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Abstract: The World Health Organization (WHO) has recognized obesity as one of the top ten threats
to human health. It is estimated that the number of obese and overweight people worldwide exceeds
the number of those who are undernourished. Obesity is not only a state of abnormally increased
adipose tissue in the body, but also of increased release of biologically active adipokines. Adipokines
released into the circulating blood, due to their specific receptors on the surface of target cells, act
as classic hormones affecting the metabolism of tissues and organs. What is more, adipokines and
cytokines may decrease the insulin sensitivity of tissues and induce inflammation and development
of chronic complications. Certainly, it can be stated that in an era of a global obesity pandemic,
adipokines may gain more and more importance as regards their use in the diagnostic evaluation and
treatment of diseases. An extensive search for materials on the role of white, brown and perivascular
fatty tissue and obesity-related metabolic and chronic complications was conducted online using
PubMed, the Cochrane database and Embase.
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1. Obesity: Definition

According to the World Health Organization (WHO), obesity is defined as “abnormal or excessive
fat accumulation that presents a risk to health” [1]. In contrast, the World Obesity Federation (WOF)
declared obesity itself as a chronic, relapsing progressive disease [2]. In the International Classification
of Diseases, Eleventh Revision (ICD-11) WHO, the stigmatizing ICD-10 diagnosis “obesity due to
excess calories” (E66.0) was not perpetuated [3]. Obesity is diagnosed when the percentage of body fat
is higher than 25% in men and 30% in women [1]. Obesity is also recognized when the body mass index
(BMI) is higher than 30 kg/m2 or when body mass exceeds 120% of the ideal body mass calculated
from Brock’s formula [4–6]. Nowadays, there are a variety of methods available to assess body mass.
However, the most precise methods are used for research purposes only. These include magnetic
resonance, electrical conductivity and electrical bioimpedance [7].

Int. J. Mol. Sci. 2020, 21, 3570; doi:10.3390/ijms21103570 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-2640-3791
https://orcid.org/0000-0002-0052-5654
https://orcid.org/0000-0002-4296-2203
http://dx.doi.org/10.3390/ijms21103570
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/10/3570?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 3570 2 of 18

2. Epidemiology of Obesity

Obesity became a global health problem as early as at the end of the 20th century. Nowadays,
a pandemic of obesity is recognized [8–10]. Availability of highly processed foods, which are very easy
to handle or do not require any handling and—most importantly—are very cheap, contributes greatly
to the continuous increase in the incidence of obesity. The data presented by authors from all over the
world are alarming [9–13]. Authors have shown that excess body weight impacts the dynamic increase
in the incidence of hypertension, type 2 diabetes (T2DM) and ischaemic heart disease, not only in adults
but also in adolescents [14–18]. The WHO estimates that there are more than 1.6 billion people living
all over the world with BMI > 25 kg/m2, including 522 million subjects with BMI beyond the obesity
threshold >30/kg/m2 [1]. The high prevalence of the above stated disorders can be considered not only
in terms of a medical problem, but also from economic and social perspectives. The estimated rate of
premature deaths in Europe caused directly by obesity is 10–13% [13,19–21]. In the United Kingdom
(UK) the problem of obesity affects 68% of adults. Approximately 5% of the UK health budget is spent
each year on the treatment of obesity complications. Globalization and universality, as well as the
continuously increasing popularity of so called “fast food”, results in the homogeneous prevalence of
obesity in Eastern and Western Europe and the United States of America, making obesity a global health
concern [22–24]. The increase in the percentage of people with abnormal body weight is no longer
only a problem of highly developed countries as it is also observed in developing countries [9,10].
This phenomenon can easily be associated with economic factors as highly processed food is cheap
and easily available. The nutritional value of food is very often a secondary issue, while the most
important criterion of food choice is the economic factor [25,26].

3. Adipose Tissue

Adipose tissue belongs to the class of connective tissues and is composed of adipocytes,
preadipocytes, fibroblasts, stromal cells and macrophages [15,27,28]. Functions of the adipose
tissue in the body include energy storage, thermal insulation, depreciation of internal organs and
immune and endocrine function [27–29]. Until the 1980s the endocrine function of adipose tissue was
unknown, and the fat tissue was regarded as an inactive store of energy accumulated in the form of
triglycerides [29,30]. In the body of an adult man there should be on average 15–20% of fat tissue, while
in the body of a woman the corresponding value ranges from 20 to 25%. Adipose tissue can be divided
into white, brown, beige/brite and pink adipose tissue [29,30]. From a physiological point of view, all
four types of adipose cells have endocrine properties. White adipocytes secrete a number of adipokines
that affect eating behaviour and metabolism. Brown/beige adipocytes also secrete hormones and
growth factors. Pink adipocytes, besides milk components, also secrete leptin [27,29,30].

White adipocytes form white adipose tissue (WAT), which stores energy. Adipocytes of white
adipose tissue are each filled with one large droplet of triglycerides, which makes the most of their
cellular volume [29,30]. Both cellular organelles and cytoplasm are located peripherally. The white fat
tissue is less vascularised and contains less extracellular matrix versus the brown fat tissue, which results
from different functions of the two types of fat tissue [30,31]. WAT is divided into two regional and
functional depots—vWAT and subcutaneous white adipose tissues (sWAT) [27–29]. vWAT is related to
insulin resistance, inflammation, dyslipidemia, obesity and T2DM caused by the pathogenic expansion
of WAT [18,27,28]. Conversely, sWAT is frequently associated with metabolic improvement and insulin
sensitivity, as it contains brown-like cells known as beige adipocytes or inducible brown adipocytes
that perform mitochondrial and thermogenic functions and burn fats [31–33]. The adipose organ has
prominent plasticity ability. White adipocytes can be differentiated into brown-like adipocytes in WAT
in a process called beiging [32–34]. Beige adipocytes are characterized by their multilocular lipid
droplet morphology, high number of mitochondria and the expression of brown adipocyte genes [32,33].
Brown adipocytes raised in WAT are also identified as brite. These brite (brown-in-white) adipocytes
are also known as beige, inducible brown or brown-like adipocytes [34,35]. The conversion between
adipocytes is presented in Figure 1. Yellow arrows: white-brown-white adipocytes transdifferentiation,
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white-to-pink transdifferentiation, pink-to-brown transdifferentiation (blue arrow: hypothesis which
needs to be proved). Modified Figure 4 of [34], and Figure 2 of [35].
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Brown adipocytes are organized to form brown adipose tissue (BAT). Brown adipocytes are
smaller than white adipocytes, and their cytoplasm contains several lipid droplets, a roundish nucleus
and numerous, large, generally spherical mitochondria with laminar cristae [30,31]. These cells are
also called multilocular adipocytes. Adipocytes of brown fat tissue are rich in uncoupling protein-1
(ucp-1), which is involved in accelerating heat production by uncoupling adenosine triphosphate
(ATP) synthesis [32,33]. Energy obtained from fatty acid oxidation, instead of being stored in ATP,
is dispersed in the form of heat. The brown fat tissue has an abundant extracellular matrix and
rich vascularisation. It is found in fewer anatomical locations than white adipose tissue [31,34,35].
Molecular, immunohistochemical and electron microscopy studies from the last decades have revealed
that the adipose organ is able to cooperate between WAT and BAT [29,31,33]. It has been found that
the main function of the adipose organ is the division of nutrient-originated energy into two distinct
pathways, i.e., WAT for metabolization and BAT for thermogenesis. In fact, during chronic exposure to
cold, white adipocytes of WAT are transformed into BAT. This process is called browning or WAT to
BAT conversion. On the other hand, during chronic positive energy balance, brown adipocytes of BAT
are transformed into WAT. The process is called whitening [29,35].

The fourth type of adipocytes was presented as pink adipocytes [34,36]. Epithelial gland cells
feature a characteristic abundance in cytoplasmic lipid drops, apical surface containing microvilli, big,
round and centralized nucleus, rough endoplasmic reticulum (RER), Golgi apparatus and milk-containing
granules [34,36]. Since the adipose organ is rendered pink during pregnancy and lactation, these epithelial
adenocytes are called pink adipocytes. Immunohistochemical experiments using bitransgenic mice revealed
that during murine pregnancy a so-called pinking, in other words, white-to-pink transdifferentiation or
adipoepithelial conversion, is observed [36]. Once the lactation is over, the murine mammary gland is
subject to rapid changes, which can be seen as early as within the first 24 h [29,34,36].
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4. Adipokines and Metabolic Disorders

The end of the 20th century saw increased interest in adipose tissue. This was caused by the
rapidly growing prevalence of obesity all over the world [1]. A major breakthrough in the perception
of adipose tissue as an endocrine organ was the discovery of the first adipokine, leptin [37,38]. Until
now, a lot of substances secreted by adipose tissue have been discovered and described, and their
metabolic effects and contribution to the pathogenesis of civilization-related diseases are being extensively
studied [39–42]. It is interesting that both obese and lipodystrophic patients show similar clinical
disorders: hypertriglyceridemia, insulin resistance and fatty liver [43–45]. The disorders lead to diabetes,
hypertension, polycystic ovary syndrome (PCOS), coronary artery disease (CAD) and cancers [45–50].

The observations conducted have lead to the conclusion that adipose tissue in physiologically
desirable quantities helps maintain body homeostasis. Substances secreted by adipose tissue control
energy, lipid and carbohydrate metabolism in the body and can modulate immune system activity [51–54].
In an abnormal situation, such as obesity, adipose tissue does not perform its haemostatic functions
anymore, which results in disregulation of the mechanisms involved in maintaining stability of the
internal environment and activation of processes underlying the development of numerous metabolic
disorders [54–56]. The disregulation pathway of adipokines potentially leading to metabolic disorders
and chronic complications in the course of obesity is presented in Figure 2. The cancers have not been
discussed, as this issue is beyond the subject covered in the manuscript.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 18 
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It has been proven that inter-subject variability in the potential of adipose tissue expansion in
order to store excess triglyceride quantities may affect metabolism disorders [57–59]. Hypertrophic
adipocytes show pro-inflammatory potential and promote insulin resistance. Cells of this type
synthesise high levels of pro-inflammatory cytokines, including interleukin 1 beta (IL1β), interleukin 6
(IL6) and tumour necrosis factor alpha (TNFα) [57,58]. Clinical studies of Pima Indians, who show high
prevalence of obesity and T2DM, have confirmed that hypertrophic adipocytes favour the development
of civilization-related diseases, including obesity-induced insulin resistance [60,61]. Small adipocytes
show anti-inflammtory potential and result in increased glucose uptake by insulin sensitive tissues [60].
Moreover, it has been discovered that it is the size of the adipocytes rather than their number that
correlates with the risk of nutrition-related disorders [61]. The imbalance between the energy intake
with food and energy expenditures in metabolic processes and physical activity results in increased
mass of adipose tissue. Adipose tissue in turn releases excessive amounts of adipokines that affect
metabolism. Adipose tissue and the hypothalamus cross-talk enables appropriate interpretation of
hunger and satiety signals [54,62]. There have been reports of considerable disorders concerning leptin
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and adiponectin functions. In obesity, hyperleptinemia can occur with accompanying leptin resistance
in hypothalamic centres [63]. Adiponectin is the only adipokine that shows a negative correlation
with visceral adipose tissue mass [59]. The anti-inflammatory effects of adiponectin include both the
suppression of the production of pro-inflammatory factors (TNFα, IL6, CRP, etc.) and modulation of
the expression of anti-inflammatory cytokines such as IL-10. On the other hand, pro-inflammatory
factors suppress adiponectin production and regulate its levels [59].

5. Obesity, Cytokines and Inflammation

Obesity is a disorder that favours the development of chronic inflammation. Excess adipose tissue
and hypertrophic adipocytes lead to high levels of fibrynogen, CRP [64] and other acute phase proteins
including (TNFα) [57], (IL6) [18,57] and interleukin 34 (IL34) [52,53] in the circulating blood. Increase
in plasma pro-inflammatory cytokines induces vascular endothelial response. There is enhanced
production of adhesion molecules, which, along with adipokine-induced chemokines, stimulate
macrophage recruitment into adipose tissue. The resultant local inflammation promotes local insulin
resistance [28,57]. A similar mechanism is seen peripherally, leading to systemic inflammation and
subsequently to systemic insulin resistance [49,57]. A particular role is played by C-reactive protein
(CRP), which is a sensitive and reproducible marker of inflammation [57,58,64]. It is synthesized in the
liver in response to the proinflammatory cytokines (TNFα), IL1β and (IL6) [57,60]. CRP levels rapidly
grow in the process of inflammation, which enables its use as a marker of inflammatory conditions.
Due to the short elimination half-life of CRP, which is approximately 6 h, its levels depend mainly on its
synthesis and rapidly fall after the causative factor disappears. Slightly increased CRP values, measured
using a highly sensitive method, high-sensitivity C-reactive protein (hsCRP), indicate an inflammatory
condition [64–66]. HsCRP is a key inflammatory marker associated with atherogenesis that is widely
available, reliably standardized and precise. Low, moderate and high CAD risk correlate with values
<1.0, from 1.0 to 3 and >3 mg/L, respectively, which has been observed in numerous population studies,
including prospective studies [65,66]. Del Cañizo Gómez et al. [66] showed in their studies of 376
T2DM patients without diabetic complications that 4 years later diabetic microangiopathy developed
in 95 patients (25.2%). Logistic regression analysis has shown that the main independent risk factors
for the development of microangiopathy in T2DM patients were hsCRP > 3 mg/L and hypertension.
The studies within the European Study on Cardiovascular Risk Prevention and Management in Usual
Daily Practice (EURIKA study, 2014 ClinicalTrials.gov Identifier: NCT00882336) have indicated that
CRP is actively involved in atherosclerosis [64]. The studies were conducted in 12 European countries
with the aim of identifying coronary artery disease risk factors in 7565 subjects with at least one
cardiovascular risk factor, including 5496 hypertensive subjects, 3288 obese subjects, 4372 dyslipidaemic
subjects and 2027 diabetic subjects. The results showed that CRP levels were positively correlated with
BMI and glycated haemoglobin and negatively correlated with high HDL cholesterol levels.

Over 10 years ago it was observed that adipose tissue expressed interleukin 34 (IL34) [52,53,67].
High levels of IL34 were detected in the serum of obese patients compared to controls [67]. In addition,
the authors observed a positive correlation between insulin-resistance-related metabolic parameters
including BMI, systolic BP, fasting plasma insulin, HOMA-IR, serum leptin, hsCRP, VAT and SAT and
higher levels of IL34 in VAT compared to SAT. Additionally, serum IL34 levels were shown to be high
in patients with T2DM compared to controls, and operating characteristic curve analysis showed that
IL-34 has more discriminatory power than CRP for the risk of diabetic complications [53].

Numerous data indicate that TNFα levels increase along with the severity of obesity [68–71].
In physiological conditions, exposure of fat tissue to growing levels of TNFα inhibits its further
increase [68]. However, increased body mass sustained for a long time causes resistance to TNFα,
which impairs the above-described mechanism and leads to further fat accumulation. Tumour necrosis
factor is produced by adipose tissue and contributes to the pathogenesis of hypertension, especially
obesity-associated hypertension. It has been shown that in a group of subjects with a BMI of 27
to 35 kg/m2 there is a statistically significant relationship between TNFα locus and obesity and
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hypertension loci [69]. Currently described potential TNFα paths are mainly associated with its indirect
effect on insulin resistance stimulation. TNFα enhances lipolysis, thereby increasing serum free fatty
acids and in this way favouring the development of insulin resistance [70]. Furthermore, via stimulation
and activation of vascular adhesion molecules, TNFα favours atherogenesis [68,69,71]. Another
mechanism involved in TNFα induction of insulin resistance in peripheral tissues is activation of nuclear
factor-κB (NF-κB) and stimulation of the transcription of cytokines and adhesion molecules [72,73].
What is more, TNFα acts as a chemoattractant for monocytes and neutrophils and activates them
similarly to macrophages. It enhances the cytotoxicity of monocytes and macrophages, at the same
time being one of the cytotoxicity mediators. TNFα is one of the cytokines that induces breakdown
of the blood-retinal barrier by opening tight junctions between retinal vascular endothelial cells and
between retinal pigment epithelial cells [55,72]. Apart from its involvement in inflammatory processes,
TNFα plays a significant role in neovascularisation and vasomotor response. TNFα secretion is
markedly induced by hypoxemia and abnormally modified proteins that upregulate TNFα mRNA
expression. Its numerous functions are mediated, among others, by its ability to induce synthesis
of other cytokines functionally associated with TNFα, extracellular matrix proteins, modulation of
monocyte and fibroblast chemotaxis, as well as impact on vascular adhesion molecule expression [73].

6. Obesity, Adipokines and Chronic Complications

Adipocytes and other cells of the adipose tissue are responsible for the production and secretion
of numerous biologically active autocrine, paracrine and endocrine substances, including leptin,
adiponectin, resistin, visfatin, chemerin, etc., which can lead to chronic complications.

Leptin, a 16-kDa adipocyte-derived adipokine, is the product of the obesity (Ob) gene. Leptin
activates macrophages/monocytes and natural killer cells and regulates the proliferation, phagocytosis,
chemotaxis and oxygen radical release of neutrophils [74]. Leptin is produced mainly in mature
cells of the WAT. Biosynthesis and secretion of leptin depends on the WAT mass and reflects the
status of energy stores [74–76]. The main factors that affect the blood levels of leptin include fat
tissue mass and adipocyte size. These measures show a positive correlation with leptin biosynthesis
in fat tissue and its level in circulating blood [18,28]. Leptin is currently considered as a satiety
hormone [76]. Leptin, released into circulating blood, is transported to the brain and bound to its
receptors in the hypothalamus, where it causes repression of genes encoding neuropeptide Y (NPY)
and induction of genes encoding proomiomelanocortin (POMC) and corticoliberin (CRH) [75,76].
This results in decreased appetite and reduced food intake with subsequent body fat reduction and
increased energy expenditure, which finally leads to body mass decrease [76]. According to some
authors, in the course of evolution, leptin appeared as a factor protecting against hunger or obesity at
times of availability of excess food. Leptin is assumed to exert pleiotropic effects, affecting numerous
metabolic paths [77]. Early studies of leptin levels and expression in human organs have shown that
serum leptin levels increase along with increased body fat mass, which supports the hypothesis that
white adipose tissue adipocytes are a rich source of this hormone [14,38]. Moreover, leptin has been
shown to enhance insulin sensitivity in peripheral tissues and increase glucose uptake and oxidation
in skeletal muscles [60]. Moreover, leptin affects thermogenesis through regulation of brown adipose
tissue-specific mitochondrial proteins. It is involved not only in lipid and glucose metabolism and
immune body response, but also in blood pressure control, blood coagulation and fertility [49,78,79].

Leptin is considered a potential marker of obesity-related complications [15,80,81]. Elevated
leptin levels correspond to atherosclerosis [15,80] and neuropathy [81] but not diabetic retino- and
nephropathy [81]. Csongrádi et al. [15] examined 154 obese individuals, including 98 suffering
from atherosclerotic concomitant conditions, 56 free of atherosclerotic comorbidities, and 62 healthy
controls. Adipokines were closely associated with markers of platelet hyperactivity, hypercoagulability,
hypofibrinolysis and intima-media thickness (IMT). Furthermore, leptin (p = 0.0005), adiponectin
(p = 0.019) and IL6 (p = 0.001) were independent predictors of IMT. The authors suggest that in
obese subjects altered adipokine levels play a key role in common carotid atherosclerosis. In turn,
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Jung et al. [81] showed in their studies that serum leptin levels were not significantly different in
patients with diabetic retino- and nephropathy, but were significantly higher in T2DM patients with
neuropathy versus T2DM patients without neuropathy.

Adiponectin is a 28 KDa protein with a similar structure to TNFα, collagen VIII and IV and complement
factor C1q. In vitro studies have shown that adiponectin has antiatherogenic effects through inhibition of
monocyte adhesion to endothelial cells and macrophage transformation into foam cells [82,83]. Moreover,
adiponectin exerts its antiatherogenic effects via endothelial cell activation through decreased production
of adhesion molecules and suppression of TNFα and transcription factor NFκB [84]. Adiponectin in blood
vessel walls inhibits monocyte adhesion to endothelial cells as a result of downregulated expression of
adhesion proteins and inhibits macrophage transformation into foam cells. Moreover, it inhibits smooth
muscle cell proliferation, enhances nitrogen oxide synthesis and stimulates angiogenesis [15,59]. Numerous
studies present adiponectin as an anti-inflammatory cytokine [83–85]. The anti-inflammatory effects
of adiponectin are party due to the altered activity of TNFα. In vitro studies have shown that TNFα
downregulates expression of the adiponectin gene via suppression of adiponectin-induced nuclear factor
NFκB [84]. Studies in humans indicate reduced secretion of TNFα in adipose tissue in subjects with
high adiponectin mRNA, whereas growing insulin resistance and increased body fat mass upregulate
the expression of TNFα resulting in reduced adiponectin levels [83]. Adiponectin was also shown to
directly increase IL10 production by macrophages and decrease production of proinflammatory cytokines
TNFα and IL6 [85]. Adiponectin inhibits expression of adhesion molecules in vascular endothelial cells
and production of cytokines in macrophages, thereby suppressing inflammatory processes occurring in
the early phases of atherosclerosis and microangiopathy [86,87]. Increased serum adiponectin levels are
believed to occur in response to vascular endothelial injury [88]. Adiponectin, reduced levels of which
are associated with obesity, is also found in lower levels with incident hypertension [18]. On the other
hand, authors have reported increased serum and urinary adiponectin levels in patients with diabetic
nephropathy [87,89]. An association between adiponectin levels and degree of diabetic retinopathy has
also been shown in patients with T2DM [81].

Resistin is an adipocytokine involved in the development of insulin resistance, which is reflected
in the molecule’s name [89,90]. Resistin is a 12 kDa polypeptide that belongs to a unique family of
cysteine-rich resistin-like molecules [89]. The main sources of resistin synthesis are peripheral blood
inflammatory cells, monocytes and macrophages. The presence of resistin has also been shown in bone
marrow, lungs, placenta, pancreatic islet cells and adipose tissue cells [90]. Some authors detected
resistin in these cells as well as in inflammatory sites and peripheral blood [91–93]. Reilly et al. [91]
investigated a possible association between resistin, inflammation, metabolic factors and atherosclerosis
in healthy subjects and T2DM patients. Both groups showed increased resistin levels in females versus
males and in T2DM patients versus healthy subjects. Resistin levels correlated with inflammatory
markers, especially TNF-R2, in both studied populations. In patients with metabolic syndrome,
resistin was a predictor of coronary artery atherosclerosis [93]. A study of 238 patients with T2DM
demonstrated that serum levels of resistin were associated with the stage of diabetic retinopathy,
nephropathy and neuropathy, regardless of age and gender, as well as BMI [94].

Visfatin is a 52 kDa protein product of the pancreatic beta cell growth factor (PEBF) gene,
synthesised mostly by adipocytes and macrophages of adipose tissue and to a lesser extent by
hepatocytes and neutrophils [95,96]. This adipokine is involved in the process of differentiation of
preadipocytes to adipocytes and acts as a pre-beta lymphocyte colony stimulating factor. Moreover, it
stimulates synthesis and storage of triacylglycerols in adipose tissue. Its production is regulated by
numerous factors, with the most important role being played by TNFα [96]. It exerts its biological
effects via the insulin receptor. It shows vasodilating effects (stimulates nitric oxide synthesis) but
also pro-inflammatory actions by inducing the expression of adhesive molecules such as vascular
cell adhesion molecule 1 (VCAM-1) and pro-inflammatory cytokines such as TNFα, IL1β and
IL6 [97]. Moreover, visfatin stimulates endothelial cell proliferation, mediated by endothelial cell
factor production, as well as smooth muscle cell growth [97,98]. However, studies on its role in the
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development of insulin resistance provided inconsistent results. In obese patients, increased visfatin
levels, similarly to increased adiponectin levels, may play a protective role [99,100]. In a study by
Kang et al, [100] on diabetic db/db mice it was shown that visfatin might have a protective effect in
diabetic nephropathy without the hypoglycemic effect. In another study it was shown that, due to
its relatively low levels, its effect on carbohydrate metabolism is negligible and glucose metabolism
regulation ineffective [100]. On the other hand, there is a body of evidence to show adverse visfatin
effects on insulin resistance [98,101]. Visfatin has pro-inflammatory properties mediated by leukocyte
activation and stimulation of TNFα, IL6 and IL1β release, which impairs insulin signalling pathways.
Studies by Chen et al. [102] have shown that visfatin is an independent risk factor for T2DM (OR 5.534;
95% CI 1.605–19.079; p = 0.007), and the risk of T2DM increases in each subsequent quartile. Increased
visfatin levels in subjects with obesity/overweight, T2DM, metabolic syndrome and cardiovascular
diseases have also been confirmed in a meta-analysis by Chang et al. [103].

Omentin and chemerin are adipokines that may modulate insulin action. They are also associated
with obesity-induced insulin resistance. They are potential candidates to play a role in the pathogenesis of
obesity and obesity-related diseases, including T2DM with or without vascular complications [104,105].
Omentin is a protein discovered in VAT but is found at lower concentrations in subcutaneous adipose
tissue as well as in other tissues [106]. There are two omentin isoforms: omentin-1 and omentin-2. The first
one is found first of all in circulating blood. Decreased levels of omentin-1 were detected in patients
with impaired glucose tolerance and newly diagnosed, untreated T2DM [107]. Its levels are decreased in
obese and overweight subjects and decrease when obese subjects lose weight [108,109]. Omentin inhibits
osteoblast differentiation and vascular smooth muscle cell calcification. Decreased omentin levels in
patients with visceral obesity have been suggested to cause the progression of artery calcification [107].
In a study by El -Messallamy et al. [108], decreased plasma levels of omentin-1 were detected in T2DM
patients with CAD. Moreover, omentin levels were negatively correlated with obesity, hyperglycaemia,
insulin resistance, inflammation and plasma chemerin levels. This reduction in omentin levels may result
in decreased insulin-dependent glucose uptake in visceral and subcutaneous adipose tissues and other
insulin-dependent tissues. IL-6 turned out to be an independent factor affecting omentin-1 levels [109].

Chemerin, similarly to omentin, potentiates insulin-dependent glucose uptake by adipocytes [106].
It is found in considerable amounts in adipose tissue, liver and immune cells and modulates the
functions of these cells. Initially, it was recognized as a chemotactic factor for immune cells, including
macrophages and dendritic cells [108,109]. Chemerin is also believed to be a link between obesity and
inflammation. Its levels in humans are associated with numerous key elements of metabolic syndrome:
BMI, triglycerides and arterial hypertension. Its levels are particularly high in very obese subjects, severe
obesity [106,108,109]. It is secreted as an inactive precursor activated by serine proteases associated
with cascades of coagulation, fibrinolysis and inflammation. In a study by El-Mesallamy et al. [108],
chimerin levels were significantly increased in T2DM patients with concomitant obesity. Apart from this
positive correlation with obesity, a positive correlation was seen with CRP and a negative correlation
with HDL cholesterol and omentin.

7. Obesity, Adipokines and Psoriasis

Psoriasis is a chronic inflammatory multisystemic disease whose complex pathogenesis involves
genetic, immune and environmental factors [88,110]. In the most up to date studies it was shown
that there is a relation between mastocytes, T cells, neutrophils, inflammatory dendritic cells and
hyperproliferative keratinocytes that lead to psoriatic lesions [111]. From the clinical point of view,
the lesions are characterized by clear erythematous and scaly plaques, mainly located on the scalp,
in the lumbosacral area, on the elbows, skin folds and knees [52]. Fernández-Armenteros et al. [112]
conducted a comprehensive analysis of the relation between adipokines and psoriasis, highlighting
that these bioactive products are directly associated with psoriasis and its co-morbidities, such as
insulin-resistance, obesity, T2DM and cardiovascular diseases [112]. Adipocytes and inflammatory
factors can contribute to dysregulation of the immune system and inflammation in psoriasis [113,114].
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Bavoso et al. [113] detected significantly higher levels of leptin and lower adiponectin in patients with
metabolic syndrome and psoriasis compared to the controls with metabolic syndrome.

There is strong evidence to suggest that obesity is an independent risk factor for psoriasis [88].
Cytokines produced in the skin can in a direct way cause inflammation in fatty tissue, which results in
obesity and vice versa—inflammatory mechanisms related to metabolic disturbances in the course of
obesity can also directly affect inflammatory processes in psoriatic skin lesions. Several studies showed
that white fatty tissue is the key place where pro-inflammatory adipokines such as leptin, adiponectin
and resistin and standard cytokines such as IL6 and TNFα are formed [113,114]. Levels of leptin and
resistin were higher in patients with psoriasis than in healthy people, and it strongly correlated with disease
severity [113]. Furthermore, higher concentrations of TNFα and IL6 in the serum of obese patients with
psoriasis are believed to be significant markers of psoriasis [114]. The results suggest that obesity, through
pro-inflammatory pathways, is a factor predisposing patients to psoriasis and that obesity aggravates the
psoriatic process. In accordance with the above, it has been pointed out that adipokines can be used as
biomarkers to identify the stage of the disease and the risk associated with co-morbidities [113].

8. Obesity, Adipokines and Diabetic Foot

The WHO defines diabetic foot syndrome as “ulceration of the foot (distally from the ankle and
including the ankle) associated with neuropathy and different grades of ischemia and infection” [1]. Despite
the efforts of numerous research teams, the pathogenesis of diabetic foot syndrome has not yet been
fully elucidated. However, it is known now that diabetic foot is also associated with diabetic neuropathy,
which can develop in the course of type 1 diabetes mellitus (T1DM) and T2DM [115]. The diverse
clinical presentation and various onset times contribute to the fact that diabetic neuropathy is not always
diagnosed at an early stage [116]. The most severe complication of diabetic neuropathy is the occurrence
of slowly-healing ulcerations of the feet, which significantly deteriorate the quality of life of diabetic
patients and consequently become a common reason for leg amputation and disability. The factors that
increase the risk of diabetic foot syndrome with concomitant neuropathy mainly include ischemia caused
by atheromatous lesions within the lower extremity arteries [117,118]. They often affect very small vessels
of 2–4 mm in diameter, in which even a small narrowing results in severe limitation of blood flow and are
usually multi-layer. An ischaemic foot is red but turns pale once it is lifted. It has shiny skin, no hair and its
nails are thickened and deformed. On physical examination, there is usually no pulse palpable on the dorsal
artery of the foot and the posterior tibial artery. The consequence of chronic ischaemia in the extremities
is long-lasting wound healing and ineffective antibiotic therapy since antibiotics cannot penetrate the
infected tissues [119,120]. Other significant risk factors for diabetic foot include immune disturbances and
decreased immunity in diabetic patients. Consequently, foot ulcerations very quickly become infected by
saprophytic and pathogenic bacteria, causing gangrene and necrosis [121–123]. The status of the immune
system can be significant in several stages of the development of chronic wounds. Immune activation
can precede ulceration in diabetic foot in the same way in which it precedes manifestation of T2DM and
ischemic heart disease. Since pro- and anti-inflammatory processes are key in various stages of the wound
healing process, it is possible that disturbances in the immune system disrupt homeostasis and wound
healing and lead to characteristic chronic, non-healing wounds typical for diabetic foot syndrome. Recent
studies showed lower levels of plasma adiponectin in patients with diabetic foot [124]. Moreover, the same
authors observed a significant negative correlation between the level of plasma adiponectin and some
cardiovascular risk factors, such as hypertension and dyslipidemia [123,124]. They analysed the volume of
adipocytes and its relation to TNFα, IL6, adiponectin and hs-CRP levels. They showed that patients with
diabetes and diabetic foot ulcerations at various stages had higher levels of IL6, hsCRP and TNFα and
lower levels of plasma adiponectin compared to diabetic patients without foot ulcerations, regardless of
coincident infections [124]. Other researchers detected a lower level of serum omentin in patients with
T2DM and sensomotor polyneuropathy, irrespective of the applied risk factors of polyneuropathy [123,124].
The participation of selected pro- and anti-inflammatory adipokines in metabolic disorders and chronic
complications in the course of obesity is presented Table 1.
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Table 1. Participation of selected pro- and anti-inflammatory adipokines in metabolic disorders and
chronic complications in the course of obesity.

Authors Biochemical Factors Concentration of Pro-Inflammatory
and Anti-Inflammatory adipokines Complications

Chandra et al. [18]
leptin

adiponectin
IL6

higher concentration of leptin and
lower concentration of adiponectin hypertension

Jachimowicz-Duda et al. [52] IL34 higher concentration of IL34 lipid disorders,
macroangiopathy, T2DM

Zorena et al. [53] IL34 higher concentration of IL34
microangiophaty,
macroangiopathy,

T2DM

Malin et al. [54] TNFα higher concentration of TNFα insulin resistance

Daniele et al. [57]

adiponectin
TNFα,

IL6,
MCP1

osteopontin, fractalkine

higher concentration of adiponectin,
TNFα, IL6, MCP1, osteopontin

and fractalkine

hyperglycemia, insulin
resistance, T2DM

Chang, et al. [67] IL34 higher concentration of IL34
atherosclerosis,

insulin resistance,
blood pressure

Shivanna et al. [71] TNFα higher concentration of TNFα
blood pressure, insulin

resistance,
atherosclerosis

Elfassy et al. [78] leptin increased concentration of leptin reduced fertility in
obese men

Bou Nemer et al. [79] leptin

increased concentration of leptin in
follicular fluid of in obese women
undergoing in vitro fertilization
compared to follicular fluid from

nonobese (normal weight and
overweight) women

reduced fertility in
obese women

Jung et al. [81] leptin increased concentration of leptin neuropathy,
T2DM

Alnaggar et al. [87] adiponectin increased serum and urinary
of adiponectin

T2DM,
nephropathy, hypertension

Reilly et al. [91] resistin increased concentration of resistin
inflammation, metabolic

factors
and atherosclerosis

Osawa et al. [94] resistin increased concentration of resistin
diabetic retinopathy,

nephropathy
and neuropathy

El-Mesallamy et al. [108] chemerin
omentin-1

increased concentration of serum
chemerin decreased level

of serum omentin-1

T2DM, ischaemic
heart disease

Zhuang et al. [109] chemerin
increased of chemerin concentration in
healthy subjects but with first-degree

relatives (FDRs) of T2DM patients
insulin resistance

Coimbra et al. [110]

TNFα, IL6,
leptin

resistin
adiponectin

higher concentration of leptin, resistin,
TNFα, IL6 and significantly lower

concentration of adiponectin

psoriasis,
overweight/obesity

Bavoso et al. [113] leptin
adiponectin

increased concentration of lepton and
lower of adiponectin

disregulation of the
immune system,

inflammation,
psoriasis,
obesity

Tuttolomondo et al. [122] adiponectin
IL6

lower concentration of adiponectin and
higher IL6

T2DM
diabetic foot

Herder et al. [123] omentin lower concentration of omentin diabetic sensorimotor
polyneuropathy

Ahmad et al. [124]
adiponectin

IL6
TNFα

lower concentration of adiponectin
higher concentration of IL6

higher TNFα

T2DM
diabetic foot
retinopathy

nephropathy
neuropathy

Abbreviations: T2DM—type 2 diabetes mellitus, TNFα—tumor necrosis factor alpha; IL6—interleukin 6;
IL34—interleukin 34.
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9. Conclusions

Adipose tissue, the excess of which is found in obesity, is a source of numerous hormonally active
substances, including adipokines. Adipokines, released into circulating blood, due to their specific
receptors on the surface of target cells, act as classic hormones affecting the metabolism of tissues
and organs. What is more, adipokines may decrease the insulin sensitivity of tissues and induce
inflammation and the development of atherosclerosis, diabetes and psoriasis, as well as diabetic foot.
Considering the complexity of chronic complications, it seems probable that it will be necessary to
apply combined treatment, with pathways directed at various types of cells in various stages of the
disease process. We hope that in the near future there will be new therapies proposed for patients
with obesity.
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WOF World Obesity Federation
ICD-11 International Classification of Diseases, Eleventh Revision
WAT White adipose tissue
BAT Brown adipose tissue
BMI Body mass index
VAI Visceral adiposity index
T2DM Type 2 diabetes mellitus
T1DM Type 1 diabetes mellitus
CAD Coronary artery disease
IDF International Diabetes Federation
PCOS Polycystic ovary syndrome
CRP C-reactive protein
hsCRP high sensitivity C-reactive protein
L-LR Leptin–leptin receptor
IL1β Interleukin 1β
TNFα Tumour necrosis factor alpha
IL6 Interleukin 6
IL34 Interleukin 34
NF-Kb Nuclear factor-κB
UCP-1 Uncoupling protein-1
PDR Proliferative diabetic retinopathy
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