www.nice.org.uk/guidance/ng35. Published February 2016. Last updated 
October 2018. Accessed October 2018.

	 7.	Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response 
with diffusion-weighted MRI. J Magn Reson Imaging 2010;32(1):2–16.

	 8.	Messiou C, Hillengass J, Delorme S, et al. Guidelines for acquisition, inter-
pretation, and reporting of whole-body MRI in myeloma: myeloma response 
assessment and diagnosis system (MY-RADS). Radiology 2019;291(1):5–13.

	 9.	Evans R, Taylor S, Janes S, et al. Patient experience and perceived acceptability 
of whole-body magnetic resonance imaging for staging colorectal and lung 
cancer compared with current staging scans: a qualitative study. BMJ Open 
2017;7(9):e016391.

	10.	Evans RE, Taylor SA, Beare S, et al. Perceived patient burden and acceptability 
of whole body MRI for staging lung and colorectal cancer; comparison with 
standard staging investigations. Br J Radiol 2018;91(1086):20170731.

	11.	Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for bio-
medical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi 
A, eds. Medical Image Computing and Computer-Assisted Intervention 
– MICCAI 2015. MICCAI 2015. Vol 9351, Lecture Notes in Computer 
Science. Cham, Switzerland: Springer, 2015; 234–241.

	12.	Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural 
networks for automated cartilage and meniscus segmentation of knee MR 
imaging data to determine relaxometry and morphometry. Radiology 
2018;288(1):177–185.

	13.	 Schelb P, Kohl S, Radtke JP, et al. Classification of cancer at prostate MRI: deep 
learning versus clinical PI-RADS assessment. Radiology 2019;293(3):607–
617.

	14.	Hyun CM, Kim HP, Lee SM, Lee S, Seo JK. Deep learning for undersampled 
MRI reconstruction. Phys Med Biol 2018;63(13):135007.

	15.	Bollmann S, Rasmussen KGB, Kristensen M, et al. DeepQSM: using deep 
learning to solve the dipole inversion for quantitative susceptibility mapping. 
Neuroimage 2019;195:373–383.

	16.	Lee D, Yoo J, Ye JC. Deep residual learning for compressed sensing MRI. In: 
Proceedings of the 2017 14th IEEE International Symposium on Biomedical 
Imaging (ISBI 2017). Piscataway, NJ: Institute of Electrical and Electronics 
Engineers, 2017; 15–18.

	17.	Tripathi PC, Bag S. CNN-DMRI: a convolutional neural network for denois-
ing of magnetic resonance images. Pattern Recognit Lett 2020;135:57–63.

	18.	Muckley MJ, Ades-Aron B, Papaioannou A, et al. Training a neural net-
work for Gibbs and noise removal in diffusion MRI. Magn Reson Med 
2021;85(1):413–428.

	19.	Cheng L, Tunariu N, Collins DJ, et al. Response evaluation in mesothelioma: 
beyond RECIST. Lung Cancer 2015;90(3):433–441.

	20.	Kingsley PB. Introduction to diffusion tensor imaging mathematics: part 
II—anisotropy, diffusion‐weighting factors, and gradient encoding schemes. 
Concepts Magn Reson A 2006;28A(2):123–154.

	21.	Blackledge MD, Tunariu N, Zungi F, et al. Noise-corrected, exponentially 
weighted, diffusion-weighted MRI (niceDWI) improves image signal uni-
formity in whole-body imaging of metastatic prostate cancer. Front Oncol 
2020;10:704.

	22.	He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing 
human-level performance on ImageNet classification. In: Proceedings of the 
2015 IEEE International Conference on Computer Vision. Piscataway, NJ: 
Institute of Electrical and Electronics Engineers, 2015; 1026–1034.

	23.	Kingma DP, Ba J. Adam: a method for stochastic optimization. ArXiv 
1412.6980 [preprint] https://arxiv.org/abs/1412.6980. Posted December 
22, 2014. Accessed August 11, 2021.

	24.	Zhang L, Zhang L, Mou X, Zhang D. A comprehensive evaluation of full 
reference image quality assessment algorithms. In: Proceedings of the 2012 
19th IEEE International Conference on Image Processing. Piscataway, NJ: 
Institute of Electrical and Electronics Engineers, 2012; 1477–1480.

	25.	Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: 
from error visibility to structural similarity. IEEE Trans Image Process 
2004;13(4):600–612.

http://radiology-ai.rsna.org
https://www.nice.org.uk/guidance/ng35
https://www.nice.org.uk/guidance/ng35
https://arxiv.org/abs/1412.6980


Radiology: Artificial Intelligence Volume 3: Number 5—2021  n  radiology-ai.rsna.org� 13

Zormpas-Petridis et al

	26.	Blackledge MD, Collins DJ, Tunariu N, et al. Assessment of treatment 
response by total tumor volume and global apparent diffusion coefficient 
using diffusion-weighted MRI in patients with metastatic bone disease: a 
feasibility study. PLoS One 2014;9(4):e91779.

	27.	Pieper S, Halle M, Kikinis R. 3D Slicer. In: Proceedings of the 2004 2nd 
IEEE International Symposium on Biomedical Imaging: Nano to Macro. 
Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2004; 
632–635.

	28.	Winfield JM, Tunariu N, Rata M, et al. Extracranial soft-tissue tumors: re-
peatability of apparent diffusion coefficient estimates from diffusion-weighted 
MR imaging. Radiology 2017;284(1):88–99.

	29.	O’Connor JP, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap 
for cancer studies. Nat Rev Clin Oncol 2017;14(3):169–186.

	30.	Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration 
with neural networks. IEEE Trans Comput Imaging 2016;3(1):47–57.

	31.	Zhang RY, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable ef-
fectiveness of deep features as a perceptual metric. In: Proceedings of the 2018 
IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, 
NJ: Institute of Electrical and Electronics Engineers, 2018; 586–595.

	32.	 Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and 
super-resolution. In: Leibe B, Matas J, Sebe N, Welling M, eds. Computer 
Vision – ECCV 2016. ECCV 2016. Vol 9906, Lecture Notes in Computer 
Science. Cham, Switzerland: Springer, 2016; 694–711.

	33.	Ran M, Hu J, Chen Y, et al. Denoising of 3D magnetic resonance images 
using a residual encoder-decoder Wasserstein generative adversarial network. 
Med Image Anal 2019;55:165–180.

	34.	Buades A, Coll B, Morel JM. Non-local means denoising. Image Proc Online 
2011;1:208–212.

	35.	Foi A. Noise estimation and removal in MR imaging: the variance-stabilization 
approach. In: Proceedings of the 2011 IEEE International Symposium on 
Biomedical Imaging: From Nano to Macro. Piscataway, NJ: Institute of 
Electrical and Electronics Engineers, 2011; 1809–1814.

	36.	Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by 
domain-transform manifold learning. Nature 2018;555(7697):487–492.

	37.	Zhu B, Bilgic B, Liao C, Rosen B, Rosen M. Deep learning MR reconstruction 
with Automated Transform by Manifold Approximation (AUTOMAP) in 
real-world acquisitions with imperfect training [abstr]. In: Proceedings of the 
Twenty-Sixth Meeting of the International Society for Magnetic Resonance 
in Medicine. Berkeley, Calif: International Society for Magnetic Resonance 
in Medicine, 2018; 0572.


