Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Dataset of asymmetric intramolecular [4+3] cycloaddition reactions catalyzed by NHC-gold(I) complexes

Ruoyu Ma^a, Jianbo Yang^a, Steven Kelley^b, Benjamin W. Gung^{a,*}

^a Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
^b Elmer O. Schlemper X-ray Diffraction Center, University of Missouri-Columbia, Columbia, Mo 65211, USA

ARTICLE INFO

Article history: Received 14 July 2019 Received in revised form 30 July 2019 Accepted 9 August 2019 Available online 21 August 2019

Keywords: NHC-gold(I) complexes Cycloaddition Enantioselective DFT calculation

ABSTRACT

The shared data is the unpublished portion of the experimental section for the article with the title "NHC–Au(I) catalyzed enantioselective intramolecular [4 + 3] cycloaddition of furan propargyl esters".[1] The preparation of the intermediates for chiral NHC-gold(I) complexes and the furan propargyl ester substrates are included in this article. The ¹H NMR and ¹³C NMR spectra of the gold complexes **17a-19c** and the X-ray crystal data of **17a**, **18a** and cycloaddition product **24** are also provided in this article or in Mendeley Data. Finally, the chiral HPLC spectra used to determine enantiomeric excess and Cartesian coordinates of the optimized structure of **25** and **26** calculated by DFT calculation are also presented in the article.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

1. Data

The preparation and experimental data of the chiral sulfinamide intermediates for the gold complexes **17a-19c** and the furan propargyl esters **23** and **28** (Fig. 1) are presented in this article. NMR

DOI of original article: https://doi.org/10.1016/j.jorganchem.2019.07.016.

* Corresponding author.

E-mail address: gungbw@miamioh.edu (B.W. Gung).

https://doi.org/10.1016/j.dib.2019.104409

^{2352-3409/© 2019} The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject	Organometallic chemistry, Asymmetric catalysis
Specific subject area	Asymmetric gold(I) catalysis, N-Heterocyclic carbene ligand, [4 + 3] cycloaddition, furan propargyl
	ester
Type of data	Tables of detailed X-ray crystal data and Cartesian coordinates
	Text files of experimental and NMR data
	Figures of compound structures, X-ray crystal packing pattern and chiral HPLC spectra
How data were	NMR spectra were recorded on Bruker AV-500 and AV-300 instruments and calibrated by using residual undeutorated solvent as an internal reference (CUCL $k_{\rm ext} = 7.26 {}^{(1)}$). 77.16 ppm (13 C))
acquireu	Single crystal X-ray diffraction (SCYRD) for 18a and 19a were collected on a Bruker SMART.
	diffractometer equipped with an Apex II area detector using M_0 -Kg radiation from a fine-focus
	sealed source tube with a focusing collimator (Bruker Nano, Inc., Madison, WI), SCXRD data for 24
	was collected on a Bruker D8 Venture diffractometer equipped with a Photon 100 CMOS area
	detector using Mo-Ka radiation from a microfocus source (Bruker Nano).
	Enantiomeric excess was determined by chiral HPLC.
Data format	Raw (Structures in ChemDraw)
	Analyzed (NMR data with assigned peaks, X-ray crystallography data, Cartesian coordinates of
Demonstrate from data	molecular structures, reaction conditions)
Parameters for data	All NMK spectra were collected with CDCl ₃ as solvent in 298K.
conection	phi axes with frame widths of 0.5° Data collection unit cell determination data reduction
	absorption correction, and scaling were performed using the Bruker Apex3 software suite: Apex3.
	AXScale and SAINT, version 2017.3-0; Bruker AXS Inc.: Madison, WI, 2017.
	Enantiomeric excess was determined by Lux \otimes 5 µm Amylose-1 column (i-PrOH/hexane = 1/9,
	0.5ml/min, 220nm)
Description of data	All NMR samples were dissolved in CDCl ₃ before running. All chiral HPLC samples were dissolved in
collection	a mixed solvent of i-PrOH/hexane = $1/9$.
Data source location	Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of
Data accossibility	All data are either within the article or in public repectory (NMP spectra)
Data accessibility	Renository name: Mendeley Data
	https://data.mendeley.com/datasets/zh4gp5x682/4
Related research article	Author's name: Ruoyu Ma, Jianbo Yang, Steven Kelley, Benjamin W. Gung
	Title: NHC-Au(I) catalyzed enantioselective intramolecular [4 + 3] cycloaddition of furan propargyl
	esters
	Journal: Journal of Organometallic Chemistry,
	Year: 2019,
	Volume: 898, DOI: https://doi.org/10.1016/j.jorganchom.2010.07.016
	DOI. https://doi.org/10.1010/J.Jorgancheni.2019.07.010

Value of the data

- The data in this article will be informative to synthesis community.
- The data in this article will be beneficial to the researches who do asymmetric gold catalysis and [4 + 3] cycloaddition reactions.
- The data in this article can be used in future design of the asymmetric gold catalysts and substrates.
- The crystal structure of gold complex **17a** and **18a** are useful for the development of chiral NHC–Au(I) catalysts. The chiral HPLC data from the [4 + 3] cycloaddition reaction are useful for future development of these types of reactions.

spectra of the gold complex **17a-19c** (Fig. 1) and cycloaddition product **24** and **29** (Fig. 1) are deposited in the repository of Mendeley Data (https://data.mendeley.com/datasets/zh4gp5x682/4). In each ¹³C NMR spectra of the gold complexes, a characteristic peak of the carbene carbon was observed with chemical shift at around 170 ppm.

The crystal structure of the racemic cycloaddition product **24** is shown in Fig. 2 (page 33) with four pairs of enantiomers packing in a unit cell. The ester carbonyl group and the dihydrofuran double bond have a *syn*-relationship. What also presented in article are the detailed X-ray crystal data including the bond length and bond angle of gold complex **17a**, **18a** and the cycloaddition product **24** (Tables 1–9)

Fig. 1. Structures of gold complexes 17a-19c (TMS = Me₃Si-; TES = Et₃Si-; TPS = Pr₃Si-), furan propargyl esters 23, 28, cycloaddition products 24, 29 and DFT calculation models 25 and 26.

Fig. 2. Crystal structure of the racemic cycloaddition product 24 with four pairs of enantiomers packing in a unit cell. The ester carbonyl group and the dihydrofuran double bond have a syn-relationship.

Table 1				
Crystal data and	structure	refinement	for	17a

Identification code	s1	
Empirical formula	C43H60 Au Cl N2 Si4	
Formula weight	949.70	
Temperature	173 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 13.5547 (11) Å	$\alpha = 90^{\circ}.$
	b = 9.6437(8) Å	$\beta = 101.828 \ (5)^{\circ}.$
	c = 18.5089 (16) Å	$\gamma = 90^{\circ}$.
Volume	2368.1 (3) Å ³	
Z	2	
Density (calculated)	1.332 Mg/m ³	
Absorption coefficient	7.540 mm^{-1}	
F (000)	968	
Crystal size	$0.73 \times 0.04 \times 0.02 \text{ mm}^3$	
Theta range for data collection	2.439-74.156°.	
Index ranges	$-16 \le h <= 16, -11 \le k <= 11, -23 \le l <= 23$	
Reflections collected	85739	
Independent reflections	9485 [R (int) = 0.0579]	
Completeness to theta $= 67.679^{\circ}$	100.0%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7538 and 0.4706	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	9485/1/474	
Goodness-of-fit on F ²	1.046	
Final R indices [I > 2sigma(I)]	R1 = 0.0282, $wR2 = 0.0710$	
R indices (all data)	R1 = 0.0303, $wR2 = 0.0720$	
Absolute structure parameter	0.039 (3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	3.098 and -0.641 e.Å ⁻³	

and chiral HPLC spectra of cycloaddition products with racemic mixture (Fig. 3, page 39) and 75% enantiomeric excess (Fig. 4, page 40). Finally the Cartesian coordinates of the optimized structures of **25** and **26** calculated by density functional theory are presented in this article.

2. Experimental design, materials, and methods

All reactions were carried out under an inert nitrogen atmosphere with anhydrous solvents. Reagents were purchased and used without further purification unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on Merck silica gel plates (60F-254; 0.25 mm) by using UV light as the visualizing agent and an acidic mixture of anisaldehyde, phosphomolybdic acid, ceric ammonium molybdate, or basic aqueous potassium permanganate (KMnO₄) and heat as developing agents. Merck silica gel (60, particle size 0.043–0.063 mm) was used for flash column chromatography. NMR spectra were recorded on Bruker Av-500 and Av-300 instruments and calibrated by using residual undeuterated solvent as an internal reference (CHCl₃: $\delta = 7.26$ (¹H), 77.16 ppm (¹³C)). Coupling constant in hertz (Hz). Single crystal X-ray diffraction (SCXRD) for **18a** and **19a** were collected on a Bruker SMART diffractometer equipped with an Apex II area detector using Mo-K α radiation from a fine-focus sealed source tube with a focusing collimator (Bruker Nano, Inc., Madison, WI). SCXRD data for 24 was collected on a Bruker D8 Venture diffractometer equipped with a Photon 100 CMOS area detector using Mo-Ka radiation from a microfocus source (Bruker Nano). For all crystals, hemispheres of data were collected using strategies of scans about the omega and phi axes with frame widths of 0.5°. Data collection, unit cell determination, data reduction, absorption correction, and scaling were performed using the Bruker Apex3 software suite: Apex3, AXScale and

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for **17a**. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U (eq)
Au (1)	944 (1)	2513 (1)	1269 (1)	28 (1)
Cl (1)	609(1)	284 (2)	1566 (1)	40(1)
Si(4)	2618 (1)	6068 (2)	3474 (1)	35 (1)
Si(3)	4632 (1)	1180 (2)	2805 (1)	36(1)
C (1)	1152 (4)	4477 (6)	1005 (3)	28 (1)
C (32)	3869 (5)	4890 (7)	1673 (4)	31 (1)
C (37)	3384 (5)	5655 (7)	2142 (3)	33 (1)
C (36)	3252 (5)	5104 (7)	2819 (3)	34(1)
C (34)	4129 (5)	2969 (6)	2554 (3)	33 (1)
C (33)	4218 (5)	3565 (7)	1884 (3)	34 (1)
C (35)	3621 (5)	3761 (7)	3004 (3)	34(1)
C (38)	6015 (6)	1167 (9)	2814 (5)	54 (2)
C (40)	3984 (6)	-68 (8)	2083 (4)	42 (2)
C (42)	1459 (6)	5127 (8)	3566 (4)	45 (2)
C (39)	4401 (7)	721 (8)	3738 (4)	49 (2)
C (41)	3490 (6)	6093 (10)	4402 (4)	51 (2)
N (1)	1776 (4)	5011 (5)	602 (3)	27 (1)
C (2)	1619 (5)	6426 (6)	512 (3)	31 (1)
N (2)	617 (4)	5561 (5)	1185 (3)	26(1)
C (3)	899 (5)	6779 (6)	877 (3)	30(1)
C (26)	3435 (5)	5058 (6)	279 (3)	30(1)
C (31)	3683 (5)	5521 (7)	-369 (4)	36(1)
C (30)	4523 (5)	6357 (8)	-352 (4)	42 (2)
C (27)	4039 (4)	5458 (6)	956 (3)	31 (1)
C (24)	2494 (4)	4190 (6)	272 (3)	29(1)
C (28)	4862 (5)	6328 (7)	961 (4)	38 (1)
C (29)	5099 (5)	6784 (8)	306 (4)	44 (2)
C (25)	1948 (5)	3677 (7)	-483 (4)	38(1)
Si(2)	-3114 (1)	5782 (2)	3849 (1)	33 (1)
Si(1)	-596 (2)	1099 (2)	3596 (1)	38 (1)
C (14)	-1297 (4)	2711 (8)	3192 (3)	33 (1)
C (6)	-1197 (4)	4985 (6)	1036 (3)	26(1)
C (10)	-2921 (5)	4190 (7)	827 (3)	32 (1)
C (17)	-2469 (4)	4942 (7)	2535 (3)	30(1)
C (15)	-1828 (5)	3551 (7)	3595 (3)	32 (1)
C (13)	-1354 (5)	3031 (7)	2449 (3)	32 (1)
C (16)	-2418 (5)	4685 (7)	3280 (3)	32 (1)
C (9)	-3031 (5)	4412 (7)	75 (3)	33 (1)
C (5)	-360 (5)	6716 (6)	1998 (3)	31 (1)
C (11)	-2012 (4)	4457 (6)	1315 (3)	29(1)
C (7)	-1308 (5)	5167 (6)	283 (3)	29(1)
C (4)	-226 (4)	5406 (6)	1571 (3)	28 (1)
C (12)	-1929 (4)	4144 (6)	2112 (3)	29(1)
C (8)	-2215 (5)	4888 (7)	-200 (3)	33 (1)
C (19)	772 (6)	1265 (8)	3593 (4)	46 (2)
C (23)	-4082 (5)	6833 (8)	3232 (4)	44 (2)
C (20)	-775 (8)	861 (9)	4564 (4)	58 (2)
C (21)	-2204 (7)	6966 (9)	4445 (4)	57 (2)
C (18)	-1122 (7)	-418 (8)	3017 (5)	52 (2)
C (22)	-3729 (7)	4613 (9)	4433 (5)	54 (2)
C (43)	2312 (6)	7892 (7)	3136 (5)	45 (2)

SAINT, version 2017.3–0; Bruker AXS Inc.: Madison, WI, 2017. Enantiomeric excess was determined by HPLC (Lux® 5 µm Amylose-1, i-PrOH/hexane = 1/9, 0.5ml/min, 220nm).

2.1. Preparation of chiral sulfinamide intermediates

The chiral sulfinamide intermediates were synthesized according to previous report.[2].

 Table 3

 Bond lengths [Å] and angles [°] for 17a.

Au(1) - Cl(1)	2 2876 (15)
$A_{11}(1) C(1)$	1,000 (6)
$\operatorname{Au}(1) = \operatorname{C}(1)$	1.990 (0)
$S_{1}(4) - C(36)$	1.871 (7)
Si(4)–C (42)	1.851 (8)
Si(4)–C (41)	1.874 (7)
Si(4) - C(43)	1 885 (7)
$S_{1}(1) = C_{1}(1)$	1.005 (7)
SI(5) - C(54)	1.070(0)
Si(3)–C (38)	1.871 (8)
Si(3)–C (40)	1.877 (7)
Si(3)-C (39)	1.871 (7)
C(1) = N(1)	1 340 (8)
C(1) N(2)	1.340 (0)
C(1) - N(2)	1.352 (8)
C (32)–C (37)	1.401 (9)
C (32)–C (33)	1.391 (9)
C(32) - C(27)	1,495 (9)
C(27) = U(27)	0.0500
$C(37) = \Pi(37)$	0.9300
C(37) - C(36)	1.407 (9)
C (36)–C (35)	1.406 (9)
C (34)–C (33)	1.394 (9)
C(34) - C(35)	1 409 (9)
C(32) II (32)	0.0500
C(33) - H(33)	0.9500
С (35)—Н (35)	0.9500
C (38)-H (38A)	0.9800
C (38)-H (38B)	0.9800
C(38) - H(38C)	0.0800
C(30) - H(300)	0.5800
C (40)-H (40A)	0.9800
C (40)-H (40B)	0.9800
C (40)-H (40C)	0.9800
C(42)-H(42A)	0 9800
$C(A2) \sqcup (A2P)$	0.0200
C(42)-II (42B)	0.9800
С (42)-Н (42С)	0.9800
C (39)-H (39A)	0.9800
C (39)-H (39B)	0.9800
C(39)-H(39C)	0.9800
$C(41) \amalg(410)$	0.0000
C (41)-H (41A)	0.9800
С (41)-Н (41В)	0.9800
C (41)-H (41C)	0.9800
N(1) - C(2)	1 387 (8)
N(1) C(2)	1.307 (0)
N(1) = C(24)	1.460(7)
C (2)-H (2)	0.9500
C (2)–C (3)	1.339 (9)
N(2) - C(3)	1.394 (7)
N(2) - C(4)	1 473 (7)
(2) C(4)	0.0500
$C(3) = \Pi(3)$	0.9300
C (26)–C (31)	1.384 (9)
C (26)–C (27)	1.404 (9)
C (26)–C (24)	1.523 (8)
C(31) = H(31)	0.9500
C(31) C(30)	1 201 (10)
C(31) - C(30)	1.391(10)
C (30)–H (30)	0.9500
C (30)–C (29)	1.368 (11)
C(27) - C(28)	1,395 (9)
C(24) - H(24)	1 0000
C(24) C(25)	1 532 (9)
(24) - (23)	1.525 (8)
C (28)-H (28)	0.9500
C (28)–C (29)	1.388 (10)
C(29) - H(29)	0.9500
$C(25) \parallel (25A)$	0.0800
$C(2J)^{-11}(ZJR)$	0.5000
C (25)-H (25B)	0.9800
C (25)-H (25C)	0.9800
Si(2)-C (16)	1.877 (6)
Si(2) - C(23)	1 854 (7)
$S_{1}(2) = (23)$ $S_{2}(2) = C_{1}(21)$	1 966 (9)
SI(2) = C(21)	1.000(0)

Si(2)–C (22)	1.872 (8)
Si(1) - C(14)	1.894 (7)
Si(1) - C(19)	1.863 (8)
Si(1) - C(20)	1.871 (7)
Si(1) - C(18)	1.866 (9)
C(14) - C(15)	1.396 (9)
C(14) - C(13)	1.396 (9)
C(6) - C(11)	1.408 (8)
C(6) - C(7)	1 382 (8)
C(6) - C(4)	1 531 (8)
C(10) - H(10)	0.9500
C(10) - C(9)	1 386 (9)
C(10) - C(11)	1 394 (9)
C(17) - H(17)	0.9500
C(17) - C(16)	1 389 (8)
C(17) - C(12)	1.305 (8)
C(17) - C(12) C(15) - H(15)	0.9500
C(15) - C(16)	1 408 (9)
C(12) = U(12)	0.0500
C(12) = C(12)	1 206 (0)
C(13) - C(12)	1.350 (5)
C(9) = G(9)	1 297 (0)
C(5) = C(5)	1.567 (9)
C(5) = H(5R)	0.9800
	0.9800
C(5) - H(5C)	0.9800
C(11) = C(12)	1.522 (8)
C(11) - C(12)	1.487 (8)
C(7) = H(7)	0.9500
C(4) = U(4)	1.390 (9)
C(4) = H(4)	1.0000
C(8) = H(8)	0.9500
C (19)-H (19A)	0.9800
C (19)-H (19B)	0.9800
C(19)-H(19C)	0.9800
C (23)-H (23A)	0.9800
C (23)-H (23B)	0.9800
C (23)-H (23C)	0.9800
C (20)-H (20A)	0.9800
C (20)-H (20B)	0.9800
C (20)-H (20C)	0.9800
C (21)-H (21A)	0.9800
C (21)-H (21B)	0.9800
C(21)-H(21C)	0.9800
C (18)-H (18A)	0.9800
C (18)-H (18B)	0.9800
C (18)-H (18C)	0.9800
C (22)-H (22A)	0.9800
C (22)-H (22B)	0.9800
C(22)-H(22C)	0.9800
C (43)-H (43A)	0.9800
C (43)-H (43B)	0.9800
C(43)-H(43C)	0.9800
C (1)-Au (1)-Cl (1)	176.70(17)
C(36)-Si(4)-C(41)	108.2 (3)
C(36)-SI(4)-C(43)	110.3 (3)
C(42)-SI(4)-C(3b)	109.1 (3)
C(42)-S(4)-C(41)	108.1 (4)
U(42)-SI(4)-U(43)	110.8 (4)
C(41)-SI(4)-C(43)	110.3 (4)
$C(3\delta) - SI(3) - C(34)$	108.7 (3)
C(38)-SI(3)-C(40)	108.9 (4)
C(40)-SI(3)-C(34)	108.7 (3)
C(39)-SI(3)-C(34)	108.9 (3)
C (39)-SI(3)-C (38)	110.3 (4)
	1113(4)

N(1)-C(1)-Au(1)
N(1) C(1) N(2)
N(1)-C(1)-N(2)
N (2)-C (1)-Au (1)
C(27) C(22) C(27)
C(37)-C(32)-C(27)
C (33)-C (32)-C (37)
c(22) c(22) c(22)
C(33)-C(32)-C(27)
C (32)-C (37)-H (37)
C(22) C(27) C(26)
C(32)-C(37)-C(30)
C (36)-C (37)-H (37)
C(27) C(2C) C(4)
C(37)-C(30)-31(4)
C (35)-C (36)-Si(4)
C(2E) C(2C) C(2Z)
(33) - (30) - (37)
C (33)-C (34)-Si(3)
C(22) C(24) C(25)
C(33)-C(34)-C(33)
C (35)-C (34)-Si(3)
C(22) C(22) C(24)
C(32)-C(33)-C(34)
C (32)-C (33)-H (33)
C(2A) C(22) U(22)
C (34)-C (33)-A (33)
C (36)-C (35)-C (34)
C(2E) C(2E) U(2E)
C (30)-C (33)-A (33)
C (34)-C (35)-H (35)
S(2) C (20) H (20A)
S1(3)-C (38)-H (38B)
Si(3)-C (38)-H (38C)
H (38A)-C (38)-H (38B)
H(38A) - C(38) - H(38C)
11 (307)-C (30)-11 (30C)
H (38B)–C (38)-H (38C)
Si(3) - C(40) - H(40A)
Si(3)-C (40)-H (40B)
Si(3)-C (40)-H (40C)
H (40A)-C (40)-H (40B)
H (40A)-C (40)-H (40C)
H (40B)–C (40)-H (40C)
S1(4)-C(42)-H(42A)
SI(4) - C(42) - H(42A)
Si(4)-C (42)-H (42A) Si(4)-C (42)-H (42B)
Si(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C)
Si(4)-C(42)-H(42A) Si(4)-C(42)-H(42B) Si(4)-C(42)-H(42C) Si(4)-C(42)-H(42C)
Si(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42B)
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42B) H (42A)-C (42)-H (42C)
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42B) H (42A)-C (42)-H (42C) H (42A)-C (42)-H (42C)
$\begin{split} SI(4)-C & (42)-H & (42A) \\ Si(4)-C & (42)-H & (42B) \\ Si(4)-C & (42)-H & (42C) \\ H & (42A)-C & (42)-H & (42B) \\ H & (42A)-C & (42)-H & (42C) \\ H & (42B)-C & (42)-H & (42C) \\ \end{split}$
$\begin{array}{l} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42B) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \end{array}$
$\begin{array}{l} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(32)-H(32A) \\ Si(3)-H(32)-H(32A) \\ Si(3)-H(32)-H(32A) \\ Si(3)-H(32)-H(32A) \\$
$\begin{split} Si(4)-C & (42)-H & (42A) \\ Si(4)-C & (42)-H & (42B) \\ Si(4)-C & (42)-H & (42C) \\ H & (42A)-C & (42)-H & (42B) \\ H & (42A)-C & (42)-H & (42C) \\ H & (42B)-C & (42)-H & (42C) \\ Si(3)-C & (39)-H & (39A) \\ Si(3)-C & (39)-H & (39B) \end{split}$
$\begin{aligned} SI(4)-C & (42)-H & (42A) \\ Si(4)-C & (42)-H & (42B) \\ Si(4)-C & (42)-H & (42C) \\ H & (42A)-C & (42)-H & (42C) \\ H & (42A)-C & (42)-H & (42C) \\ H & (42B)-C & (42)-H & (42C) \\ Si(3)-C & (39)-H & (39A) \\ Si(3)-C & (39)-H & (39B) \\ Si(3)-C & (39)-H & (39C) \end{aligned}$
Si(4)-C (42)-H (42A) $Si(4)-C (42)-H (42B)$ $Si(4)-C (42)-H (42C)$ $H (42A)-C (42)-H (42B)$ $H (42A)-C (42)-H (42C)$ $H (42B)-C (42)-H (42C)$ $Si(3)-C (39)-H (39A)$ $Si(3)-C (39)-H (39B)$ $Si(3)-C (39)-H (39C)$ $H (39A)-C (39)-H (39B)$
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42B) H (42A)-C (42)-H (42C) H (42B)-C (42)-H (42C) Si(3)-C (39)-H (42C) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39B) Si(3)-C (39)-H (39C) H (39A)-C (39)-H (39B)
$\begin{split} Si(4)-C & (42)-H & (42A) \\ Si(4)-C & (42)-H & (42B) \\ Si(4)-C & (42)-H & (42C) \\ H & (42A)-C & (42)-H & (42B) \\ H & (42A)-C & (42)-H & (42C) \\ H & (42B)-C & (42)-H & (42C) \\ Si(3)-C & (39)-H & (39A) \\ Si(3)-C & (39)-H & (39A) \\ Si(3)-C & (39)-H & (39B) \\ H & (39A)-C & (39)-H & (39C) \\ \end{split}$
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42B) H (42A)-C (42)-H (42C) H (42B)-C (42)-H (42C) Si(3)-C (39)-H (42C) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39B) H (39A)-C (39)-H (39C) H (39B)-C (39)-H (39C) H (39B)-C (39)-H (39C)
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39B) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ H($
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \end{split}$
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39B) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41) \\ Si$
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41C) \end{split}$
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39B) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) $
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41C) \\ H(41A)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) $
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ \end{split}$
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42C) H (42A)-C (42)-H (42C) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39B) Si(3)-C (39)-H (39C) H (39A)-C (39)-H (39C) H (39A)-C (39)-H (39C) Si(4)-C (41)-H (41A) Si(4)-C (41)-H (41B) Si(4)-C (41)-H (41C) H (41A)-C (41)-H (41C) H (41A)-C (41)-H (41C) H (41B)-C (41)-H (41C)
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \end{split}$
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(24) \\ \end{split}$
$\begin{split} SI(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(24) \\ C(2)-N(1)-C(2)-H(2) \\ \end{split}$
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42C) H (42A)-C (42)-H (42C) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39B) Si(3)-C (39)-H (39C) H (39A)-C (39)-H (39C) H (39B)-C (39)-H (39C) Si(4)-C (41)-H (41A) Si(4)-C (41)-H (41B) Si(4)-C (41)-H (41B) H (41A)-C (41)-H (41B) H (41A)-C (41)-H (41C) H (41B)-C (41)-H (41C) H (41B)-C (41)-H (41C) C (1)-N (1)-C (2) C (1)-N (1)-C (24) C (2)-N (1)-C (24) Si (2)-C (2)-N (1)-C (24) Si (2)-C (2)-N (1)-C (2)-C (2)-C (2)-N (1)-C (2)-C (2)-C (2)-N (1)-C (2)-C (2)-C (2)-C (2)-N (1)-C (2)-N (1)-C (2)-C (2)-N (1)-C (2)-N
$\begin{split} & Si(4)-C(42)-H(42A) \\ & Si(4)-C(42)-H(42B) \\ & Si(4)-C(42)-H(42C) \\ & H(42A)-C(42)-H(42C) \\ & H(42B)-C(42)-H(42C) \\ & Si(3)-C(39)-H(39A) \\ & Si(3)-C(39)-H(39A) \\ & Si(3)-C(39)-H(39C) \\ & H(39A)-C(39)-H(39C) \\ & H(39A)-C(39)-H(39C) \\ & H(39B)-C(39)-H(39C) \\ & H(39B)-C(39)-H(39C) \\ & Si(4)-C(41)-H(41B) \\ & Si(4)-C(41)-H(41B) \\ & Si(4)-C(41)-H(41C) \\ & H(41A)-C(41)-H(41C) \\ & H(41B)-C(41)-H(41C) \\ & H(41B)-C(41)-H(41C) \\ & H(41B)-C(41)-H(41C) \\ & C(1)-N(1)-C(2) \\ & C(1)-N(1)-C(24) \\ & C(2)-N(1)-C(2)-H(2) \\ & C(3)-C(2)-N(1) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39B) \\ H(39A)-C(39)-H(39B) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(2)-N(1)-C(24) \\ C(3)-C(2)-N(1) \\ C(3)-C(2)-H(2) \\ (3)-C(2)-H(2) \\ (3)-C(2)-H(2)$
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42C) H (42A)-C (42)-H (42C) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39C) H (39A)-C (39)-H (39C) H (39B)-C (39)-H (39C) Si(4)-C (41)-H (41B) Si(4)-C (41)-H (41B) H (41A)-C (41)-H (41C) H (41B)-C (41)-H (41C) C (1)-N (1)-C (24) C (2)-N (1)-C (24) N (1)-C (2)-H (2) C (3)-C (2)-N (1) C (3)-C (2)-N (1
$\begin{split} & Si(4)-C(42)-H(42A) \\ & Si(4)-C(42)-H(42B) \\ & Si(4)-C(42)-H(42C) \\ & H(42A)-C(42)-H(42C) \\ & H(42B)-C(42)-H(42C) \\ & Si(3)-C(39)-H(39A) \\ & Si(3)-C(39)-H(39B) \\ & Si(3)-C(39)-H(39C) \\ & H(39A)-C(39)-H(39B) \\ & H(39A)-C(39)-H(39C) \\ & H(39B)-C(39)-H(39C) \\ & H(39B)-C(39)-H(39C) \\ & Si(4)-C(41)-H(41B) \\ & Si(4)-C(41)-H(41B) \\ & Si(4)-C(41)-H(41B) \\ & H(41A)-C(41)-H(41C) \\ & H(41B)-C(41)-H(41C) \\ & H(41B)-C(41)-H(41C) \\ & H(41B)-C(41)-H(41C) \\ & C(1)-N(1)-C(2) \\ & C(2)-N(1)-C(24) \\ & C(2)-N(1)-C(24) \\ & C(3)-C(2)-H(2) \\ & C(3)-C(2)-H(2) \\ & C(1)-N(2)-C(3) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(32A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ N(1)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(3) \\ C(1)-N(2)-C(4) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(2)-N(1)-C(2)-H(2) \\ C(3)-C(2)-N(1) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(3)-N(2)-C(4) \\ C(3)-N(2$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(2)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(1)-N(2)-C(4) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(3)-N(2)-C(4) \\ $
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(3)-N(2)-C(4) \\ C(3)-N(2)-C(4) \\ C(2)-N(2) \\ C(2)-N(2) \\ C(2)-N(2) \\ C(3)-N(2)-C(4) \\ C(2)-N(2) \\ C(2)-N(2) \\ C(2)-N(2) \\ C(3)-N(2)-C(4) \\ C(2)-N(2) \\ C(2)-N(2) \\ C(3)-N(2) \\ C(3)-N(2)$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39B) \\ H(39A)-C(39)-H(39B) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(2)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(1)-N(2)-C(4) \\ C(3)-N(2)-C(4) \\ C(2)-C(3)-N(2) \\ $
SI(4)-C (42)-H (42A) Si(4)-C (42)-H (42B) Si(4)-C (42)-H (42C) H (42A)-C (42)-H (42C) H (42B)-C (42)-H (42C) Si(3)-C (39)-H (39A) Si(3)-C (39)-H (39C) H (39A)-C (39)-H (39C) H (39A)-C (39)-H (39C) H (39B)-C (39)-H (39C) Si(4)-C (41)-H (41A) Si(4)-C (41)-H (41B) H (41A)-C (41)-H (41C) H (41B)-C (41)-H (41C) C (1)-N (1)-C (2) C (1)-N (1)-C (24) C (2)-N (1)-C (24) N (1)-C (2)-H (2) C (3)-C (2)-H (2) C (1)-N (2)-C (4) C (3)-C (2)-N (1) C (3)-C (2)-N (2) C (2)-C (3)-N (2) C (2)-N (3) C (2)-N (3) C (2)-N (2)-N (2) C (3)-N (2)-N (2) C (3)-N (2)-N (3) C (3)-N (3)-N (3) C (3)-N (3)-N (3)-N (3) C (3)-N (3)-N (3)-N (3) C (3)-N (3)-
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41A) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(2)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(3) \\ C(1)-N(2)-C(4) \\ C(3)-C(2)-H(2) \\ C(2)-C(3)-N(2) \\ C(2)-C(3)-H(3) \\ N(2)-C(3)-H(3) \\ \end{split}$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42B)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(2)-N(1)-C(24) \\ N(1)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(2) \\ C(3)-C(3)-N(2) \\ C(2)-C(3)-N(2) \\ C(2)-C(3)-N(2) \\ C(2)-C(3)-H(3) \\ N(2)-C(3)-H(3) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-C(4) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-C(4) \\ C(3)-C(2)-C(3) \\ C(3)-C(2)-C(2) \\ C(3)-C(2)-C(3) \\ C(3)-C(2)-H(3) \\ C(3)-C(2)-C(2) \\ C(3)-C(2)-C(2) \\ C(3)-C(2)-C(2) \\ C(3)-C(2)-C(3) \\ C(3)-C(2)-C(3)-C(2) \\ C(3)-C(2)-C(3)-$
$\begin{split} Si(4)-C(42)-H(42A) \\ Si(4)-C(42)-H(42B) \\ Si(4)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ H(42A)-C(42)-H(42C) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39A) \\ Si(3)-C(39)-H(39B) \\ Si(3)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39A)-C(39)-H(39C) \\ H(39B)-C(39)-H(39C) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ Si(4)-C(41)-H(41B) \\ H(41A)-C(41)-H(41C) \\ H(41A)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ H(41B)-C(41)-H(41C) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(24) \\ C(2)-N(1)-C(24) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(3)-C(2)-H(2) \\ C(1)-N(2)-C(4) \\ C(3)-C(2)-H(2) \\ C(3)-C(2)-H(3) \\ N(2)-C(3)-H(3) \\ N(2)-C(3)-H(3) \\ C(3)-C(2)-C(2) \\ (2)-C(3)-H(3) \\ (2)-C(3)-H(3$

129.7	(4)
105.8	(5)
124.4	(4)
122.2	(6)
119.0	(6)
118.7	(6)
119.5	
121.0	(6)
119.5	
123.4	(5)
119.2	(5)
117.5	(6)
120.3	(5)
116.4	(6)
123.3	(5)
122.9	(6)
118.6	
118.6	
123.2	(6)
118.4	
118.4	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5	
109.5 109.5 109.5	
109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5	(5)
109.5 109.5	(5) (5)
109.5 109.5	(5) (5) (5)
109.5 100.5 100.5	(5) (5) (5)
109.5 100.5 100.5	(5) (5) (5) (5)
109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	(5) (5) (5) (5)
109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	(5) (5) (5) (5) (5)
109.5. 109.5 1	(5) (5) (5) (5) (5) (5)
109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	(5) (5) (5) (5) (5) (5) (5)
109.5 100.5 100.5	(5) (5) (5) (5) (5) (5) (5) (5)
109.5 100.5 100.5	(5) (5) (5) (5) (5) (5) (5) (5)
109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	(5) (5) (5) (5) (5) (5) (5)
109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	(5) (5) (5) (5) (5) (5) (5) (5)

C (27)-C (26)-C (24)	1195(5)
$C(2F) = C(21) \cup C(24)$	110.5 (5)
C(20) - C(31) - H(31)	119.0
C(20)-C(31)-C(30)	120.8(7)
С (30)-С (31)-Н (31)	119.6
С (31)-С (30)-Н (30)	119.7
C (29)-C (30)-C (31)	120.6 (6)
С (29)-С (30)-Н (30)	119.7
C (26)-C (27)-C (32)	121.6 (6)
C (28)-C (27)-C (32)	118.9 (6)
C(28)-C(27)-C(26)	1194(6)
N(1)-C(24)-C(26)	108.8 (5)
N(1) = (21) = (20) N(1) = C(24) = H(24)	107.8
$N(1) \in (24) \cap (24)$	107.0
N(1)-C(24)-C(25)	108.4 (5)
C(26)-C(24)-H(24)	107.8
C (25)-C (24)-C (26)	115.8 (5)
C (25)-C (24)-H (24)	107.8
C (27)-C (28)-H (28)	119.6
C (29)-C (28)-C (27)	120.8 (7)
C (29)-C (28)-H (28)	119.6
C (30)-C (29)-C (28)	119.4 (7)
C (30)-C (29)-H (29)	120.3
C(28)-C(20)-H(20)	120.5
C(24) - C(25) - H(25)	120.5
$C(24)-C(25)-\Pi(25A)$	109.5
C (24)-C (25)-H (25B)	109.5
С (24)-С (25)-Н (25С)	109.5
H (25A)-C (25)-H (25B)	109.5
H (25A)-C (25)-H (25C)	109.5
H (25B)–C (25)-H (25C)	109.5
C (23)-Si(2)-C (16)	109.6 (3)
C (23)-Si(2)-C (21)	109.2 (4)
C(23)-Si(2)-C(22)	110.0 (4)
C(21)-Si(2)-C(16)	1092(4)
C(21)-Si(2)-C(22)	100.2(1)
C(21) - S(2) - C(22)	110.2(4)
C(22)-SI(2)-C(16)	108.6 (3)
C(19)-SI(1)-C(14)	110.3 (3)
C(19)-Si(1)-C(20)	109.7 (4)
C (19)-Si(1)-C (18)	109.2 (4)
C (20)-Si(1)-C (14)	109.0 (3)
C (18)-Si(1)-C (14)	108.4 (3)
C (18)-Si(1)-C (20)	110.1 (4)
C (15)-C (14)-Si(1)	122.5 (5)
C (15)-C (14)-C (13)	117.9 (6)
C(13)-C(14)-Si(1)	1195(5)
C(11)-C(6)-C(4)	1196(5)
C(7) C(6) C(11)	110.0(5)
C(7) - C(0) - C(11)	1212(5)
C(7) - C(6) - C(4)	121.3 (5)
С (9)-С (10)-Н (10)	119.3
C (9)-C (10)-C (11)	121.5 (6)
C (11)-C (10)-H (10)	119.3
С (16)-С (17)-Н (17)	119.0
C (16)-C (17)-C (12)	122.0 (6)
С (12)-С (17)-Н (17)	119.0
C (14)-C (15)-H (15)	118.6
C(14)-C(15)-C(16)	122.7 (6)
C(16)-C(15)-H(15)	118.6
C(14) C(12) U(12)	110.0
$C(14)-C(15)-\Pi(15)$	119.5
C(12)-C(13)-C(14)	121.5 (6)
C (12)-C (13)-H (13)	119.3
C (17)-C (16)-Si(2)	121.8 (5)
C (17)-C (16)-C (15)	117.2 (6)
C (15)-C (16)-Si(2)	120.9 (5)
С (10)-С (9)-Н (9)	120.3
C (10)-C (9)-C (8)	119.3 (6)
C (8)-C (9)-H (9)	120.3
H(5A) = C(5) = H(5B)	109 5

H (5A)-C (5)-H (5C)	109 5
$H(SR) \in (S) H(SC)$	100.5
H(SB) - C(S) - H(SC)	109.5
C (4)-C (5)-H (5A)	109.5
C (4)-C (5)-H (5B)	109 5
C(A) C(E) U(EC)	100.5
$C(4)-C(5)-\Pi(5C)$	109.5
C (6)-C (11)-C (12)	122.2 (5)
C (10)-C (11)-C (6)	118.9(5)
C(10) C(11) C(12)	1120(5)
	110.5 (5)
С (б)-С (7)-Н (7)	119.2
C (6)-C (7)-C (8)	121.5 (6)
C(8)-C(7)-H(7)	1192
N(2) C(4) C(6)	111.2 (E)
N(2)-C(4)-C(0)	111.5 (5)
N (2)-C (4)-C (5)	110.8 (5)
N (2)-C (4)-H (4)	107.4
C(6)-C(4)-H(4)	1074
C(5) C(4) C(6)	1122(5)
C(3)-C(4)-C(0)	112.2 (3)
C (5)-C (4)-H (4)	107.4
C (17)-C (12)-C (11)	119.9 (5)
C (13)-C (12)-C (17)	118.7 (6)
C(12) C(12) C(11)	121 4 (5)
	121.4 (3)
C(9)-C(8)-C(7)	119.6 (6)
C (9)-C (8)-H (8)	120.2
C (7)-C (8)-H (8)	120.2
Si(1)-C (19)-H (19A)	109.5
$S_{1}(1) \in (10) \Pi (10N)$	100.5
SI(1)-C (19)-H (19B)	109.5
Si(1)-C (19)-H (19C)	109.5
H (19A)-C (19)-H (19B)	109.5
H(19A)-C(19)-H(19C)	109.5
H(10R) = C(10) H(10C)	100.5
$\Pi(19D) - U(19) - \Pi(19U)$	109.5
Si(2)-C (23)-H (23A)	109.5
Si(2)-C (23)-H (23B)	109.5
Si(2)-C (23)-H (23C)	109 5
U(22A) C(22) U(22P)	100.5
$\Pi(2SA) = C(2S) = \Pi(2SB)$	109.5
Н (23А)-С (23)-Н (23С)	109.5
H (23B)–C (23)-H (23C)	109.5
Si(1)-C (20)-H (20A)	109.5
Si(1) - C(20) - H(20B)	109.5
$S_1(1) \in (20) H(200)$	100.5
SI(1)-C (20)-H (20C)	109.5
H (20A)-C (20)-H (20B)	109.5
H (20A)-C (20)-H (20C)	109.5
H(20B) - C(20) - H(20C)	109 5
S(2) C(21) U(21A)	100.5
$SI(2) - C(21) - \Pi(21R)$	109.5
SI(2)-C(21)-H(21B)	109.5
Si(2)-C (21)-H (21C)	109.5
H (21A)-C (21)-H (21B)	109.5
H(21A) - C(21) - H(21C)	109.5
$H(21R) \in (21) H(21C)$	100.5
$\Pi(210) - C(21) - \Pi(21C)$	109.5
Si(1)-C (18)-H (18A)	109.5
Si(1)-C (18)-H (18B)	109.5
Si(1)-C (18)-H (18C)	109.5
H(18A) - C(18) - H(18B)	109.5
H(10A) = C(10) + H(10C)	105.5
H (18A)-C (18)-H (18C)	109.5
H (18B)–C (18)-H (18C)	109.5
Si(2)-C (22)-H (22A)	109.5
Si(2)-C (22)-H (22B)	109 5
$S_1(2) = (22) = 11(220)$ $S_2(2) = C_2(22) = 11(220)$	100.5
$SI(2) = C(22) = \Pi(22C)$	109.5
H (22A)-C (22)-H (22B)	109.5
H (22A)-C (22)-H (22C)	109.5
H (22B)–C (22)-H (22C)	109.5
Si(A) = C(A3) = H(A3A)	100.5
	105.5
SI(4)-C (43)-H (43B)	109.5
Si(4)-C (43)-H (43C)	109.5
H (43A)-C (43)-H (43B)	109.5
H(43A)-C(43)-H(43C)	109 5
H(A2D) = C(A2) H(A2C)	100.5
н (43b)—С (43)-Н (43С)	109.5

Table 4

Crystal data and structure refinement for 18a.

Identification code Empirical formula Formula weight Temperature Wavelength	s1 C45H64 Au Cl N2 Si4 977.75 100 (2) K 1.54178 Å	
Space group	$P_{43}^{2}_{12}$	
Unit cell dimensions	d = 12.2700 (2) A	$\alpha = 90^{\circ}$.
	D = 12.2700 (2) A	$p = 90^{\circ}$.
Volume	C = 64.5450 (12) A	$\gamma = 90^{\circ}$.
7	9727.9 (4) A	
Z Demoiter (selected)	8 1 225 Mala 3	
Density (calculated)	1.335 Mg/m ²	
Absorption coefficient	/.356 mm ⁻	
F (000)	4000	
Crystal size	$0.040 \times 0.040 \times 0.010 \text{ mm}^3$	
Theta range for data collection	2.738–74.183°.	
Index ranges	$-13 \le h <= 14, -14 \le k <= 15, -76 \le l <= 79$	
Reflections collected	139555	
Independent reflections	9852 [R (int) = 0.1584]	
Completeness to theta = 67.679°	100.0%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7538 and 0.6255	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	9852/0/493	
Goodness-of-fit on F ²	1.028	
Final R indices [I > 2sigma(I)]	R1 = 0.0373, $wR2 = 0.0720$	
R indices (all data)	R1 = 0.0523, $wR2 = 0.0771$	
Absolute structure parameter	-0.038 (6)	
Extinction coefficient	0.000299 (18)	
Largest diff. peak and hole	0.775 and $-0.702 \text{ e.}\text{\AA}^{-3}$	

(*R*)-N-((*S*)-1-(3',5'-bis(trimethylsilyl)-[1,1'-biphenyl]-2-yl)ethyl)-2-methylpropane-2-sulfinamide Yield: 97%. ¹H NMR (500MHz, CDCl₃): δ 0.34 (s, 18H), 1.18 (s, 9H), 1.45 (d, *J* = 6.7, 3H), 3.29 (d, *J* = 3.9, 1H), 4.69–4.74 (m, 1H), 7.26 (dd, *J* = 7.7, 1.2, 1H), 7.33 (dt, *J* = 7.6, 1.2, 1H), 7.41 (dt, *J* = 7.6, 1.2, 1H), 7.48 (s, 2H), 7.54 (d, *J* = 7.6, 1H), 7.70 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ –0.9, 22.6, 25.8, 51.3, 55.6, 126.6, 126.9, 127.8, 130.2, 134.6, 137.0, 139.3, 139.5, 141.7, 141.9. m/z (ESI-MS) calcd for [C₂₄H₃₉NOSSi₂+H]: 446.2; found 446.2 [M+H]⁺.

Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3).for **18a**. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U (eq)
Au (1)	3202 (1)	1505 (1)	4107 (1)	27 (1)
Cl (1)	4449 (2)	170 (2)	4172 (1)	33 (1)
Si(1)	3202 (2)	-328 (2)	4749 (1)	29(1)
Si(2)	6059 (2)	3345 (2)	4622 (1)	34(1)
Si(4)	6854 (2)	3261 (2)	2970 (1)	41 (1)
Si(3)	7074 (2)	1168 (2)	3748 (1)	40(1)
N (007)	1303 (4)	3079 (5)	4138 (1)	27 (1)
N (008)	2128 (4)	3188 (5)	3846(1)	26(1)
C (18)	2558 (6)	1885 (6)	4702 (1)	28 (2)
C (30)	976 (6)	1793 (6)	3288 (1)	32 (2)
C (28)	2509 (6)	2399 (6)	3498 (1)	25 (2)
C (2)	1300 (6)	3952 (6)	3841 (1)	30 (2)
C (1)	2155 (6)	2658 (6)	4030 (1)	29 (2)
C (5)	-103 (6)	2007 (6)	4326 (1)	33 (2)
C (3)	779 (6)	3874 (6)	4023 (1)	32 (2)
C (33)	3225 (5)	1904 (5)	3355 (1)	26(1)
C (29)	1391 (6)	2329 (6)	3460 (1)	29(2)
C(1/)	3452 (6)	1160 (5)	4/06(1)	27(1)
C(14)	3745 (5)	3395 (6)	4638 (1)	28 (2)
C(13)	2697 (6)	2999 (6)	4662 (1)	27 (2)
C(16)	4489 (6)	2010 (6)	4070 (I) 2682 (1)	29(2)
C (25)	2949 (6)	3019 (6) 1000 (6)	3082 (1)	20(2)
C(34)	4434 (0)	1999 (0) 2478 (6)	3307 (I) 3108 (1)	20(2)
C(39)	1675 (6)	1297 (6)	3158 (1)	29(2) 34(2)
C(38)	6111 (6)	2582 (6)	3197 (1)	34(2) 31(2)
C (36)	6216 (5)	1675 (6)	3527 (1)	31(2)
C(26)	3440 (7)	4123 (6)	3622 (1)	33(2)
C(11)	1656 (7)	4601 (6)	4788 (1)	33(2)
C(7)	889 (6)	3590 (6)	4503 (1)	29(2)
C (22)	2499 (7)	-502 (6)	5005 (1)	38 (2)
C (32)	2792 (6)	1351 (6)	3186(1)	29(2)
C (35)	5074 (6)	1606 (6)	3529 (1)	31 (2)
C (10)	773 (7)	5298 (7)	4788 (1)	36 (2)
C (15)	4668 (6)	2732 (6)	4646 (1)	30 (2)
C (9)	-56 (7)	5143 (6)	4646 (1)	37 (2)
C (37)	6703 (6)	2169 (6)	3356(1)	33 (2)
C (8)	6 (6)	4292 (6)	4506 (1)	33 (2)
C (12)	1731 (6)	3734 (5)	4648 (1)	26(1)
C (4)	950 (6)	2673 (6)	4344 (1)	28 (2)
C (21)	7097 (7)	2243 (7)	4597 (1)	42 (2)
C (27)	3942 (8)	4717 (7)	3806 (1)	50 (2)
C (41)	6806 (9)	-309 (7)	3789 (1)	54 (2)
C (23)	4514 (7)	-1094 (7)	4743 (1)	42 (2)
C (40)	6768 (8)	1974 (7)	3984 (1)	48 (2)
C (6)	30(7)	999 (7)	4196 (1)	40 (2)
C (24)	2281 (7)	-853 (6)	4544 (1)	37 (2)
C (42)	8523 (7)	1396 (11)	36/8(1)	/3 (3)
C (20)	6351 (8)	4160 (8)	4860(1)	52 (2)
C (19)	6108 (8)	4262 (7)	4391(1)	51 (2)
C (45)	7818 (9) 7692 (11)	4264 (8)	3080 (2)	65 (3)
C (44)	/082(11)	2241 (9)	2820 (2)	90 (5) 125 (0)
C (43)	J804 (1U)	(1) 0665	2802(2)	132 (8)

(*R*)-N-((*S*)-1-(3',5'-bis(triethylsilyl)-[1,1'-biphenyl]-2-yl)ethyl)-2-methylpropane-2-sulfinamide Yield: 99%. ¹H NMR (500MHz, CDCl₃): δ 0.83 (q, *J* = 7.9, 12H), 1.00 (t, *J* = 7.9, 18H), 1.13 (s, 9H), 1.46 (d, *J* = 6.8, 3H), 3.26 (d, *J* = 4.3, 1H), 4.70 (h, *J* = 6.5, 1H), 7.24 (d, *J* = 7.5, 1H), 7.31 (t, *J* = 7.4, 1H), 7.38–7.40 (m, 3H), 7.51 (d, *J* = 7.8, 1H), 7.63 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ 3.5, 7.6, 22.6, 25.6, 51.6, 55.7, 126.3,

 Table 6

 Bond lengths [Å] and angles [°] for 18a.

Au (1) $-C$ (1)	1 976 (7)	
$A_{11}(1) = C_{1}(1)$	2 2912 (16)	
$\operatorname{Au}(1) = \operatorname{Cl}(1)$	2.2813 (10)	
Si(1) - C(24)	1.858 (8)	
Si(1)–C (23)	1.865 (9)	
Si(1) - C(17)	1.873 (7)	
$S_{i}(1) = C(22)$	1 874 (8)	
S(1) = C(22)	1.874 (8)	
SI(2) - C(19)	1.866 (9)	
Si(2)–C (21)	1.866 (8)	
Si(2)-C (20)	1.871 (8)	
Si(2) - C(15)	1 873 (8)	
Si(2) = C(15) Si(4) = C(45)	1.075(0) 1.940(10)	
SI(4) - C(45)	1.649 (10)	
$S_{1}(4) - C(43)$	1.854 (13)	
Si(4)–C (44)	1.862 (11)	
Si(4) - C(38)	1.872 (7)	
$S_{i}(2) = C(42)$	1 955 (10)	
31(3) - C(42)	1.855 (10)	
$S_{1}(3) - C(40)$	1.858 (8)	
Si(3)–C (41)	1.862 (10)	
Si(3)-C (36)	1.876 (7)	
N(007) - C(1)	1 359 (9)	
N(007) C(1)	1.333 (3)	
N(007) - C(3)	1.383 (9)	
N (007)–C (4)	1.487 (8)	
N (008)–C (1)	1.357 (9)	
N(008) - C(2)	1 383 (8)	
N(008) C(25)	1,475 (9)	
N(008) = C(23)	1.475 (8)	
C (18)–C (13)	1.401 (10)	
C (18)–C (17)	1.414 (10)	
C (18)–H (18)	0.9500	
C(30) = C(31)	1 374 (10)	
C(30) C(31)	1.374 (10)	
C(30) = C(29)	1.388 (10)	
C (30)–H (30)	0.9500	
C (28)–C (29)	1.397 (10)	
C(28) - C(33)	1 413 (9)	
C(28) = C(35)	1 500 (0)	
C(28) = C(23)	1.509 (9)	
C(2) - C(3)	1.340 (10)	
C (2)–H (2)	0.9500	
C(5) - C(6)	1.503 (10)	
C(5) = C(4)	1 533 (10)	
	1.555 (10)	
C (5)-H (5A)	0.9900	
C (5)-H(5B)	0.9900	
C (3)–H (3)	0.9500	
C (33)–C (32)	1.389 (9)	
C(22) C(24)	1 401 (0)	
C(33) = C(34)	1:451 (5)	
C (29)–H (29)	0.9500	
C (17)–C (16)	1.399 (10)	
C (14)–C (13)	1.383 (10)	
C(14) - C(15)	1.396 (10)	
C(14) - H(14)	0.9500	
$C(14) = \Pi(14)$	0.3500	
C(13) - C(12)	1.494 (9)	
C (16)–C (15)	1.412 (11)	
C (16)–H (16)	0.9500	
C(25) = C(26)	1 532 (10)	
C(25) = C(20)	1.0000	
С (23)—П (23)	1.0000	
C (34)–C (35)	1.396 (10)	
C (34)–C (39)	1.408 (10)	
C (39)–C (38)	1.392 (10)	
C(39) - H(39)	0.0500	
C(33) = II(33)	0026.0	
L (31)–L (32)	1.391 (10)	
C (31)–H (31)	0.9500	
C (38)–C (37)	1.404 (10)	
C(36) - C(37)	1 396 (10)	
C(26) C(25)	1.550 (10)	
C(30) - C(33)	1.405 (10)	

C (26)–C (27)	
C(26) - H(264)	
$C(20) - \Pi(20N)$	
C (26)-H (26B)	
C (11)–C (10)	
C(11) = C(12)	
C(11) - C(12)	
С (11)—Н (11)	
C(7) - C(8)	
C(7) = C(12)	
C(7) = C(12)	
C(7) - C(4)	
C (22)-H (22A)	
C(22) + (22B)	
$C(22) = \Pi(220)$	
C (22)-H (22C)	
C (32)–H (32)	
C (35)-H (35)	
C(10) C(0)	
C(10) - C(9)	
C (10)–H (10)	
C(9) - C(8)	
C(0) U(0)	
C (9)-H (9)	
C (37)–H (37)	
C(8)–H(8)	
$C(A) \perp (A)$	
C(4) = H(4)	
C (21)-H (21A)	
C (21)-H (21B)	
C (21)-H (21C)	
$C(21) - \Pi(210)$	
C (27)-H (27A)	
C (27)-H (27B)	
C (27)-H (27C)	
$C(27) \Pi(27C)$	
C (41)-H (41A)	
C (41)-H (41B)	
C (41)-H (41C)	
$C(22) \sqcup (22A)$	
C (25)-H (25A)	
C (23)-H (23B)	
C (23)-H (23C)	
C(AO) - H(AOA)	
$C(40) - \Pi(40\Lambda)$	
C (40)-H (40B)	
C (40)-H (40C)	
C (6)-H (6A)	
C(C) II(CD)	
С (б)-Н (бВ)	
C (6)-H (6C)	
C (24)-H (24A)	
C(24) II(24R)	
C (24)-H (24B)	
C (24)-H (24C)	
C (42)-H (42A)	
C(42) - H(42B)	
$C(42) - \Pi(42D)$	
C (42)-H (42C)	
C (20)-H (20A)	
C (20)-H (20B)	
C (20) II (20D)	
C (20)-H (20C)	
C (19)-H (19A)	
C (19)-H (19B)	
$C(10) \parallel (10C)$	
C(19)-H(19C)	
C (45)-H (45A)	
C (45)-H (45B)	
C(45)-H(45C)	
C (44)-H (44A)	
C (44)-H (44B)	
C (44)-H (44C)	
C(42) U(424)	
с (43)-п (43A)	
C (43)-H (43B)	
C (43)-H (43C)	
$C(1) = \Delta_{11}(1) C(1)$	١
	ì
C (24)-Si(1)-C (23)
C(24)-Si(1)-C(17	١

1.522 (10)
0.9900
0.9900
1.381 (11)
1.399 (9)
0.9500
1.380 (10)
1.408 (10)
0.9800
0.9800
0.9800
0.9500
0.9500
1.382 (11)
0.9500
1.385 (10)
0.9500
0.9500
0.9500
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
1096(4)
109.4 (3)

C(23)-Si(1)-C(17)
C(24)-Si(1)-C(22)
C(24) - 51(1) - C(22)
C (23)-Si(1)-C (22)
C(17)-Si(1)-C(22)
C (19)-SI(2)-C (21)
C(19)-Si(2)-C(20)
C(21)-Si(2)-C(20)
C(19)-Si(2)-C(15)
C (21)-SI(2)-C (15)
C(20)-Si(2)-C(15)
C(45)-Si(4)-C(43)
C(45)-Si(4)-C(44)
C(43) - 31(4) - C(44)
C (43)-Si(4)-C (44)
C(45)-Si(4)-C(38)
C(43)-Si(4)-C(38)
C(44)-Si(4)-C(38)
C (44)-31(4)-C (38)
C (42)-Si(3)-C (40)
C(42) S(2) C(41)
C(42)-3I(3)-C(41)
C (40)-Si(3)-C (41)
C(42) S(2) C(26)
C(42)-3I(3)-C(30)
C (40)-Si(3)-C (36)
C(41) S(2) C(26)
C(41)-31(3)-C(30)
C (1)-N (007)-C (3)
C(1) N(007) C(4)
C(1) = N(007) = C(4)
C (3)-N (007)-C (4)
C(1) N(008) C(2)
C(1) - N(000) - C(2)
C (1)-N (008)-C (25)
C(2) N(009) $C(25)$
C(2)-IN(008)-C(25)
C (13)-C (18)-C (17)
C(13) - C(18) - H(18)
$C(13) - C(10) - \Pi(10)$
C (17)-C (18)-H (18)
C(31) = C(30) = C(20)
C (31)-C (30)-C (23)
C (31)-C (30)-H (30)
C (29)-C (30)-H (30)
c (25) c (50) ff (50)
C (29)-C (28)-C (33)
C(29) - C(28) - C(25)
C (25) C (20) C (25)
C (33)-C (28)-C (25)
C(3) - C(2) - N(008)
C(3) - C(2) - R(000)
C (3)-C (2)-H (2)
N(008) - C(2) - H(2)
$N(000) - C(2) - \Pi(2)$
N (008)-C (1)-N (007)
$N(008) - C(1) - A_{11}(1)$
N (007)-C (1)-Au (1)
C(6)-C(5)-C(4)
C(C) C(E) U(EA)
C (6)-C (5)-H (5A)
C(4)-C(5)-H(5A)
C(C) C(F) U(FP)
C (6)-C (5)-H (5B)
C(4)-C(5)-H(5B)
H (5A)-C (5)-H (5B)
C (2)-C (3)-N (007)
C(2) C(2) U(2)
C(2)-C(3)-H(3)
N (007)-C (3)-H (3)
C(22) C(22) C(20)
C (32)-C (33)-C (28)
C (32)-C (33)-C (34)
C(22) = C(22) = C(24)
C (28)-C (33)-C (34)
C (30)-C (29)-C (28)
C(20) C(20) U(20)
C (30)-C (29)-H (29)
C (28)-C (29)-H (29)
C(16) - C(17) - C(19)
C(10) - C(17) - C(10)
C (16)-C (17)-Si(1)
C(18)-C(17)-Si(1)
C(13)-C (14)-C (15)
C(13)-C(14)-C(15) C(13)-C(14)-H(14)

	(4)
1079	(4)
1111	(4)
108.5	(3)
110.3	(3)
100.0	(-1)
109.1	(4)
109.1	(4)
109.8	(4)
109.8	(4)
108.7	(4)
108.9	(7)
106.9	(5)
112.9	(8)
108.6	(4)
109.4	(4)
110.0	(4)
108.2	(5)
1105	(5)
1114	(4)
107 0	(1) (2)
107.0	(+) (4)
109.4	(4)
109.4	(4)
110.6	(5)
123.7	(6)
125.5	(6)
111.1	(6)
123.0	(6)
125.7	(6)
121.5	(7)
119.2	. ,
119.2	
119.2	(7)
120.2	(7)
120.2	
120.2	(\mathbf{C})
118.0	(6)
121.4	(6)
120.5	(6)
106.6	(6)
126.7	
126.7 126.7	
126.7 126.7 104.4	(6)
126.7 126.7 104.4 125.5	(6) (5)
126.7 126.7 104.4 125.5 130.1	(6) (5) (5)
126.7 126.7 104.4 125.5 130.1 112.9	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 109.0 107.8	(6) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 109.0 107.8 107.3	(6) (5) (5) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4	(6) (5) (5) (6) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4 126.4	(6) (5) (5) (6) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4 126.4 119.0	(6) (5) (5) (6) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4 126.4 119.0 117.3	 (6) (5) (6) (6) (6) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4 119.0 117.3 123.5	 (6) (5) (5) (6) (6) (6) (6) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4 119.0 117.3 123.5 122.1	 (6) (5) (5) (6) (6) (6) (6) (7)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.8 107.3 126.4 126.4 119.0 117.3 123.5 122.1 119.0	 (6) (5) (5) (6) (6) (6) (6) (7)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 107.8 107.3 126.4 119.0 117.3 123.5 122.1 119.0 0	 (6) (5) (5) (6) (6) (6) (6) (7)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 109.0 109.0 107.8 107.8 107.3 126.4 119.0 117.3 123.5 122.1 119.0 119.0 117.2	 (6) (5) (5) (6) (6) (6) (6) (7) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 107.3 126.4 126.4 119.0 117.3 123.5 122.1 119.0 119.0 119.0 117.2 123.5	 (6) (5) (5) (6) (6) (6) (6) (7) (6) (7) (6) (5)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 107.3 126.4 119.0 117.3 123.5 122.1 119.0 117.2 123.5	 (6) (5) (5) (6) (6) (6) (6) (7) (6) (6) (6) (7) (6) (6)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 107.8 107.3 126.4 119.0 117.3 126.4 119.0 117.3 122.5 122.1 119.0 119.0 117.2 123.5 119.3	 (6) (5) (5) (6) (6) (6) (6) (7) (6) (6) (7)
126.7 126.7 104.4 125.5 130.1 112.9 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 107.8 107.3 126.4 119.0 117.3 123.5 122.1 119.0 119.0 119.0 119.2 123.5 119.3 123.5	 (6) (5) (5) (6) (6) (6) (6) (7) (6) (6) (7)

C (15)-C (14)-H (14)	118.5
C (14)-C (13)-C (18)	118.5 (7)
C (14)-C (13)-C (12)	121.2 (6)
C (18)-C (13)-C (12)	120.2 (6)
C(17)-C(16)-C(15)	122.9 (7)
C(17)-C(16)-H(16)	118.5
V(10)-V(10)-H(10) V(000) C(25) C(20)	112.0 (6)
N(008)-C(25)-C(26)	109.0 (6)
C(28)-C(25)-C(26)	112.9 (5)
N (008)-C (25)-H (25)	107.3
C (28)-C (25)-H (25)	107.3
C (26)-C (25)-H (25)	107.3
C (35)-C (34)-C (39)	117.0 (6)
C (35)-C (34)-C (33)	124.8 (6)
C (39)-C (34)-C (33)	118.0 (6)
C (38)-C (39)-C (34)	123.5 (7)
C (38)-C (39)-H (39)	118.2
C (34)-C (39)-H (39)	118.2
C(30)-C(31)-C(32)	119.4 (7)
C(30)-C(31)-H(31)	120.3
C(32)-C(31)-H(31) C(30)-C(38)-C(37)	120.3
C(39)-C(38)-Si(4)	124.2 (6)
C(37)-C(38)-Si(4)	124.2(0) 1194(5)
C (37)-C (36)-C (35)	117.3 (7)
C (37)-C (36)-Si(3)	120.3 (5)
C (35)-C (36)-Si(3)	122.4 (5)
C (27)-C (26)-C (25)	112.7 (6)
C (27)-C (26)-H (26A)	109.0
C (25)-C (26)-H (26A)	109.0
С (27)-С (26)-Н (26В)	109.0
C (25)-C (26)-H (26B)	109.0
H (26A)-C (26)-H (26B)	107.8
C(10)-C(11)-C(12)	121.5(/)
$C(10)-C(11)-\Pi(11)$	119.5
C(12)-C(11)-II(11) C(8)-C(7)-C(12)	119.5
C(8)-C(7)-C(4)	1205(7)
C(12)-C(7)-C(4)	120.4 (6)
Si(1)-C (22)-H (22A)	109.5
Si(1)-C (22)-H (22B)	109.5
H (22A)-C (22)-H (22B)	109.5
Si(1)-C (22)-H (22C)	109.5
H (22A)-C (22)-H (22C)	109.5
H (22B)–C (22)-H (22C)	109.5
C (33)-C (32)-C (31)	121.8 (6)
C (33)-C (32)-H (32)	119.1
C(31)-C(32)-H(32)	119.1
C(34)-C(35)-H(35)	122.4 (0)
C (36)-C (35)-H (35)	118.8
C (11)-C (10)-C (9)	119.6 (7)
C (11)-C (10)-H (10)	120.2
C (9)-C (10)-H (10)	120.2
C (14)-C (15)-C (16)	116.7 (7)
C (14)-C (15)-Si(2)	120.1 (6)
C (16)-C (15)-Si(2)	123.1 (6)
C (10)-C (9)-C (8)	119.8 (7)
C (10)-C (9)-H (9)	120.1
C(8)-C(9)-H(9)	120.1
C(30)-C(37)-C(38)	123.4(/)
し (JO)- L (J /)- H (J /)	118.3

С (38)-С (37)-Н (37)	118.3
C (9)-C (8)-C (7)	121.4 (7)
C (9)-C (8)-H (8)	119.3
C (7)-C (8)-H (8)	119.3
C (11)-C (12)-C (7)	118.6 (6)
C (11)-C (12)-C (13)	118.3 (6)
C (7)-C (12)-C (13)	123.1 (6)
N (007)-C (4)-C (7)	111.6 (6)
N (007)-C (4)-C (5)	110.8 (5)
C (7)-C (4)-C (5)	113.9 (6)
N (007)-C (4)-H (4)	106.7
C (7)-C (4)-H (4)	106.7
C (5)-C (4)-H (4)	106.7
SI(2)-C(21)-H(21A)	109.5
SI(2)-C(21)-H(21B)	109.5
H (21A)-C (21)-H (21B)	109.5
SI(2)-C(21)-H(21C)	109.5
H (21A)-C (21)-H (21C)	109.5
H(21B) - C(21) - H(21C)	109.5
C(26)-C(27)-H(27R)	109.5
U(20)-U(27)-H(27B)	109.5
H(2/R)-C(2/)-H(2/B)	109.5
U(27) = U(27) = U(27C)	109.5
H(27R) - C(27) - H(27C)	109.5
F(2/D) = C(2/) - F(2/C) F(2) = C(41) = U(41A)	109.5
Si(3)-C(41)-H(41R)	109.5
H(41A)-C(41)-H(41B)	109.5
Si(3)-C (41)-H (41C)	109.5
H (41A)-C (41)-H (41C)	109.5
H (41B) - C (41) - H (41C)	109.5
Si(1)-C (23)-H (23A)	109.5
Si(1)-C (23)-H (23B)	109.5
H (23A)-C (23)-H (23B)	109.5
Si(1)-C (23)-H (23C)	109.5
H (23A)-C (23)-H (23C)	109.5
H (23B)–C (23)-H (23C)	109.5
Si(3)-C (40)-H (40A)	109.5
Si(3)-C (40)-H (40B)	109.5
H (40A)-C (40)-H (40B)	109.5
Si(3)-C (40)-H (40C)	109.5
H (40A)-C (40)-H (40C)	109.5
H (40B)–C (40)-H (40C)	109.5
C (5)-C (6)-H (6A)	109.5
C (5)-C (6)-H (6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(bA)-C(b)-H(bC)	109.5
H(bB) = C(b) = H(bC)	109.5
SI(1) - C(24) - H(24R) SI(1) - C(24) - H(24R)	109.5
$SI(1) - C(24) - \Pi(24D)$ U(24A) C(24) - U(24D)	109.5
$S_{1}(24R) = C(24) = H(24C)$	109.5
$\Pi(1) - C(24) - \Pi(24C)$ $\Pi(24A) C(24) = \Pi(24C)$	109.5
H(24R) - C(24) - H(24C)	109.5
Si(3) - C(27) - H(27C)	109.5
Si(3)-C (42)-H (42B)	109.5
H (42A)-C (42)-H (42B)	109.5
Si(3)-C (42)-H (42C)	109.5
H (42A)-C (42)-H (42C)	109.5
H (42B)–C (42)-H (42C)	109.5
Si(2)-C (20)-H (20A)	109.5
Si(2)-C (20)-H (20B)	109.5

$\begin{array}{llllllllllllllllllllllllllllllllllll$	H (20A)-C (20)-H (20B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(2)-C (20)-H (20C)	109.5
$\begin{array}{lll} H \left(20B \right) - C(20) - H \left(20C \right) & 109.5 \\ Si(2) - C \left(19 \right) - H \left(19A \right) & 109.5 \\ Si(2) - C \left(19 \right) - H \left(19B \right) & 109.5 \\ H \left(19A \right) - C \left(19 \right) - H \left(19B \right) & 109.5 \\ Si(2) - C \left(19 \right) - H \left(19C \right) & 109.5 \\ H \left(19A \right) - C \left(19 \right) - H \left(19C \right) & 109.5 \\ Si(4) - C \left(19 \right) - H \left(19C \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45A \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44A \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43A \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 1$	H (20A)-C (20)-H (20C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H (20B)–C(20)-H (20C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(2)-C (19)-H (19A)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(2)-C (19)-H (19B)	109.5
$\begin{array}{lll} Si(2)-C (19)-H (19C) & 109.5 \\ H (19A)-C (19)-H (19C) & 109.5 \\ H (19B)-C (19)-H (19C) & 109.5 \\ Si(4)-C (45)-H (45A) & 109.5 \\ Si(4)-C (45)-H (45B) & 109.5 \\ Si(4)-C (45)-H (45B) & 109.5 \\ Si(4)-C (45)-H (45C) & 109.5 \\ H (45A)-C (45)-H (45C) & 109.5 \\ Si(4)-C (44)-H (44C) & 109.5 \\ Si(4)-C (44)-H (44B) & 109.5 \\ Si(4)-C (44)-H (44C) & 109.5 \\ Si(4)-C (44)-H (44C) & 109.5 \\ Si(4)-C (43)-H (43C) & 109.5 \\ Si(4)-C (43)-H (43B) & 109.5 \\ Si(4)-C (43)-H (43C) & 109.5 \\ Si(4)-C (43)-H (43C) & 109.5 \\ H (43A)-C (43)-H (43C) & 109.5 \\ H (43B)-C (43)-H (43C) & 109.5 \\ H (43B)-C (43)-H (43C) & 109.5 \\ H (43B)-C (43)-H (43C) & 109.5 \\ Si(4)-C $	H (19A)-C (19)-H (19B)	109.5
$\begin{array}{lll} H \left(19A \right) - C \left(19 \right) - H \left(19C \right) & 109.5 \\ H \left(19B \right) - C \left(19 \right) - H \left(19C \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45A \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43A \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(4$	Si(2)-C (19)-H (19C)	109.5
$\begin{array}{lll} H \left(19B \right) - C \left(19 \right) + H \left(19C \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45A \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ H \left(45B \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44A \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43A \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(44A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H $	H (19A)-C (19)-H (19C)	109.5
$\begin{array}{lll} {\rm Si}(4)-C (45)-H (45A) & 109.5 \\ {\rm Si}(4)-C (45)-H (45B) & 109.5 \\ {\rm H} (45A)-C (45)-H (45B) & 109.5 \\ {\rm Si}(4)-C (45)-H (45C) & 109.5 \\ {\rm H} (45A)-C (45)-H (45C) & 109.5 \\ {\rm H} (45B)-C (45)-H (45C) & 109.5 \\ {\rm Si}(4)-C (44)-H (44A) & 109.5 \\ {\rm Si}(4)-C (44)-H (44B) & 109.5 \\ {\rm H} (44A)-C (44)-H (44B) & 109.5 \\ {\rm H} (44A)-C (44)-H (44C) & 109.5 \\ {\rm H} (44A)-C (44)-H (44C) & 109.5 \\ {\rm H} (44B)-C (44)-H (44C) & 109.5 \\ {\rm H} (44B)-C (44)-H (44C) & 109.5 \\ {\rm Si}(4)-C (43)-H (43A) & 109.5 \\ {\rm Si}(4)-C (43)-H (43A) & 109.5 \\ {\rm Si}(4)-C (43)-H (43B) & 109.5 \\ {\rm Si}(4)-C (43)-H (43B) & 109.5 \\ {\rm H} (43A)-C (43)-H (43C) & 109.5 \\ {\rm H} (43B)-C (43)-H$	Н (19В)—С (19)-Н (19С)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(4)-C (45)-H (45A)	109.5
$\begin{array}{ll} H \left(45A \right) - C \left(45 \right) - H \left(45B \right) & 109.5 \\ Si(4) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ H \left(45A \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ H \left(45B \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44A \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5$	Si(4)-C (45)-H (45B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H (45A)-C (45)-H (45B)	109.5
$\begin{array}{ll} H \left(45A \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ H \left(45B \right) - C \left(45 \right) - H \left(45C \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44A \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ \end{array}$	Si(4)-C (45)-H (45C)	109.5
$\begin{array}{ll} H \left(45B \right) - C \left(45 \right) \cdot H \left(45C \right) & 109.5 \\ Si(4) - C \left(44 \right) + H \left(44A \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43A \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ \end{array}$	H (45A)-C (45)-H (45C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H (45B)–C (45)-H (45C)	109.5
$\begin{array}{lll} {\rm Si}(4)-C \ (44)-H \ (44B) & 109.5 \\ {\rm H} \ (44A)-C \ (44)-H \ (44B) & 109.5 \\ {\rm Si}(4)-C \ (44)-H \ (44C) & 109.5 \\ {\rm H} \ (44A)-C \ (44)-H \ (44C) & 109.5 \\ {\rm H} \ (44B)-C \ (44)-H \ (44C) & 109.5 \\ {\rm Si}(4)-C \ (43)-H \ (43C) & 109.5 \\ {\rm H} \ (43A)-C \ (43)-H \ (43C) & 109.5 \\ {\rm H} \ (43B)-C \ (43)-H \ (43C)-H \ (43C) & 109.5 \\ {\rm H} \ (43B)-H \ (43C)-H \ (4$	Si(4)-C (44)-H (44A)	109.5
$\begin{array}{ll} H \left(44A \right) - C \left(44 \right) - H \left(44B \right) & 109.5 \\ Si(4) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ H \left(44A \right) - C \left(44 \right) - H \left(44C \right) & 109.5 \\ Si \left(44B \right) - C \left(44A \right) - H \left(44C \right) & 109.5 \\ Si \left(4A \right) - C \left(44A \right) - H \left(44C \right) & 109.5 \\ Si \left(4A \right) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si \left(4A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ \end{array}$	Si(4)-C (44)-H (44B)	109.5
$\begin{array}{lll} {\rm Si}(4){\rm -C}(44){\rm -H}(44C) & 109.5 \\ {\rm H}(44A){\rm -C}(44){\rm -H}(44C) & 109.5 \\ {\rm H}(44B){\rm -C}(44){\rm -H}(44C) & 109.5 \\ {\rm Si}(4){\rm -C}(43){\rm -H}(43A) & 109.5 \\ {\rm Si}(4){\rm -C}(43){\rm -H}(43B) & 109.5 \\ {\rm H}(43A){\rm -C}(43){\rm -H}(43C) & 109.5 \\ {\rm H}(43A){\rm -C}(43){\rm -H}(43C) & 109.5 \\ {\rm H}(43B){\rm -H}(43C)(43C){\rm -H}(43C) & 100.5 \\ {\rm H}(43C){\rm -H}(43C){\rm -H}(4C){\rm -H}(4C){\rm -H}($	H (44A)-C (44)-H (44B)	109.5
$\begin{array}{ll} H (44A)-C (44)-H (44C) & 109.5 \\ H (44B)-C (44)-H (44C) & 109.5 \\ Si(4)-C (43)-H (43A) & 109.5 \\ Si(4)-C (43)-H (43B) & 109.5 \\ H (43A)-C (43)-H (43B) & 109.5 \\ Si(4)-C (43)-H (43C) & 109.5 \\ H (43A)-C (43)-H (43C) & 109.5 \\ H (43B)-C (43)-H (43C) & 109.5 \\ \end{array}$	Si(4)-C (44)-H (44C)	109.5
$\begin{array}{ll} H \left(44B \right) - C \left(44 \right) + H \left(44C \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43A \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43B \right) & 109.5 \\ Si(4) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43A \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ H \left(43B \right) - C \left(43 \right) - H \left(43C \right) & 109.5 \\ \end{array}$	H (44A)-C (44)-H (44C)	109.5
Si(4)-C (43)-H (43A) 109.5 Si(4)-C (43)-H (43B) 109.5 H (43A)-C (43)-H (43B) 109.5 Si(4)-C (43)-H (43C) 109.5 H (43A)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5	H (44B)–C (44)-H (44C)	109.5
Si(4)-C (43)-H (43B) 109.5 H (43A)-C (43)-H (43B) 109.5 Si(4)-C (43)-H (43C) 109.5 H (43A)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5	Si(4)-C (43)-H (43A)	109.5
H (43A)-C (43)-H (43B) 109.5 Si(4)-C (43)-H (43C) 109.5 H (43A)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5	Si(4)-C (43)-H (43B)	109.5
Si(4)-C (43)-H (43C) 109.5 H (43A)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5	H (43A)-C (43)-H (43B)	109.5
H (43A)-C (43)-H (43C) 109.5 H (43B)-C (43)-H (43C) 109.5	Si(4)-C (43)-H (43C)	109.5
H (43B)–C (43)-H (43C) 109.5	H (43A)-C (43)-H (43C)	109.5
	Н (43В)—С (43)-Н (43С)	109.5

Crystal data and structure refinement for 24.

Identification code	s1	
Empirical formula	C26H35 N O5 S	
Formula weight	473.61	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	$a = 14.2401 \ (6)$ Å	$\alpha = 90^{\circ}$.
	b = 9.6319(4) Å	$\beta = 90^{\circ}$.
	c = 35.1349 (14) Å	$\gamma = 90^{\circ}$.
Volume	4819.1 (3) Å ³	
Z	8	
Density (calculated)	1.306 Mg/m ³	
Absorption coefficient	0.172 mm^{-1}	
F (000)	2032	
Crystal size	$0.77 \times 0.52 \times 0.15 \text{ mm}^3$	
Theta range for data collection	2.319–36.369°.	
Index ranges	$-23 \le h <= 23, -16 \le k <= 16, -58 \le l <= 58$	
Reflections collected	229040	
Independent reflections	11692 [R (int) = 0.0830]	
Completeness to theta $= 25.242^{\circ}$	99.9%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.4383 and 0.3908	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	11692/0/403	
Goodness-of-fit on F ²	1.065	
Final R indices [I > 2sigma(I)]	R1 = 0.0421, $wR2 = 0.0996$	
R indices (all data)	R1 = 0.0634, $wR2 = 0.1072$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.650 and -0.514 e.Å ⁻³	

Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **24**. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U (eq)
S (1)	4600(1)	4617 (1)	2155 (1)	11 (1)
0(1)	5322 (1)	2364(1)	806(1)	13 (1)
O (5)	4603 (1)	4299 (1)	2555 (1)	16(1)
O (3)	3584(1)	-313 (1)	1313 (1)	16(1)
0 (4)	3941 (1)	5649(1)	2026 (1)	17 (1)
N (1)	4411 (1)	3125 (1)	1925 (1)	10(1)
C (21)	6497 (1)	4202 (1)	2134(1)	11 (1)
C (2)	4187 (1)	2012 (1)	1301 (1)	10(1)
C (16)	5751 (1)	5043 (1)	2003 (1)	11 (1)
C (3)	4387 (1)	3340 (1)	1507 (1)	11 (1)
0(2)	4525 (1)	4306 (1)	648 (1)	22 (1)
C (4)	3544 (1)	2436(1)	2066 (1)	13 (1)
C (6)	3426(1)	1059(1)	1462 (1)	11 (1)
C (5)	3468 (1)	996 (1)	1892 (1)	13 (1)
C (1)	4535 (1)	1677 (1)	961 (1)	11 (1)
C (11)	5249(1)	3669(1)	661 (1)	14(1)
C (17)	5912(1)	6172 (1)	1754 (1)	13 (1)
C (24)	6377 (1)	2981 (1)	2399 (1)	14(1)
C (19)	7587 (1)	5590 (1)	1758 (1)	14(1)
C (20)	7404 (1)	4508 (1)	2010(1)	13 (1)
C (18)	6837(1)	6404 (1)	1637 (1)	15(1)
C (10)	4174 (1)	506 (1)	713 (1)	14(1)
C (9)	3320(1)	-158 (1)	921 (1)	17(1)
C (7)	2504 (1)	1468 (1)	1270 (1)	15(1)
C (25)	3875 (1)	1088 (1)	325 (1)	19(1)
C (12)	6202 (1)	4158 (1)	514(1)	18 (1)
C (23)	8564 (1)	5851 (1)	1611 (1)	19(1)
C (8)	2456 (1)	762 (1)	946 (1)	19(1)
C (22)	5176(1)	7155 (1)	1602 (1)	22 (1)
C (26)	4937 (1)	-603 (1)	659 (1)	23 (1)
C (15)	6974 (1)	3834(1)	804 (1)	26 (1)
C (13)	6395 (1)	3365 (2)	142 (1)	32 (1)
C (14)	6158 (1)	5716 (2)	438 (1)	38 (1)

126.9, 127.7, 130.3, 135.2, 136.3, 139.1, 139.1, 141.9, 142.0. m/z (ESI-MS) calcd for $[C_{30}H_{51}NOSSi_2+H]$: 530.3; found 530.2 $[M+H]^+$.

(*R*)-N-((*S*)-1-(3',5'-bis(tripropylsilyl)-[1,1'-biphenyl]-2-yl)ethyl)-2-methylpropane-2-sulfinamide Yield: 97%. ¹H NMR (500MHz, CDCl₃): δ 0.81–0.84 (m, 12H), 0.98 (t, *J* = 7.3, 18H), 1.13 (s, 9H), 1.36–1.44 (m, 12H), 1.47 (d, *J* = 6.7, 3H), 3.23 (d, *J* = 4.9, 1H), 4.66–4.71 (m, 1H), 7.24 (dd, *J* = 7.6, 1.4, 1H), 7.32 (dt, *J* = 7.5, 1.3, 1H), 7.37 (s, 2H), 7.40 (dt, *J* = 7.4, 1.4, 1H), 7.51 (dd, *J* = 7.9, 1.1, 1H), 7.61 (t, *J* = 1.1, 1H). ¹³C NMR (125MHz, CDCl₃): δ 15.5, 17.6, 18.7, 22.6, 25.6, 51.8, 55.6, 126.3, 126.9, 127.7, 130.3, 135.1, 136.9, 138.9, 139.1, 142.0, 142.0.

 Table 9

 Bond lengths [Å] and angles [°] for 24.

S (1)–O (5)	1.4391 (7)
S (1)–O (4)	1.4389 (7)
S (1)–N (1)	1.6694 (7)
S (1)–C (16)	1.7733 (9)
0 (1)–C (1)	1.4121 (10)
0 (1)–C (11)	1.3599 (11)
0 (3)–C (6)	1.4383 (11)
0 (3)–C (9)	1.4376 (11)
N (1)–C (3)	1.4834 (11)
N (1)–C (4)	1.4870 (11)
C (21)–C (16)	1.4133 (12)
C (21)–C (24)	1.5095 (12)
C(21) - C(20)	1.3953 (12)
C(2) - C(3)	1.4977 (12)
C(2) - C(6)	1.5281 (11)
C(2) - C(1)	1.3322 (11)
(16) - (17)	1.4134 (12)
O(2) = C(11)	1.2002 (11)
C(4) - C(5)	1.5192 (13)
C(6) = C(3)	1.5140 (12)
C(0) - C(1)	1.5275(12) 1.5140(12)
C(11) - C(10)	1.5149(12) 1.5291(12)
C(17) - C(12) C(17) - C(18)	1.3281 (13)
C(17) - C(10)	1,5370 (13)
C(17) = C(22)	1 3921 (13)
C(19) - C(18)	1 3914 (13)
C(19) - C(23)	1.5042 (13)
C(10)-C(9)	1.5561 (14)
C(10) - C(25)	1.5350 (13)
C (10)–C (26)	1.5350 (14)
C(9) - C(8)	1.5178 (15)
C (7)–C (8)	1.3295 (14)
C (12)–C (15)	1.5322 (15)
C (12)–C (13)	1.5364 (16)
C (12)–C (14)	1.5254 (17)
O (5)-S (1)-O (4)	117.08 (4)
O (5)-S (1)-N (1)	106.82 (4)
0 (5)-S (1)-C (16)	109.94 (4)
0 (4)-S (1)-N (1)	109.78 (4)
0 (4)-S (1)-C (16)	110.38 (4)
N (1)-S (1)-C (16)	101.67 (4)
C (11)-O (1)-C (1)	121.07 (7)
C (9)-O (3)-C (6)	102.21 (7)
C(3)-N(1)-S(1)	111.19(6)
C(3)-N(1)-C(4)	111.90 (6)
C(4)-N(1)-S(1)	110.90 (5)
C(10)-C(21)-C(24) C(20)-C(21)-C(16)	124.33 (8)
C(20) - C(21) - C(10) C(20) - C(21) - C(24)	11752 (9)
C(20) - C(21) - C(24) C(2) - C(2) - C(6)	117.00 (7)
C(1) - C(2) - C(0)	124 76 (8)
C(1)-C(2)-C(6)	124.70(0) 116.66(7)
C(21) - C(16) - S(1)	117 58 (6)
C (17)-C (16)-S (1)	120.98 (6)
C (17)-C (16)-C (21)	121.43 (8)
N (1)-C (3)-C (2)	111.36(7)
N (1)-C (4)-C (5)	109.40 (7)
O (3)-C (6)-C (2)	107.93 (7)
O (3)-C (6)-C (5)	108.62 (7)
0 (3)-C (6)-C (7)	102.22 (7)
C (5)-C (6)-C (2)	111.40 (7)
C (5)-C (6)-C (7)	118.91 (7)

C (7)-C (6)-C (2)	106.97 (7)
C (6)-C (5)-C (4)	111.65 (7)
O (1)-C (1)-C (10)	113.26(7)
C (2)-C (1)-O (1)	121.93 (7)
C (2)-C (1)-C (10)	124.75 (8)
0 (1)-C (11)-C (12)	110.05 (7)
0 (2)-C (11)-O (1)	123.60 (8)
0 (2)-C (11)-C (12)	126.33 (9)
C (16)-C (17)-C (22)	126.03 (8)
C (18)-C (17)-C (16)	117.21 (8)
C (18)-C (17)-C (22)	116.75 (8)
C (20)-C (19)-C (23)	121.07 (8)
C (18)-C (19)-C (20)	118.12 (8)
C (18)-C (19)-C (23)	120.80 (8)
C (19)-C (20)-C (21)	122.09 (8)
C (19)-C (18)-C (17)	122.98 (8)
C (1)-C (10)-C (9)	107.56 (7)
C (1)-C (10)-C (25)	109.47 (7)
C (1)-C (10)-C (26)	110.46 (8)
C (25)-C (10)-C (9)	110.43 (8)
C (26)-C (10)-C (9)	108.99 (8)
C (26)-C (10)-C (25)	109.90 (8)
O (3)-C (9)-C (10)	106.69 (7)
O (3)-C (9)-C (8)	102.53 (7)
C (8)-C (9)-C (10)	114.87 (8)
C (8)-C (7)-C (6)	106.81 (8)
C (11)-C (12)-C (15)	110.38 (8)
C (11)-C (12)-C (13)	107.12 (8)
C (15)-C (12)-C (13)	109.70 (10)
C (14)-C (12)-C (11)	108.99 (9)
C (14)-C (12)-C (15)	110.25 (10)
C (14)-C (12)-C (13)	110.35 (11)
C (7)-C (8)-C (9)	107.90 (8)

(*R*)-N-((*R*)-1-(3',5'-bis(trimethylsilyl)-[1,1'-biphenyl]-2-yl)propyl)-2-methylpropane-2-sulfinamide Yield: 93%. ¹H NMR (500MHz, CDCl₃): δ 0.36 (s, 18H), 0.75 (t, *J* = 7.4, 3H), 1.21 (s, 9H), 1.73–1.92 (m, 2H), 3.45 (d, *J* = 5.7, 1H), 4.38 (q, *J* = 7.0, 1H), 7.28 (dd, *J* = 7.6, 1.4, 1H), 7.33 (dt, *J* = 7.5, 1.4, 1H), 7.43 (dt, *J* = 7.2, 1.4, 1H), 7.49–7.51 (m, 3H), 7.72 (t, *J* = 1.1, 1H). ¹³C NMR (125MHz, CDCl₃): δ –1.0, 10.4, 22.6, 30.9, 55.8, 57.1, 126.3, 127.0, 127.9, 130.2, 134.9, 136.8, 139.3, 139.5, 140.5, 142.4. m/z (ESI-MS) calcd for [C₂₅H₄₁NOSSi₂+H]: 460.3; found 460.3 [M+H]⁺.

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Cone l	BC
1 2	26.46 32.80	14145128 14620727	49.173 50.827	BB BB
		28765855	100.000	

Fig. 3. Chrial HPLC spectrum of racemic mixture of cycloaddition product 24.

(*R*)-N-((*R*)-1-(3',5'-bis(triethylsilyl)-[1,1'-biphenyl]-2-yl)propyl)-2-methylpropane-2-sulfinamide Yield: 88%. ¹H NMR (500MHz, CDCl₃): δ 0.72 (t, *J* = 7.3, 3H), 0.83 (q, *J* = 7.6, 12H), 0.99 (t, *J* = 7.8, 18H), 1.16 (s, 9H), 1.68–1.81 (m, 2H), 3.43 (d, *J* = 6.7, 1H), 4.37 (q, *J* = 6.8, 1H), 7.24 (d, *J* = 7.7, 1H), 7.30 (t, *J* = 7.5, 1H), 7.39 (t, *J* = 7.8, 1H), 7.42 (s, 2H), 7.46 (d, *J* = 7.8, 1H), 7.62 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ 3.5, 7.6, 10.7, 22.6, 31.1, 56.0, 57.7, 126.3, 127.0, 127.8, 130.3, 135.6, 136.0, 138.9, 139.4, 140.7, 142.4.

(*R*)-N-((*R*)-1-(3',5'-bis(tripropylsilyl)-[1,1'-biphenyl]-2-yl)propyl)-2-methylpropane-2-sulfinamide Yield: 90%. ¹H NMR (500MHz, CDCl₃): δ 0.73 (t, *J* = 7.4, 3H), 0.81−0.84 (m, 12H), 0.97 (t, *J* = 7.4, 18H), 1.16 (s, 9H), 1.35−1.43 (m, 12H), 1.66−1.82 (m, 2H), 3.41 (d, *J* = 7.0, 1H), 4.36 (q, *J* = 7.1, 1H), 7.23 (dd, *J* = 7.7, 1.3, 1H), 7.31 (dt, *J* = 7.5, 1.2, 1H), 7.38−7.41 (m, 3H), 7.46 (d, *J* = 7.8, 1H), 7.61 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ 10.7, 15.4, 17.6, 18.6, 22.6, 31.2, 55.9, 57.8, 126.3, 127.0, 127.7, 130.3, 135.4, 136.7, 138.8, 139.3, 140.8, 142.4.

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Conc 1	BC
1 2	25.81 33.07	16242955 2330128	87.454 12.546	BB BB
		18573083	100.000	

(R)-N-((S)-1-(3',5'-bis(trimethylsily)-[1,1'-biphenyl]-2-yl)butyl)-2-methylpropane-2-sulfinamide

Yield: 50%. ¹H NMR (500MHz, CDCl₃): δ 0.37 (s, 18H), 0.76 (t, *J* = 7.4, 3H), 1.09–1.18 (m, 2H), 1.21 (s, 9H), 1.71–1.81 (m, 2H), 3.36 (d, *J* = 4.3, 1H), 4.56 (q, *J* = 4.2, 1H), 7.29 (d, *J* = 7.8, 1H), 7.35 (t, *J* = 7.5, 1H), 7.43 (t, *J* = 7.5, 1H), 7.49–7.51 (3H), 7.73 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ – 1.0, 13.8, 19.4, 22.6, 41.8, 55.4, 55.6, 126.70, 126.8, 127.7, 130.0, 134.8, 136.9, 139.3, 139.4, 140.8, 142.6.

(*R*)-N-((*S*)-1-(3',5'-bis(triethylsilyl)-[1,1'-biphenyl]-2-yl)butyl)-2-methylpropane-2-sulfinamide Yield: 72%. ¹H NMR (500MHz, CDCl₃): δ 0.68 (t, *J* = 7.2, 3H), 0.84 (q, *J* = 7.9, 12H), 1.00 (t, *J* = 7.8, 18H), 1.05–1.13 (m, 2H), 1.16 (s, 9H), 1.63–1.76 (m, 2H), 3.30 (d, *J* = 5.0, 1H), 4.59 (q, *J* = 5.1, 1H), 7.23 (dd, *J* = 7.7, 1.07Hz), 7.30 (dt, *J* = 7.4, 1.2, 1H), 7.38 (dt, *J* = 7.7, 1.4, 1H), 7.40 (s, 2H), 7.46 (d, *J* = 7.7, 1H), 7.63 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ 3.5, 7.6, 13.6, 19.4, 22.6, 41.7, 55.6, 55.7, 126.5, 126.7, 127.6, 130.2, 135.5, 136.2, 139.0, 139.3, 141.0, 142.5.

(*R*)-N-((*S*)-1-(3',5'-bis(tripropylsilyl)-[1,1'-biphenyl]-2-yl)butyl)-2-methylpropane-2-sulfinamide Yield: 86%. ¹H NMR (500MHz, CDCl₃): δ 0.71 (t, *J* = 7.3, 3H), 0.82–0.86 (m, 12H), 0.98 (t, *J* = 7.3, 18H), 1.08–1.23 (m, 2H), 1.17 (s, 9H), 1.37–1.44 (m, 12H), 1.63–1.76 (m, 2H), 3.29 (d, *J* = 5.2, 1H), 4.58 (q, *J* = 5.3, 1H), 7.23 (dd, *J* = 7.6, 1.1), 7.30 (dt, *J* = 7.5, 1.2, 1H), 7.37–7.40 (m, 3H), 7.46 (d, *J* = 7.9, 1H), 7.62 (s, 1H). ¹³C NMR (125MHz, CDCl₃): δ 13.7, 15.4, 17.6, 18.6, 19.4, 22.6, 41.8, 55.6, 55.8, 126.5, 126.7, 127.6, 130.2, 135.3, 136.8, 138.9, 139.2, 141.1, 142.6.

2.2. Preparation of furan propargyl esters

2,4,6-trimethyl-N-(prop-2-yn-1-yl)benzenesulfonamide

This compound was synthesized according to the procedure reported by Campolo et al.[3] Light brown solid. Yield: 93%. ¹H NMR (500MHz, CDCl₃): δ 2.09 (t, J = 2.6, 1H), 2.30 (s, 3H), 2.65 (s, 6H), 3.78–3.79 (m, 2H), 4.65 (s, 1H), 6.96 (s, 2H).

N-(2-(furan-2-yl)ethyl)-2,4,6-trimethyl-N-(prop-2-yn-1-yl)benzenesulfonamide

This compound was synthesized according to the procedure reported by Loshe et al.[4] Clear oil. Yield: 86%. ¹H NMR (500MHz, CDCl₃): δ 2.27 (t, J = 2.5, 1H), 2.30 (s, 3H), 2.88 (t, J = 7.2, 2H), 3.54 (t, J = 7.5, 2H), 4.02 (d, J = 2.5, 2H), 5.96 (dd, J = 3.2, 0.6, 1H), 6.23 (dd, J = 3.2, 1.9, 1H), 6.93 (s, 2H), 7.22 (dd,

J = 2.1, 0.7, 1H). ¹³C NMR (125MHz, CDCl₃): δ 21.1, 22.9, 26.5, 35.1, 44.4, 73.5, 77.7, 106.5, 110.4, 132.1, 132.3, 140.7, 141.6, 142.9, 152.2.

5-(N-(2-(furan-2-yl)ethyl)-2,4,6-trimethylphenylsulfonamido)-2-methylpent-3-yn-2-yl pivalate 23

This compound was synthesized according to the procedure reported by Li et al.[5] Light yellow oil. Yield: 53%. ¹H NMR (500MHz, CDCl₃): δ 1.15 (s, 9H), 1.58 (s, 6H), 2.29 (s, 3H), 2.56 (s, 6H), 2.90 (t, *J* = 7.8, 2H), 3.53 (t, *J* = 7.6, 2H), 4.03 (s, 2H), 6.00 (dd, *J* = 3.2, 0.5, 1H), 6.23 (dd, *J* = 3.2, 1.8, 1H), 6.92 (s, 2H), 7.22 (dd, *J* = 1.8, 0.7, 1H). ¹³C NMR (125MHz, CDCl₃): δ 21.1, 22.9, 26.6, 27.2, 28.8, 35.5, 39.2, 44.4, 71.4, 77.6, 86.6, 106.4, 110.3, 132.1, 132.7, 140.6, 141.5, 142.6, 152.5, 176.8.

(*R*)-5-(N-(2-(furan-2-yl)ethyl)-2,4,6-trimethylphenylsulfonamido)-2-methylpent-3-yn-2-yl 2-methoxy-2-phenylacetate **28**

This compound was synthesized according to the procedure reported by Bao et al.[6] Light yellow oil. Yield: 86%. ¹H NMR (500MHz, CDCl₃): δ 1.54 (s, 3H), 1.60 (s, 3H), 2.30 (s, 3H), 2.54 (s, 6H), 2.84 (t, J = 7.2, 2H), 3.41 (s, 3H), 3.46 (dt, J = 7.3, 2.5, 2H), 3.99 (s, 2H), 4.69 (s, 1H), 5.99 (d, J = 3.1, 1H), 6.24 (q, J = 1.9, 1H), 6.92 (s, 2H), 7.22 (d, J = 1.2, 1H), 7.31–7.35 (m, 3H), 7.43 (dd, J = 8.0, 1.8, 2H). ¹³C NMR (125MHz, CDCl₃): δ 20.9, 22.7, 26.3, 28.4, 28.7, 35.1, 44.3, 57.3, 73.0, 78.4, 82.7, 85.6, 106.4, 110.2, 127.2, 128.5, 128.6, 132.0, 132.5, 136.2, 140.4, 141.3, 142.5, 152.3, 168.8.

2.3. NMR spectra of the gold complex 17a-19c and cycloaddition product 24 and 29 are deposited in Mendeley Data (https://data.mendeley.com/datasets/zh4gp5x682/4). The methods used to acquire the spectra are illustrtated in Specifications Table

2.4. X-ray crystallography data of gold complex 17a, 18a and cycloaddition product 24. The methods used to acquire the data are illustrated in Specifications Table

2.5. HPLC spectra of [4 + 3] cycloaddition reactions. The methods used to acquire the data are illustrated in Specifications Table

2.6. Cartesian coordinates of optimized structure of 25 and 26. The methods used to acquire the data are illustrated in our original paper[1]

Conformation A of 25

-0.72548	-0.55653	0.29432
-1.92338	0.02460	0.17726
-3.10646	-0.91131	-0.11852
-3.01736	-1.28974	-1.60225
-2.23489	-2.36508	-1.68884
-1.80156	-2.73097	-0.27679
-0.46134	-2.05378	0.17204
-1.89406	-2.86387	-2.58877
-3.44694	-0.70861	-2.41083
0.42774	0.19865	0.60587
-2.16899	1.51122	0.17875
-4.55731	1.14847	0.14694
-4.42881	-0.35504	0.39775
-5.26167	-0.90062	-0.06010
-4.46167	-0.53355	1.47795
-2.84982	-2.17101	0.52224
-1.75333	-3.80821	-0.08422
1.01211	0.96718	-0.35514
0.59659	1.11278	-1.47755
2.29531	1.60911	0.21447
2.06864	1.93545	1.24201
2.71931	2.69023	-0.57885
3.40080	0.56664	0.24887
1.86974	3.82541	-0.52458
2.35516	4.60255	-1.11945
1.75484	4.18705	0.50950
0.88012	3.61559	-0.94856
3.71735	-0.10152	1.43572
4.71711	-1.07567	1.45083
5.40841	-1.38604	0.27859
5.09494	-0.71977	-0.90856
4.09255	0.24983	-0.92674
4.95939	-1.58556	2.37942
3.18335	0.14297	2.35062
6.18981	-2.14121	0.29035
5.63155	-0.95624	-1.82357
3.84664	0.77541	-1.84372
-0.06004	-2.62206	1.55095

H C

Н	0.81654	-2.09841	1.94559
Н	-0.88375	-2.51449	2.26241
Н	0.19174	-3.68669	1.46499
С	0.65631	-2.33200	-0.85489
Н	0.45329	-1.84777	-1.81472
Н	1.62299	-1.97235	-0.48977
Н	0.74963	-3.41234	-1.02276
Ν	-3.45495	1.86283	0.78590
Н	-2.10741	1.88288	-0.86741
Н	-1.37455	2.01992	0.73569
Н	-5.49769	1.50943	0.57871
Н	-4.60638	1.35957	-0.94319
С	-3.65519	3.30344	0.77103
Н	-2.84191	3.79460	1.31709
Н	-4.59769	3.54996	1.27154
Н	-3.68555	3.73128	-0.25121

Conformation B of 25

С	1.10111	-0.76108	0.21770
С	1.44066	0.51326	0.00204
С	2.94022	0.80462	-0.15782
С	3.53721	0.80268	1.25638
С	3.87284	-0.45626	1.53874
С	3.53225	-1.30507	0.32209
С	2.08818	-1.91854	0.34529
Н	4.26168	-0.84391	2.47352
Н	3.57762	1.66829	1.90859
0	-0.24251	-1.10162	0.50563
С	0.50195	1.69173	0.06637
С	2.23714	3.16662	-0.73965
С	3.19965	2.01656	-1.04478
Н	4.24122	2.33885	-0.93342
Н	3.05200	1.70097	-2.08312
0	3.56636	-0.34747	-0.74108
Н	4.26257	-2.09239	0.10684
С	1.95873	-2.87929	-0.85687
С	1.84646	-2.68901	1.66021
Н	1.87895	-2.02619	2.53115

Н	0.86952	-3.18110	1.64877
Н	2.61141	-3.46479	1.78937
Ν	0.85406	2.73035	-0.90310
Н	0.52074	2.10108	1.10275
Н	-0.52841	1.37883	-0.11935
Н	2.42383	3.99038	-1.43798
Н	2.42260	3.56804	0.28091
С	-0.08282	3.84102	-0.83377
С	-1.11795	-1.30831	-0.51996
0	-0.83901	-1.29010	-1.69122
Н	2.65556	-3.71951	-0.74195
Н	2.18469	-2.35679	-1.78937
Н	0.94746	-3.28970	-0.93397
С	-2.53255	-1.52952	0.05644
0	-3.37149	-2.16628	-0.87586
С	-3.01982	-3.51194	-1.15690
Н	-3.79346	-3.89995	-1.82348
Н	-3.00238	-4.11937	-0.23821
Н	-2.04681	-3.58337	-1.65850
С	-4.18906	2.34773	0.99959
С	-4.16451	1.89256	-0.32145
С	-3.68345	1.54097	2.02019
С	-3.63409	0.63797	-0.62234
С	-3.15658	0.28330	1.72136
С	-3.13117	-0.17578	0.40112
Н	-4.60392	3.32492	1.23213
Н	-4.56114	2.51472	-1.11945
Н	-3.70368	1.88652	3.05034
Н	-2.76480	-0.34471	2.51760
Н	-3.61437	0.27496	-1.64476
Н	0.15618	4.57352	-1.61239
Н	-0.07035	4.36222	0.14496
Н	-1.10060	3.47523	-1.00615
Н	-2.42782	-2.13098	0.97325

Conformation C of 26

С	1.10638	-0.68206	0.43566
С	1.41853	0.54935	0.02046
С	2.91759	0.86004	-0.11502
С	3.53767	-1.23168	0.41563
С	2.11447	-1.76807	0.79564
С	0.42811	1.58397	-0.44758
C	2.18481	3.23125	-0.62891
С	3.22101	2.34357	0.06395
N	0.84993	2.94599	-0.11154
н	2.41615	4,28336	-0.42693
Н	2.23490	3.10102	-1.73180
Н	0.28777	1 46942	-1 54493
Н	-0.54922	1.40408	0.01059
н	3 20010	2 55557	1 13839
н	4 23065	2,55995	-0.30333
C	1.80575	-3.07406	0.3484
н	0.87075	_3 51911	0.00404
н	1 71265	2 90262	1 0/156
П Ц	2.60246	2 80777	- 1.04130
n C	2.00340	-3.80777	0.20323
с u	2.07747	1 12107	2,51012
п	2.55608	-1.13197	2.80190
п	2 74502	-2.26703	2.04394
H C	2.74503	-2.85488	2.38249
C C	3.39820	0.17811	-1.40211
C II	3.75017	-1.06494	-1.08095
Н	3.34982	0.62604	-2.38850
H	4.07782	-1.85427	-1./5062
0	3.62239	0.11547	0.89213
н	4.30439	-1.82973	0.92021
0	-0.23816	-1.07486	0.62591
C	-1.03293	-1.30076	-0.45775
0	-0.67192	-1.25876	-1.60/14
C	-0.13495	3.91567	-0.56682
Н	0.16482	4.92098	-0.25119
Н	-1.10817	3.69011	-0.11753
Н	-0.26309	3.92395	-1.66789
C	-2.47466	-1.58359	0.01550
0	-3.21131	-2.26317	-0.96995
C	-2.77896	-3.59327	-1.20854
Н	-3.47498	-4.01850	-1.93523
Н	-2.81350	-4.19451	-0.28640
Н	-1.76409	-3.62414	-1.62414
С	-3.14924	0.27813	1.60185
С	-3.73612	1.51886	1.85457
С	-4.33284	2.23520	0.81510
С	-4.33868	1.70551	-0.47765
С	-3.74712	0.46846	-0.73361
С	-3.15294	-0.25400	0.30823
Н	-3.73116	1.92199	2.86364
Н	-4.79531	3.19868	1.01240
Н	-2.68362	-0.27726	2.41194
Н	-4.80422	2.25740	-1.28999
Н	-3.74924	0.04897	-1.73395
Н	-2.40893	-2.17581	0.94188

Conformation D of 26

С	0.73006	-0.53577	-0.13190
С	1.94317	0.02288	-0.17668
С	3.12770	-0.88382	0.19193
С	1.83724	-2.70789	0.38950
С	0.45070	-1.99168	0.23261
0	-0.40675	0.18081	-0.57439
С	2.24982	1.40216	-0.70393
С	4.55062	1.20144	0.00791
С	4.29593	-0.09772	0.77471
Ν	3.35412	2.03828	0.01558
Н	5.36152	1.75642	0.49295
Н	4.89129	0.98210	-1.02762
Н	2.48472	1.32417	-1.79064
Н	1.36985	2.04630	-0.62335
Н	4.04156	0.15017	1.81070
Н	5.19358	-0.72625	0.78702
С	-1.05335	1.01467	0.29070
0	-0.69277	1.27279	1.41030
С	-2.33013	1.55960	-0.38330
Н	-2.09041	1.75268	-1.44088
0	-2.78626	2.72740	0.25594
С	-3.42030	0.50509	-0.29354
С	-1.93664	3.85249	0.09601
Н	-2.44700	4.69405	0.57014
Н	-1.77947	4.08487	-0.96932
Н	-0.96517	3.70311	0.58337
С	-3.78362	-0.25136	-1.41158
С	-4.77372	-1.23076	-1.30846
С	-5.40787	-1.45727	-0.08604
С	-5.04783	-0.70230	1.03310
С	-4.05575	0.27254	0.93306
Н	-5.05295	-1.81004	-2.18453
Н	-3.29492	-0.07127	-2.36598
Н	-6.18117	-2.21660	-0.00582
Н	-5.54005	-0.87365	1.98672
Н	-3.77332	0.86663	1.79637
С	-0.38990	-2.67282	-0.86806
Н	-1.38809	-2.23039	-0.92669
Н	0.08040	-2.58036	-1.85276
Н	-0.50785	-3.74029	-0.64324
С	-0.29108	-2.07598	1.58512
Н	0.31429	-1.63717	2.38196
Н	-1.24950	-1.54928	1.54935

R. Ma et al. / Data in brief 26 (2019) 104409

Н	-0.49685	-3.12523	1.83281
С	3.39649	-1.77420	-1.02919
С	2.61708	-2.84905	-0.91005
Н	4.04047	-1.50342	-1.85891
Н	2.49350	-3.65876	-1.62019
0	2.67790	-1.84219	1.16009
Н	1.70639	-3.64655	0.93822
С	3.61356	3.37074	-0.50513
Н	2.71056	3.98462	-0.41423
Н	3.92170	3.37312	-1.57042
Н	4.40785	3.84670	0.07962

Acknowledgments

This work was partially supported by Miami University. We are also grateful for technical assistance from Mr. Yichao Cai, who prepared some of the intermediates.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- R. Ma, J. Yang, S. Kelley, B.W. Gung, NHC-Au(I)catalyzed enantioselective intramolecular [4+3] cycloaddition of furan propargyl esters, J. Organomet. Chem. 898 (2019), https://doi.org/10.1016/j.jorganchem.2019.07.016.
- [2] B.W. Gung, M.R. Holmes, C.A. Jones, R. Ma, C.L. Barnes, Structure-enantioselectivity correlation in NHC-Au(I)catalysis for 1,6-enynecyclizations, Tetrahedron Lett. 57 (2016) 3912–3915, https://doi.org/10.1016/j.tetlet.2016.07.046.
- [3] D. Campolo, T. Arif, C. Borie, D. Mouysset, N. Vanthuyne, J.V. Naubron, M.P. Bertrand, M. Nechab, Double transfer of chirality in organocopper-mediated bis(alkylating)cycloisomerization of enediynes, Angew. Chem. Int. Ed. 53 (2014) 3227–3231, https://doi.org/10.1002/anie.201310530.
- [4] A.G. Lohse, R.P. Hsung, Thermal intramolecular [4 + 2] cycloadditions of allenamides: a stereoselective tandem propargyl amide isomerization-cycloaddition, Org. Lett. 11 (2009) 3430–3433, https://doi.org/10.1021/ol901283m.
- [5] G. Li, G. Zhang, L. Zhang, Au-catalyzed synthesis of (12,3E)-2-pivaloxy-1,3-dienes from propargylic pivalates, J. Am. Chem. Soc. 130 (2008) 3740–3741, https://doi.org/10.1021/ja800001h.
- [6] M. Bao, Y. Qian, H. Su, B. Wu, L. Qiu, W. Hu, X. Xu, Gold(I)-Catalyzed and H 2 O-mediated carbene cascade reaction of propargyl diazoacetates: furan synthesis and mechanistic insights, Org. Lett. 20 (2018) 5332–5335, https://doi.org/10.1021/ acs.orglett.8b02251.