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Abstract: In this work, we obtained an effective way to introduce magnetism into topological
insulators, and successfully fabricated single crystal C-Bi2Se3. The structural, electrical and magnetic
properties of non-magnetic element X (B, C and N) doped at Bi, Se1, Se2 and VDW gap sites of
Bi2Se3 were studied by the first principles. It is shown that the impurity bands formed inside
the bulk inverted energy gap near the Fermi level with C doping Bi2Se3. Due to spin-polarized
ferromagnetic coupling, the time inversion symmetry of Bi2Se3 is destroyed. Remarkably, C is
the most effective dopant because of the magnetic moment produced by doping at all positions.
The experiment confirmed that the remnant ferromagnetism Mr is related to the C concentration.
Theoretical calculations and experiments confirmed that carbon-doped Bi2Se3 is ferromagnetic, which
provides a plan for manipulating topological properties and exploring spintronic applications.

Keywords: topological insulator; Bi2Se3; density functional theory; magnetism

1. Introduction

Bi2Se3 is a famous three-dimensional (3D) topological insulator (TI) with large bulk
band gap and metallic helical states on the surface [1]. The gapless surface states with
single Dirac electrons are defended by the time-reversal symmetry and are robust against
crystal defects and non-magnetic impurities [2–6]. The interaction between topological
properties and magnetism destroys time-reversal symmetry in the presence of band hy-
bridizations [7–9]. The quantized anomalous Hall effect (QAHE), magneto-optical effect,
magnetic monopole and Majorana fermion have been demonstrated in magnetic topo-
logical insulators [7,10–12]. To date, the magnetic introduction of Bi2Se3 has mainly been
focused on the magnetic proximity effect [13] and transition metals doping [14].

It is shown that the exchange coupling of magnetic materials can produce a proximity
effect and induce magnetism in topological insulators [15,16]. However, magnetic materials
are required to be insulating materials with poor conductivity and ferromagnetism. In
terms of preparation, the crystal structure of the material is matched with that of Bi2Se3,
avoiding the occurrence of impurities and defect states. Experimentally, the proximity-
induced interfacial magnetization of Bi2Se3 has been realized in the systems with FeSe2 [17],
EuS [18], Cr2O3 [19], MnSe [20], LaCoO3 [21], Ni80Fe20 [22], SiO2 [23].

The magnetic elements doping can tune the bandgap and produce magnetism. Bi2Se3
thin films with Cr doping present a magnetic ground state with ferromagnetic planes
coupled antiferromagnetically [24,25] and opened the band gap at the Dirac point [26]. The
films of Cr and Sb doping Bi2Se3 exhibited enhanced weak localization-like positive mag-
neto conductivity and ferromagnetism [27]. According to the literature, Mn-doped Bi2Se3
showed a spin glass state, paramagnetic state and ferromagnetism [28–33]. A ferromagnetic–
paramagnetic transition with increasing Mn concentration was observed [34]. Li [35] re-
ported that the ferromagnetism in Bi2Se3 with Fe doping is not intrinsic. Fe- and Ni-doped
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Bi2Se3 samples showed diamagnetism, paramagnetism and ferromagnetism with different
doping concentrations [36–39], and the surface of the samples formed a small amount of fer-
romagnet compounds. Obvious ferromagnetism was observed in Co-doped Bi2Se3 [40,41].
In addition, it was found that other metal elements such as rare earth elements (Dy, Ho, Eu,
Gd) and alkaline earth elements (Sr, Ca) can also introduce magnetism [42–50]. However,
the weaknesses of magnetic atoms doping are that clusters or secondary phases will be
formed during the crystal growth and the source of the magnetism is unclear.

Thus, it is beneficial to obtain magnetic ordering in non-magnetic materials without
transition metal or rare-earth species, which can avoid producing magnetic second phases.
As we all know, the magnetism is originated from the presence of highly localized unpaired
electrons in 3d and 4f orbitals of the transition and rare-earth metals. Interestingly, the 2p
electrons of the light elements B, N and C have similar properties to 3d states of transition
metals [51,52]. It has been reported that non-magnetic 2p light element-doped semicon-
ductors can produce d0 ferromagnetism [53]. Different from the traditional magnetic
semiconductors, the cluster structure formed by the doped elements has no contribution
to the magnetic order of the system. Brahmananda predicted the room temperature ferro-
magnetism (FM) in C-doped Y2O3 [54] and MoO3 [55]. Niu [13] demonstrated that Bi2Se3
with B, C and N doping is ferromagnetic. The doping is mostly concentrated at the Se site,
and it is not considered that the doping elements may replace the Bi site or appear in the
VDW gap. Xin et al. [56] studied the C element doping at the Se site and gap of Bi2Se3 and
found that the system is spin-polarized. The first-principles study indicated that C doping
can introduce a magnetic moment. They mainly focused on the gap sites and explained
the cause of magnetism. One widely discussed scenario for introducing magnetism in
non-magnetic materials involves the substitutional doping of C impurities. There are few
detailed identifications for other 2p light elements-doped TI. Thus, we systematically calcu-
lated the structural and magnetic properties of the X (B, C and N) atoms doping at Bi, Se
and gap sites of Bi2Se3 to further understand the details of 2p light element doping Bi2Se3
and effectively introduce magnetism into topological insulators. Our theoretical results
reveal that C is the most effective dopant because of the magnetic moment produced by
doping at all positions. Meanwhile, C-doped topological insulator crystals were grown and
their magnetic properties were studied. These single crytsals are ferromagnetic with small
magnetic moments, and the remnant ferromagnetism Mr is related to the C concentration.
It is possible to introduce magnetism by non-magnetic doping and find a system that can
realize peculiar physical effects such as the quantum anomalous Hall effect (QAHE).

2. Experimental and Computational Details
2.1. Preparation and Characterization of Single Crystal Bi2Se3

The single crystalline CxBi2Se3 (x = 0, 0.02, 0.04, 0.06) was prepared from the reactions
of the stoichiometric mixture of carbon (99.99%), Bi (99.999%) and Se (99.999%) powders.
The mixed powders were placed in quartz ampoule that was sealed in vacuum with a
pressure of 10−5 Pa. The quartz ampoule was put into a resistance furnace which was
heated at 1170 K for 24 h. Then, it was cooled slowly to and kept at 920 K for 3 days.
Finally, it was quenched in cold water. The single crystal was well cleavable. Magnetic
measurements were performed using a superconducting quantum-interference device
(SQUID, Quantum Design) magnetometer. Field emission scanning electron microscopy
(FE-SEM, JSM-7001F) was used to detect the morphology of the samples.

2.2. Theoretical Method and Computational Details

The calculations were performed within density functional theory using the Vienna ab
initio simulation package (VASP) [57]. The PBE [58] generalized gradient approximation
and the projector augmented wave potentials [59] were employed to describe the exchange-
correlation functional and the core-electron interaction, respectively. The cut-off energy of
all the systems based on the plane wave expansion was set to 500 eV. The integration over
the Brillouin zone was done using the Monkhorst–Pack mesh of 3 × 3 × 1. All structures
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were fully optimized until the convergent threshold for energy was 10−5 eV/atom and the
Hellmann–Feynman force acting on each atom was 0.01 eV/nm−1. The valence electron
configuration of each atom was: B 2s22p1, C 2s22p2, N 2s22p3, Se 4s24p4, Bi 6s26p3. The
structure relaxation with DFT-D2 and self-consistent with the spin-orbit coupling (SOC)
was calculated.

3. Results and Discussions
3.1. Geometrical Structure and Magnetic Properties of X Doping Bi2Se3

The crystal structure of Bi2Se3 is rhombohedral, belonging to the space group D5
3d

(R3m) [60]. As show in Figure 1a, the rhombohedral unit cell contains three Se atoms
and two Bi atoms. The hexagonal unit cell has three sets of quintuple layers (QL) with
five atomic layers in Figure 1b. The five layers form a stable unit in the order of Se1-
Bi-Se2-Bi-Se1 with strong covalent bonds, while the inter-layer bonding is much weaker
because of the van der Waals forces. These nonequivalent Se atoms are denoted as Se1
and Se2. The Se2 atom surrounded by Bi atoms is the spatial inversion symmetry center.
To study the results of X doping different configurations in Bi2Se3, we considered the
following cases: the Bi site, the non-equivalent Se1 and Se2 sites and the VDW gap site in
the 2 × 2 × 1 supercell containing 36 Se atoms and 24 Bi atoms, labeled XBi, XSe1, XSe2
and Xgap. Figure 1c–f are the optimized structure diagrams of Bi23Se36XBi, Bi24Se35XSe1,
Bi24Se35XSe2 and Bi24Se36Xgap, respectively. The change of structure is not particularly
obvious with the small doping proportions. The X atom moves close to the Bi and Se1
atoms and forms the X-Se1, X-Bi covalent bond. In Table 1, the strength of covalent bonding
increasing accompanies the reducing of the bond length between dopant X and nearby
atoms. The bond lengths in the primitive cell are: Se1-Bi, 2.865 Å; Se2-Bi, 3.067 Å and
Se1-Se2, 4.36 Å. However, the structure still maintains a high symmetry because the impact
on the other QL is inconspicuous.
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as dopants in Bi2Se3. The Bi24Se35NSe1 structure is the most energetically favorable, be-
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Figure 1. (a) The rhombohedral unit cell of Bi2Se3, (b) 60-atom layered crystal structure of Bi2Se3,
(c) structure of Bi23Se36XBi, (d) structure of Bi24Se35XSe1, (e) structure of Bi24Se35XSe2, and (f)
structure of Bi24Se36Xgap.
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Table 1. Formation energies, bond lengths and magnetic moments of X doping Bi2Se3.

Efrom (eV) dX-Bi (Å) dX-Se (Å) Mtot (µB) MX (µB) Mtot
(µB).exp

BBi −4.565 / 1.979 0.978 0.208
BSe1 −11.007 2.460 / 0 0 0.44 a

BSe2 −10.52 2.838 / 1.416 0.413 3.0 a

Bgap −12.177 / 1.832 0 0
CBi −0.808 / 1.885 0.410 0.164

CSe1 −9.933 2.369 / 0.649 0.377 2.0 a, 1.66 b

CSe2 −9.492 2.798 / 0.980 0.375 2.0 a, 1.95 b

Cgap −9.975 / 1.801 0.673 0.225 1.53 b

NBi −16.216 / 1.997 0 0
NSe1 −17.418 2.285 / 0 0 0.14 a

NSe2 −17.151 2.325 / 0.094 0.028 1.0 a

Ngap −16.303 / 1.956 0.794 0.576
a Data taken from Ref. [13]. b Data taken from Ref. [56].

The formation energy of Bi2Se3 is given by EBi2Se3= Epure − (36 ESe+ 24 EBi)= −31.362 eV.
The formation energy is relevant to the relative stability of structures. Through X doping, the
formation energy is computed using the following formulas:

EXBi = Edoped − Epure − EX + EBi (1)

EXSe = Edoped − Epure − EX + ESe (2)

EXgap = Edoped − Epure − EX (3)

where EXBi is the formation energies of the X atom-doped Bi site; EXSe is the formation
energies of the X atom-doped Se1, Se2 site; EXgap represents the formation energies of the X
atom-doped gap site; Edoped and Epure are the total energies of the X-doped and pure Bi2Se3;
and EX, EBi and ESe are the energies of the X, Bi and Se atom, respectively. The negative
energies mean that X atom-doped Bi2Se3 can be realized experimentally. As shown in
Table 1, the formation energies of the structures with B, C doping at the gap site are lower
than those of the structures with substitution at various sites. It is reasonable that those
configurations gain large bonding energy due to the strong chemical bonding and then
cause a drop in formation energy in these systems. Theoretically, the N atoms with a smaller
covalent radius (0.741 Å) (B: 0.905 Å, C: 0.863 Å) are energetically favorable as dopants in
Bi2Se3. The Bi24Se35NSe1 structure is the most energetically favorable, because the N atom
with more free electrons can more easily bond with a Bi atom (bond length: N-Bi: 2.285 Å).
In general, the B, C doping gap site and N doping Se1 sites are the most energetically
favorable. The X atoms replacing Bi atoms are found to be energetically unfavorable as
dopants in Bi2Se3.

The magnetic properties are calculated because the unpaired electrons are introduced
with X atom doping. The ferromagnetic (EFM) and antiferromagnetic (EAFM) energies with
four doped X atoms are calculated to judge the magnetic static state. The EFM and EAFM in
Bi24Se32X4 are −248.801 eV and −248.786 eV, −276.604 eV and −273.49 eV, −254.697 eV
and −254.521 eV, respectively. This demonstrates that the ferromagnetic interaction is
more favorable than the antiferromagnetic one, and the system of X doping Bi2Se3 is
ferromagnetic. Xin [56] reported the single crystal Bi2CxSe3−x (x = 0.05) sample is a FM state
which excludes magnetic impurities. This means that non-magnetic atoms can introduce
magnetism in Bi2Se3.

The total magnetic moments (Mtot) and single X atom moments (MX) are listed in
Table 1. The ferromagnetism mainly comes from the doped atoms, and the doped atoms
also have an effect on the surrounding atoms. The magnetic moments of BBi, BSe2, CBi,
CSe1, CSe2, Cgap, NSe2 and Ngap are 0.978 µB, 1.416 µB, 0.410 µB, 0.649 µB, 0.980 µB, 0.673
µB, 0.094 µB and 0.794 µB, respectively. As illustrated in our results, the magnetic moments
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are generally reasonable and closer to the experimental data. Specifically, the bond lengths
decrease and the covalent bonds become stronger with X atoms doping. There are more
charges transferring to the dopant X from adjacent atoms and occupying the empty 2p
orbitals of the dopant. The 2p orbital of the dopant atoms become less localized or even
delocalized. The bond lengths and transferred charges are different when X dopes different
sites. The magnetic moments’ variation accompanies the change of charges. Thus, the
magnetic moments and the bond lengths vary for different sites in this case. It is noted the
magnetic moment can be introduced when C atoms are doped at each position, suggesting
that C is the most effective dopant. In addition, the X atom doping at the Se2 site always
introduces the magnetic moment, and the magnetic moment is larger than that of the Se1
site. In the experiment, it is difficult to control the doping element to replace the Se2 site
definitely, so the best way to introduce magnetism is through C atom doping.

3.2. Electronic Structure of C Doping Bi2Se3

Next, we focus on the electronic structure of C doping Bi2Se3 because C doping can
introduce magnetism at each doping position. The valence band maximum (VBM) of
the perfect Bi2Se3 is dominated by the p states of Se1 and Se2, whereas the conduction
band minimum originates (CBM) from Bi-6p without SOC. Due to the effect of spin orbit
coupling, the VBM mainly derives from the p states of the 6p electrons of the Bi atom; the
4p electrons of the Se atom shift from VBM to CBM. The energy band reversed at the Γ
point with SOC, as shown in Figure 2. Figure 3 is the band structures of C atoms doping
Bi2Se3 with the SOC functional. The Fermi level is set at the energy zero point and the band
structure (−1~1 eV) close to the Fermi level is given.
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The impurity energy band mainly originating from the doped atom is localized near
the Fermi level. This shows that the energy band of Bi2Se3 can be regulated by non-magnetic
atoms doping. The impurity states mixing with the time-reversal paired states resulted in
the substantial modifications of the electronic structure. Even when the contribution of
dopants in the bands is very weak, the dopants have a very large impact on the band gap,
band curvature and Fermi level, varying wildly depending on the position of the dopant.
To make the impurity states more obvious, the contribution of the C atoms was magnified
10 times.

The C substitution for Se created a hole carrier because Bi atoms can accommodate
three electrons but there are not enough electrons for the C atom to bond with the sur-
rounding Bi atoms. Thus, in Figure 3b,c, the impurity band near the Fermi level mainly
derives from the hole carrier. Moreover, because Se2 atoms are in the center of the QL
and strongly localized, there is more than one impurity band between the valence band
and the conduction band. In Figure 3a,d, the Fermi level moves up into the conduction
band. The Fermi level undergoes an evident shift in energy, presenting somewhat metallic
behavior, and the insulation properties are damaged. In Cgap, the impurity bands appear
in the gap to accommodate the introduced unpaired electrons. The energy degeneracy is
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more obvious because the van der Waals force is weaker than the covalent bond. Similar
to pure Bi2Se3, the energy band reversed at the Γ point, indicating that the doped system
still maintains topological properties. The conduction band is contributed by Bi-p states.
The valence band is derived from the Se-p states and the C-2p orbital. The bottom of the
conduction band at the Γ point still mainly comes from the p-electron contribution of the
Se atom, and the valence band top comes from the p-electron contribution of the Bi atom.
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contribution from Bi atom.

Figure 4 shows the total density of states (DOS) and partial density of states (PDOS)
after doping. To make the impurity states more obvious, the intensity of the integral C-2p
states was 30 times larger. The narrow highly localized impurity bands exhibiting an
obvious spin split around the Fermi level. The spin-up and spin-down densities of states
are offset and asymmetrical, indicating the appearance of magnetism. In CSe1 and CSe2,
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it is obvious that for the spin-up channel there is an energy gap around the Fermi level
while the minority spin-down bands cross the Fermi level. The substituted structures are
half-metallic ferromagnetic. This is different from the CBi and Cgap, where the majority
spin channel is metallic.
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Figure 4. The total DOS and PDOS of C doping Bi2Se3.

In order to verify the magnetism of C-doped samples, single crystal samples were pre-
pared and magnetization versus applied magnetic field curves for CxBi2Se3 was measured
at 15 K. The estimated diamagnetic susceptibility was about χ0 = −8.22 × 10−5 emu/mol,
which is close to that of pure Bi2Se3. Similar diamagnetic signals are also obvious in the
C-doped samples, as shown in Figure 5a. After subtraction of the paramagnetic signals
from the total signals, hysteresis loops were extracted from the experimental data [35]. As
can be seen in Figure 5b, the magnetic saturation moment per C atom was 0.0235~0.0375 µB,
as listed in Table 2. In spite of supposing a very low amount of C atom in Bi2Se3, it is
also possible to measure the coercivity Hc (shown in Table 2). As the concentration of C
increases, the MSmol values increase obviously. The coercive field Hc varies from 112 Oe to
232 Oe, nearly invariant of the C concentration. It is noted that the remnant magnetization
Mr increases with the C concentration. It can be supposed that ferromagnetism is closely
related to C concentration, based on the rising tendency of MSmol and Mr. The experimental
magnetic moment of CxBi2Se3 is considerably smaller than the expected atomic moments
(shown in Table 1). This may be due to the uneven doping during the preparation process,
as only a small part of C enters the lattice. There are clear hysteresis loops at 15 K, which
indicates the existence of a ferromagnetic state in CxBi2Se3.
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Figure 5. (a) Magnetization versus applied magnetic field for CxBi2Se3 measured at 15 K. (b) The
magnetic hysteresis loops after subtracting the diamagnetic signals. There is obvious magnetic
hysteresis in all doped samples. Inset: FESEM images of C0.06Bi2Se3 crystal.

Table 2. Lists of remnant magnetization, saturation magnetization and coercivity for CxBi2Se3.

x
Saturation Magnetization

MSmol
Remanent

Magnetization
Mr [µB/f.u.]

Coercivity
Hc (Oe)

[µB/f.u.] [µB/Catom]

0.02 4.71 × 10−4 0.0235 7.85 × 10−5 227
0.04 1.37 × 10−3 0.034 2.1 × 10−4 112
0.06 2.25 × 10−3 0.0375 7.5 × 10−4 232

4. Conclusions

In the present work, the electrical and magnetic properties of the C-doped Bi2Se3
topologic insulator were discussed. The Fermi level moves up into the conduction band
in CBi and Cgap and the insulation properties of the Bi2Se3 system are damaged. In
CSe1 and CSe2, the substituted structures are half-metallic ferromagnetic. Similar to the
transition metals doping, the X atom doping Bi2Se3 can induce magnetic moments. It was
proved that C is the most effective dopant to induce the magnetism ground states. The
remnant magnetization Mr increases with the C concentration. The experiment confirmed
the existence of ferromagnetic state in CxBi2Se3. The introduction of magnetism by doping
with non-magnetic elements can promote the application of topological insulators in
spintronic devices.
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