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Abstract

Background

Tumor heterogeneity can manifest itself by sub-populations of cells having distinct pheno-

typic profiles expressed as diverse molecular, morphological and spatial distributions. This

inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treat-

ment. Consequently, tools and techniques are being developed to properly characterize and

quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technol-

ogy that offers molecular insight into both inter-individual and intratumor heterogeneity. It

enables the quantification of both the concentration and spatial distribution of 60+ proteins

across a tissue section. Upon bioimage processing, protein expression data can be gener-

ated for each cell from a tissue field of view.

Results

The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue het-

erogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes

the molecular state of each cell in a sample based on a pathway or gene set. Spatial states

are then computed based on the spatial arrangements of the cells as distinguished by their

respective molecular states. MOHA computes tissue heterogeneity metrics from the distribu-

tions of these molecular and spatially defined states. A colorectal cancer cohort of approxi-

mately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology.

Within this dataset, statistically significant correlations were found between the intratumor

AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore,

intratumor spatial diversity metrics were found to correlate with cancer recurrence.

Conclusions

MOHA provides a simple and robust approach to characterize molecular and spatial hetero-

geneity of tissues. Research projects that generate spatially resolved tissue imaging data

can take full advantage of this useful technique. The MOHA algorithm is implemented as a

freely available R script (see supplementary information).
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Introduction

Tumor heterogeneity manifests itself in multiple ways in terms of observable features includ-

ing tissue physiology, morphology, and histology, genotypes, gene expression, and protein

expression [1,2,3,4,5]. The heterogeneity of these features can be studied at the inter-individual

level [6,7] and at the intratumor level [8,9]. The inter-individual studies have typically relied

on cell averaged, bulk tumor tissue measures. However, a full system-level characterization of

tumor tissue heterogeneity is challenging and requires measures at the single cell level of a

tissue.

Approaches to measure intratumor heterogeneity at the genomic level include computing

allele fractions of the detected mutations from bulk tissue samples [10,11,12,13] or sequencing

single cells [14,15]. A compromise between bulk tumor and single cell analysis is the isolation

of smaller cell subpopulations by collecting samples from multiple tumor tissue regions or sep-

arating different types of cells into discrete tumor subsets by fluorescence-activated cell sorting

[16,17]. The shortcoming of these approaches is that the in vivo cell spatial orientations, cell-

cell interactions, and cell spatial heterogeneity remain unknown.

Digital pathology offers cell level details of molecular characteristics together with their spa-

tial distribution. Multiplexed immunofluorescence (MxIF) tissue imaging can now measure

the spatial concentration distribution of 60+ proteins on the same tissue [18,19,20,21]. The

idea that both the cell types and their spatial distributions are biologically relevant is not con-

tested, yet the methods to jointly characterize the heterogeneity of these in tissues are limited

and still being established [22,23,24,25]. Efforts have been made toward spatially mapping the

tumor microenvironment and the location of the immune cells relative to the tumor

[26,27,28,29]. A proliferative heterogeneity analysis involved hexagonal tiling on whole-slide

digital images of breast tumor tissues was conducted to characterize the spatial distribution of

Ki67 expression [30,31]. The computed entropy metric was found to be an independent prog-

nostic indicator of overall survival in breast cancer patients. In another study, heterogeneity

was assessed in a tissue microarray constructed by sampling multiple foci of breast carcinomas.

The heterogeneity of the immunomarker expression was computed by comparing within sub-

ject variances to the overall variance for the biomarkers. Intratumor heterogeneity was con-

firmed for five of the seven markers, while the authors raise the issue of the problematic

extrapolation of these findings from small biopsy specimens to the entire tumor [32]. Zhong

and colleagues designed a high-throughput image-based computational workflow to quanti-

tate and visualize FISH-based copy number alterations in spatial context [33]. Although it

provides an intuitive visual map of spatial heterogeneity of genomic level alterations, this

approach is restricted to evaluating one or two genes at a time and does not consider tissue

morphology.

To advance the field of tumor heterogeneity characterization, we have developed the

MOHA tool and method. The flow of information in the MOHA method is illustrated in

Fig 1. The method combines single cell molecular measures from a tissue with pre-existing

knowledge of biological pathways to assign states to cells in the tissue. It then incorporates

positional measures of the cells to compute spatial state distributions. Tissue heterogeneity

and diversity metrics are then computed from the observed distributions of these molecu-

lar and spatially defined states. Finally, these diversity metrics of the tissue are analyzed to

gain biological insights. To demonstrate our MOHA method, we use MxIF imaging of

tumor tissues from a colorectal cancer cohort. We show how the computed MOHA het-

erogeneity metrics correlate with cancer stage, histological tumor grade, and cancer

recurrence.
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Materials and methods

Colorectal cancer cohort dataset

Tissue samples from colorectal cancer (CRC) patients were collected at the Clearview Cancer

Institute of Huntsville, Alabama, and provided to GE Global Research by Clarient Inc. The de-

identified samples were acquired per institutional guidelines. This tissue microarray imaging

cohort consisted of 747 paraffin-embedded patient tumor core samples distributed across

three slides. These samples underwent multiplexed immunofluorescence microscopy and the

results and experimental details have been reported previously [21]. Upon processing the tis-

sue imaging data, quality filtering steps reduced the number of CRC cohort subjects (i.e.

tumor core samples) from 747 down to 692. Clinical information was provided for each sub-

ject, including the histological tumor grade, cancer stage, gender, age, chemotherapy treatment

(yes/no), and follow-up monitoring of 10 years (medium follow-up of 4.1 years across

patients). Tables with breakdown of samples by histological tumor grade, cancer stage, and

cancer reoccurrence events during follow-up can be found in section 1 of S1 File.

MxIF tissue imaging data workflow

A detailed description of the multiplexed microscopy technique as well as the single-cell analy-

sis and visualization methodology of biological features can be found elsewhere [21]. The min-

imum input data required by the MOHA algorithm is a plain tab-separated text file with one

line per cell, specifying the following parameters: spatial (x, y) coordinates of the cell centroid,

cell area, and the cell’s biomarker ordinal values. The workflow steps required to obtain the

MOHA input data from MxIF tissue imaging data are as follows.

Step 1) Segment cell objects and generate biomarker measures from tissue images.

MxIF imaging data typically comprises multiple tissue samples that have been imaged at 20x

magnification. One image captures an entire tumor core sample from a tissue microarray.

Each image undergoes quality filtering followed by cell segmentation to generate biomarker

measures (mean and median value) for each cell and sub-cellular location (cytosol, nuclear,

Fig 1. Conceptual overview of the MOHA method.

https://doi.org/10.1371/journal.pone.0188878.g001
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membrane). DAPI staining is used to define the nuclear area. The plasma membrane is seg-

mented using a combination of staining patterns corresponding to the membrane proteins Na

+/K+-ATPase and pan-cadherin. Cells are assigned x and y coordinates of centroid location. A

cell type label is computed for each cell to be within or outside a computed epithelial region

mask. The epithelial region mask is generated from the staining pattern produced by pan-cyto-

keratin and/or E-cadherin antibodies. Only cells located within the epithelial region mask

were used for this study.

Step 2) Filter segmented cell objects that do not meet morphological quality criteria.

Segmenting a million cells from images can produce some artifacts. To prevent these artifact

objects from being included in the analysis, morphological quality filters are applied. The qual-

ity filters that were applied in the CRC study required cell objects to have one or two nuclei, a

minimum (1.4 um2) and maximum (140 um2) area for both the cell nuclear and cytosol area.

Cell objects that were on the edge of each image (~2 microns) were removed from the analysis.

Images of tumor samples with less than 100 cells that fulfilled all filtering criteria were removed

from further analysis.

Step 3) Filter biomarker measures that do not meet quality staining round metrics. A

biomarker measure for a cell was removed if the cell’s quality round metric was below 0.8. The

tissues underwent multiple rounds of staining, bleaching, and imaging which can lead to the

deterioration of the tissue or other imaging artifacts. The quality round metric ranges from

unity (perfect quality) to zero (total loss), and it is derived by computing the correlation of the

DAPI stain intensity for the segmented cell portion of the image at a given round of staining to

the baseline DAPI staining.

Step 4) Convert biomarker measures into ordinal values based on a n-state threshold

model. The immunofluorescent intensity values for each biomarker (i.e. channel or staining

round) integrated within each segmented cell and sub-cellular location (e.g. whole cell, cytosol,

nuclear, membrane) were converted into ordinal values. For the CRC dataset, we selected a

three-state threshold model, consisting of two threshold values established to bin the bio-

marker intensities into high, medium, and low states. The two threshold values were defined

as the 33rd and 67th percentile of the sorted immunofluorescent intensities across the entire

study. More biologically relevant threshold values could be established with control samples

included in the multiplexed datasets to define normal and pathologically low or high values. In

the absence of such controls, we split the data into comparable size bins. Threshold values

were defined for each biomarker and for each sub-cellular location.

Molecular and spatial states of cells

We selected the cells of the tissue as the atomic unit to compute diversity metrics on. Multiple

diversity metrics were computed, as detailed in the next two sections. If the metric only con-

tains information on the proportions of cells in different molecular states, then it is designated

as molecular entropy or molecular heterogeneity. If additional information is incorporated

about the spatial distribution of the cell states relative to each other, the metric is then desig-

nated as spatial entropy or spatial heterogeneity. The spatial metrics can again be of multiple

types, depending on how the spatial state information is defined.

Cartoon examples of molecular and spatial states (i.e. species) are presented in Fig 2. In this

conceptional view, cells can express three unique molecular states. The cell family metric is

defined by the number of surrounding cells expressing the same molecular state as the one

examined (thick black border). Both cells evaluated under Cell Family have a group size or spa-

tial state of two (i.e. 2 dimers). The cell neighbor metric characterizes the diversity in the num-

ber of neighbors of different molecular states that surround the cell examined. The central cell
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illustrated for the Cell Neighbor in Fig 2 has three associated cell neighbor states: a monomer,

a dimer, and a trimer. The cell social metric captures the diversity in the sizes of cell social

groups. The example of 19 cells presents three unique cell social spatial states: 6 monomers, 4

dimers, and 1 pentamer.

Molecular state diversity metrics

Selecting a pathway or gene set to define a cell’s molecular state. The selection of path-

ways or gene sets is limited by the number and type of immunofluorescence measurements

available in the study. Using the nomenclature that pathways are networks represented by

nodes and edges, the number of “measurable nodes” in a pathway reflect how well the available

biomarker data will represent it. Well-designed imaging studies typically select biomarkers

representing key driver genes (i.e. pathway nodes) of the biological process or disease under

study. The AKT signaling pathway map centered on Protein Kinase B (also known as AKT)

with links to cell apoptosis, cell cycle, protein synthesis, and cancer processes was selected to

demonstrate the MOHA methodology. This pathway is known to be relevant for cancer and

Fig 2. Conceptual examples of molecular and spatial states. In these examples, there are three unique molecular states represented by a

circle, a square, and a triangle. The cell family metric is defined by the number of surrounding cells expressing the same molecular state as the

central cell examined. The cell neighbor metric captures the clusters of neighboring cells in different molecular states. The cell social metric

characterizes the diversity in the sizes of cell social clusters formed by a group of touching cells of the same state.

https://doi.org/10.1371/journal.pone.0188878.g002
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many of its nodes were quantified in the dataset presented here. Any other relevant pathway or

gene set with multiple measured nodes could be used. Gene sets representing the hallmarks of

cancer [34,35] were also selected. The AKT pathway and cancer hallmark gene sets used in this

study are described in section 1 in S1 File (Figure A, Tables A and B).

Computing a molecular state for each cell using a pathway or gene set. The state value

of an entire pathway or gene set was defined as a concatenation of the state values for each

individual measurable node in the pathway assembled in a specific order. Connectivity infor-

mation provided in pathway maps are not directly used for computing the diversity metrics, a

current limitation of the MOHA tool. Therefore, the specific order of the genes in the pathway

state concatenation sequence is arbitrary. However, once a sequence order has been chosen, it

must be maintained consistently throughout the study. For example, the version of the AKT

pathway we used for the colon cancer dataset had 16 measurable nodes (Figure A in S1 File).

Some of these measurable nodes represented a phosphorylated state of the protein (e.g. SER-9

of GSK3B) and required specific antibodies to detect and quantify them. Other measurable

nodes were proteins restricted to specific subcellular compartments. For example, there were

two nodes in the AKT pathway for the protein CTNNB1, restricted to either the cytosol or

nuclear subcellular compartment. These two nodes are represented using the immunofluores-

cence measurements that were integrated within their respective subcellular regions of the cell.

For a three-state threshold model, each measurable node can have a high, medium, or low

state encoded with a 0, 1, or 2 ordinal value. Therefore, a possible state for the AKT pathway is

2122202222211222 and would be assigned to those cells with biomarker measures (i.e. ordinal

state values) representing this 16-measurable node concatenated sequence.

Molecular entropy and heterogeneity diversity metrics. The Shannon diversity index,

also called Shannon entropy, was used to characterize the diversity of the various molecular

and spatial state distributions [36,37]. There are alternative mathematical formulations of

diversity with some modifying the sensitivity of the computed diversity value for rare or abun-

dant states. Without any rational reason or biological observation to select one vs. another, we

decided to use the original Shannon index. In the context of molecular diversity, the Shannon

diversity index is a measure of how evenly the cells of the tissues are distributed among the

possible molecular states that those cells exhibit. The entropy is maximized when all possible

states are observed with the same frequency and is minimized when all cells are in the same

molecular state. The molecular entropy is calculated as:

Molecular Entropy ¼ �
XNm

i¼1

Pmi lnðPmiÞ

The Pmi is the fraction of cells in molecular state i, and Nm is the number of possible

molecular states in the system. The maximum number of molecular states is defined by the

maximum number of pathway states. This was computed based on the number of measurable

nodes in the pathway and the number of node levels defined by the n-state threshold model.

For our version of the AKT pathway with 16 measurable nodes, each having three levels, the

maximum number of possible pathway states was 3^16, a little over 43 million. When the

number of cells in the sample examined is smaller than the number of possible pathway states,

the former is used as the maximum number of possible molecular pathway states.

There is no theoretical upper bound for the entropy value. For the sake of comparability of

samples, it is sometimes convenient to use the normalized metric of heterogeneity, defined as

the entropy divided by the natural log of the number of possible states. Heterogeneity values

Characterizing the heterogeneity of tumor tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0188878 November 30, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0188878


range from zero to unity.

Molecular Heterogeneity ¼
Molecular Entropy

lnðNmÞ

Molecular disparity metric. The molecular entropy and heterogeneity metrics describe

the molecular complexity of the system. Each molecular state is treated as a distinct specie.

When defining a molecular pathway state based on the individual states of the measurable

nodes of the pathway, there are some pathway states that are more similar than others. If two

pathway states differ only in a single measureable node level, the molecular distance between

the two pathway states is small. However, if every node has a different value, the distance

between the two pathway states will be larger. Borrowing from the concepts of complexity and

disparity in multi agent systems [38,39], we define a molecular disparity metric for a sample

with the maximum number of molecular states Nm as:

Molecular Disparity ¼
XNm� 1

i¼1

XNm

j¼iþ1

PmiPmj dði; jÞ
2

Pmi and Pmj are the fractions of cells in molecular states i and j, and d(i,j) is the molecular

distance between states i and j. This distance is computed as the sum of differences across the

measurable nodes:

dði; jÞ2 ¼
XNpn

n¼1

ðMn;i� Mn;jÞ
2

where Mn,i and Mn,j are the values assigned to pathway node n in pathway states i and j, and

Npn is the number of measurable pathway nodes.

Spatial state diversity metrics

Defining cell neighbors for spatial metrics. Identifying neighboring cells is necessary for

computing the spatial diversity metrics. We have used two different approaches to achieve

this: an exact pixel-based method and a faster approximate method. Using the segmented tis-

sue images, it is possible to represent the edge of each cell by a set of pixel points. When decid-

ing if two cells are spatially first neighbors (i.e. touching cells), the edge pixel points from the

two cells can be compared seeking for the condition in which the distance between an edge

pixel point from one cell is within one-pixel distance of an edge pixel point from another cell.

This comparison of pixel points is considered the exact method. Alternatively, an approximate

method was implemented to be computationally twice as fast and not require repeated image

processing. The cells were approximated by circles, and the distance between their centers had

to be smaller than a critical parameter multiplied by the sum of their radii. This was defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ
2
þ ðyi � yjÞ

2

ðri þ rjÞ
2

v
u
u
t � dcritical where ri ¼

ffiffiffiffiffi
Ai

p

r

where the Euclidean distance between the centers of two cells (xi, yi) and (xj, yj) is computed

and normalized by the sum of the approximate radii of the two cells (ri and rj). The cell radii

were computed from the segmented area of the cells (Ai, Aj), approximating the cells on the

2D images as circles. If this normalized Euclidean distance is equal to or less than the dimen-

sionless critical parameter, dcritical, the cells i and j are the classified as touching neighbors.
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To establish the value of the dimensionless critical parameter, dcritical, the approximate

method was compared to the exact method for over 752 million unique cell pairs from the

colorectal cancer data set. The change in the number of correctly and falsely identified touch-

ing cell neighbors as a function of the critical parameter was computed. A critical parameter of

1.31 minimized the number of false predictions, resulting in the best agreement between the

approximate and exact methods. This resulted in the approximate method having a positive

predictive value of 0.884 and the negative predictive value of 0.997. This means that when the

approximate method indicated that two cells are touching, there was an 88.4% probability that

the two cells in the image were touching each other. The spatial diversity metrics for the AKT

pathway were calculated using both the exact and the approximate method. The diversity met-

rics computed by the approximate method correlated with those computed by the exact

method with correlation coefficients that ranged from 0.98 to 0.998. Plots of these correlations

are presented in section 2 in S1 File.

Cell coordination number diversity metric. The coordination number of a cell repre-

sents the number of cells surrounding and touching it (i.e. neighbors), as defined in the previ-

ous section. In a regular two-dimensional grid arrangement (i.e. lattice) of cells, the

coordination number for each cell is the same, except for those at the edge of the lattice. This is

not the case for a biological tissue where the coordination numbers differ from one cell to the

other. A tissue will have a characteristic frequency distribution of cell coordination numbers.

An entropy metric for the cell coordination number distribution can be computed using the

Shannon diversity index. The cell coordination number entropy metric did not include any

molecular state information, and can therefore be considered a pure spatial diversity metric.

Alternatively, the molecular states of the cells and their immediate neighbors can be used to

define various diversity metrics that include molecular information in addition to spatial con-

text. Three spatial diversity metrics are presented below: Cell Family, Cell Neighbor, and Cell

Social. The entropy values for these three-spatial metrics were computed using the Shannon

diversity index. The difference between them comes from the definition of the individual spa-

tial states and the maximum number of possible states.

Cell family diversity metric. The cell family state metric was computed by surveying the

neighbors of each cell and counting only the number of neighbors in the same molecular state.

This number of neighbors represents the cell family state. Having no neighbors in the same

molecular state is a valid cell family state. Therefore, the cell family state can range from zero

to the maximum number of neighbors a cell has. After going through every cell and their

touching neighbors, a frequency distribution was established for these cell family states. The

cell family entropy was then computed as:

Cell Family Entropy ¼ �
XZmax

k¼0

Psk lnðPskÞ

where, Psk is the frequency of state k, and Zmax is the maximum number of cell family states.

For this diversity metric, Zmax equals the maximum number of neighbors a cell might have in

the tissue image, which is the same as the maximum coordination number. The cell family het-

erogeneity was computed by dividing its entropy by the natural log of Zmax + 1.

Cell neighbor diversity metric. The cell neighbor spatial metric characterizes the diver-

sity in the molecular states of a cell’s neighborhood. Whereas the cell family metric gives rise

to a single state for each cell (number of same molecular state neighbors), the cell neighbor

metric defines as many states around each cell as the number of different molecular states that

are present in its neighborhood. For example, in Fig 2, Cell Neighbor has a central cell
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surrounded by cells in three different states, resulting in three cell neighbor states of 1, 2 and 3

shown as one circle, two squares and three triangles.

Cell social diversity metric. The cell social spatial metric characterizes the diversity in the

sizes of cell social groups. Each grou;p is composed of cells that express the same molecular

state and are spatially linked. The social group size is the number of cells in the group. Each

cell in the group must touch at least one other cell in the group. The group of cells may be

spread out or clumped together (Fig 2). After assigning each cell to a social group by the

molecular and spatial constraints just described, the cell social frequency distribution can be

computed. As before, the Shannon index was used to compute the entropy from the frequency

distribution. The cell social heterogeneity was obtained by dividing the cell social entropy by

the natural log of the maximum number of states.

The maximum number of cell social states, Ns, that is theoretically possible is dependent

upon the total number of cells, Nc, present in the system. Each cell social state is a group of

cells of a unique number. Summing over all possible cell social states will compute the mini-

mum number of cells required to observe all those states. This is mathematically represented

as:

XNS

i

i ¼
NSðNS þ 1Þ

2
� NC

Solving the inequality leads to the formula for computing the maximum number of possible

cell social spatial states, Ns, for a system with Nc cells:

NS ¼ Int
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NC þ 1

p
� 1

2

 !

Random sampling method to decouple cell molecular states from cell locations. Know-

ing that cells communicate with each-other, it is reasonable to expect the spatial distribution of

the molecular states among the cells of a tissue to be non-random. The spatial diversity metrics

reflect this deviation from randomness. We applied two methods to assess the interaction

between the cell molecular states and their relative spatial orientations. The first method was a

random sampling method and the second was a probability based method. The random sam-

pling method required generating randomized arrangements of the cell molecular states

among the cell locations, followed by computing the spatial diversity metrics. This process was

repeated 120 times for each sample to generate a distribution for each spatial metric.

Probability based method to compute cell family diversity metric. An alternative, prob-

ability based method was employed that computed an estimate of the mean of the spatial diver-

sity metric upon randomizing the arrangements of the cell molecular states among the cell

locations. The method computed all possible configurations based on the molecular distribu-

tion (Pm) for each cell and its respective cell coordination number. For a cell family group size

of k, the number of configurations Nsk is computed as:

Nsk ¼
XNc

j¼1

XNm

i¼1

ð1 � PmiÞ
Zj � k ðPmiÞ

kþ1
Zj!

ðZj � kÞ!k!

Pmi is the fractions of cells in molecular states i and Zj is the coordination number of cell j

that is being evaluated. The frequency of occurrence, Psk, for cell family state k, is obtained
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after normalization:

Psk ¼
Nsk

PZmax
k¼0

Nsk

With the cell family state frequency distribution, Psk, defined, the cell family diversity is

then simply computed from cell family entropy equation shown above.

The key parameters for computing the molecular and spatial diversity metrics is summa-

rized in Table 1.

Results

MOHA diversity metrics capture tissue cell molecular states and their

spatial arrangements

We first computed the diversity metrics for each tumor core sample from the CRC dataset and

then compared these computed metrics with the tissue images. Four tissue image examples are

presented in Fig 3 (labeled A-D) along with a plot of their molecular and cell family heteroge-

neity metric values in context of the entire CRC cohort. Although the molecular and spatial

diversity values showed a significant correlation, there were samples, such as B and C, that dis-

played rather different spatial diversity despite their almost identical molecular heterogeneity

and vice-versa (A and B, or C and D). There was a general trend of increasing molecular het-

erogeneity and decreasing cell family heterogeneity with higher cancer stage.

Similar trends were observed between the molecular and the cell neighbor and cell social

spatial diversity metrics (Fig 4C and 4D). Both the cell neighbor and the cell social heterogene-

ity inversely correlated with the molecular heterogeneity, but their values covered a smaller

range than the cell family metric. The molecular disparity correlated highly with the molecular

heterogeneity (Fig 4A), indicating that the distances between the pathway states of the cells

had a similar distribution across the samples examined, with increasing disparity and com-

plexity as tumor grade increases.

The high correlation between the molecular and spatial diversity metrics indicates that the

molecular states of the cells are the major source of diversity. To probe how much additional

information the topology of the tissue can add to the spatial diversity metric, two decoupling

approaches were used. First, the spatial arrangement of the cells was randomized, while keep-

ing the molecular state profiles the same. The average cell family versus the molecular hetero-

geneity values for these “decoupled” synthetic cases with random cell arrangements are shown

with grey cross symbols in Fig 4B. The difference between the random and real values is an

Table 1. Summary of key parameters used in computing the diversity metrics.

d(i,j) molecular distance between states i and j

Mni, Mnj values assigned to pathway node n in pathway states i and j

Nc number of cells in the system

Nm number of possible molecular states in the system

Npn number of measurable nodes in a pathway or gene set

Ns number of possible spatial states in the system

Nsk number of spatial configurations for the group size k

Pmi, Pmj fractions of cells in molecular states i and j

Psk frequency of the spatial state of group size k

Zj coordination number of cell j

Zmax maximum coordination number in the system

https://doi.org/10.1371/journal.pone.0188878.t001

Characterizing the heterogeneity of tumor tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0188878 November 30, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0188878.t001
https://doi.org/10.1371/journal.pone.0188878


indication that the arrangement of cells in real tissues (tissue topology) relative to their molec-

ular states is indeed not random.

For the second approach, we took the molecular pathways state distributions of the four

samples shown in Fig 3A–3D), and computed the cell family heterogeneity metrics for model

tissues with mean coordination numbers ranging from 1 to 8 using a probability based method

described in detail in the Methods section. The results shown in Fig 4E reveal that the molecu-

lar state distribution taken from four different samples significantly influenced the absolute

value of cell family heterogeneity metric. The cell coordination numbers, which reflect the

topology of the tissue, had a smaller influence. Fig 4E illustrates that increasing coordination

numbers result in higher cell family heterogeneity values.

Diversity metrics correlate with cancer stage and tumor grade

To assess if our diversity metrics have captured relevant biology, we performed a correlation

analysis between the diversity metrics and the clinical measures of cancer stage and histological

tumor grade. Utilizing the CRC cohort dataset, we computed the Spearman’s rank correlation

between the diversity metrics and the subject’s cancer stage or tumor grade measures. A high-

light of the results is presented in Table 2 and Fig 5 for the AKT pathway diversity metrics with

cancer stage and tumor grade for 670 subjects. Refer to worksheet A and B in S2 File and sec-

tion 3 in S1 File for a complete set of correlation results and plots that include all the cancer

Fig 3. Molecular and spatial diversity paired with virtual H&E images of four samples. The scatter plot presents the heterogeneity values for

691 CRC subjects. The values corresponding to four CRC stage 2 subjects with histological grade 2 tumors are highlighted. Corresponding tissue

images of these four examples are shown in panels A-D. These virtual H&E stained images are overlaid with segmented cells that are colored

based on the molecular state that the cells express. These tissue images are illustrative examples of cases when molecular heterogeneity values

are the same, but the family metrics of spatial heterogeneity are different (B and C) pointing to differences in spatial configuration of the two tissue

samples. Similarly, there are cases where the family heterogeneity metrics are similar, but the molecular metrics differ (A versus B or C versus D).

Despite the significant correlation between the molecular and spatial metrics, they have the potential to capture and reflect different properties of

the tumor tissues.

https://doi.org/10.1371/journal.pone.0188878.g003
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hallmark gene sets. We observed strong and statistically significant correlations (p-

values< 1E-5) between the molecular and spatial diversity metrics for both cancer stage and

tumor grade. Overall, the correlations were stronger for cancer stage than for tumor grade. As

Fig 4. Molecular and spatial diversity metrics calculated for the CRC dataset based on the AKT pathway. (A) The molecular disparity is directly

correlated with the molecular heterogeneity, but it tends to decrease with increasing tumor grade (1–3) at a given level of molecular heterogeneity or

complexity. (B-D) The spatial metrics are inversely correlated with the molecular metrics. The molecular heterogeneity tends to increase with tumor

stage and grade, while the spatial metrics tends to show the opposite trend. (E) Both molecular state distribution and spatial arrangement (reflected by

the cell coordination number) contribute to the cell family heterogeneity, with the molecular state distribution having a larger effect.

https://doi.org/10.1371/journal.pone.0188878.g004

Table 2. Spearman’s rank correlation of diversity metrics with cancer stage and tumor grade for the AKT pathway.

AKT Pathway Cancer Stage Tumor Grade

Metric r p-value r p-value

Molecular Heterogeneity 0.34 7.5E-20 0.19 1.4E-06

Molecular Disparity 0.33 2.4E-18 0.11 6.2E-03

Cell Family Heterogeneity -0.37 1.1E-23 -0.25 2.1E-11

Cell Neighbor Heterogeneity -0.37 1.5E-23 -0.25 8.6E-11

Cell Social Heterogeneity -0.39 4.0E-25 -0.25 7.4E-11

Cell Coordination Number Entropy -0.12 2.1E-03 -0.11 4.4E-03

Cell Family Het. (Probability Based) -0.33 1.1E-18 -0.18 1.8E-06

https://doi.org/10.1371/journal.pone.0188878.t002
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noted before, the molecular heterogeneity was found to increase with cancer stage and tumor

grade, while the spatial heterogeneity metrics showed the opposite trend (Fig 4B–4D). This

was found to be the case for each of the cancer hallmark gene sets (see sections 4 and 5 in S1

File).

Diversity metrics correlate with cancer recurrence

The Spearman’s rank correlation between several diversity metrics and cancer recurrence for

the CRC cohort subjects who received chemotherapy are shown in Table 3. The table presents

the Spearman’s rank correlation of diversity metrics with a cancer recurrence event during fol-

low-up for 338 subjects that received chemotherapy and subset of 102 cancer stage 2 subjects

Fig 5. The cell family heterogeneity metrics computed based on the AKT pathway for the CRC dataset samples showed a decreasing

trend with increasing cancer stage (1 to 3) and tumor grade (G1 to G3). The Mann-Whitney test p-values of the comparisons of tumor grades

within each cancer stage are shown.

https://doi.org/10.1371/journal.pone.0188878.g005

Table 3. Spearman’s rank correlation of diversity metrics with cancer stage and tumor grade for the cancer hallmark gene set, Inducing

Angiogenesis.

Chemotherapy Treatment Group

Inducing Angiogenesis

Recurrent Event Recurrent Event

Stage 2 Grade 2

Metric r p-value r p-value

Stage and Grade 0.18 5.2E-03 NA NA

Molecular Heterogeneity 0.16 4.1E-03 0.15 0.144

Molecular Disparity 0.17 2.2E-03 0.16 0.103

Cell Family Heterogeneity -0.17 2.2E-03 -0.29 3.5E-03

Cell Coordination Number Entropy 0.00 0.94 -0.25 0.010

Cell Family Het. (Probability Based) -0.16 2.5E-03 -0.27 6.9E-03

https://doi.org/10.1371/journal.pone.0188878.t003
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with histological grade 2 tumor tissues. The correlation of stage and grade with recurrence was

computed using multiple linear regression. Worksheet C in S2 File provides a comprehensive

overview of correlations. The cell family heterogeneity metric computed based on the cancer

hallmark Inducing Angiogenesis had the highest correlation with cancer recurrence. Interest-

ingly, this diversity metric did not correlate as strongly to cancer stage (r = -0.25) as the AKT

pathway metric (r = -0.37). The mean cell family heterogeneity was found to be lower for those

with a recurrence event (Fig 6A).

We observed trends in subsets of subjects based on stage and/or grade that are missing

when examining the entire cohort. The Spearman’s rank correlations for all subjects who

underwent chemotherapy and the stage 2 grade 2 subset are presented in Table 3. The molecu-

lar diversity indices show approximately the same correlations with recurrence (~0.16) for the

entire chemo-treated group and those limited to stage 2 tumor grade 2 cases. In contrast, for

the cell family heterogeneity, the correlation improved (-0.17 to -0.29). Although we have

highlighted the cell family heterogeneity metric computed for the Inducing Angiogenesis can-

cer hallmark, the same trends are observed with less statistical significance for other spatial

metrics and cancer hallmarks (section 6 in S1 File). The Cell Coordination Number Entropy

showed the same trend (Fig 6B). This spatial metric correlation of -0.25 for the stage 2 grade 2

cases is zero for the chemo treated group that includes all cancer stages and tumor grades

(Table 3). These results suggest that within the stage 2 grade 2 cases, there are spatial features

differentiating the subjects in terms of cancer recurrence.

MOHA tool implementation

The MOHA algorithm has been implemented in R. The freely available R scripts include the

capability to compute the diversity metrics on the CRC dataset presented here. In addition,

Fig 6. Cell family heterogeneity of Inducing Angiogenesis cancer hallmark and its variation between cancer recurrence groups of stage 2

cancer subjects with histological grade 2 tumor tissues. (A) The median heterogeneity was lower for subjects that had a cancer recurrence

event during the follow-up monitoring (Recur Yes) vs. those that did not regardless of chemotherapy (Mann-Whitney test p-values 0.099 and 0.004).

(B) The entropy of the cell coordination number distribution decreased for those subjects with a recurrence event.

https://doi.org/10.1371/journal.pone.0188878.g006
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functions have been included to generate plots and data tables. The README document from

the package contains a step-by-step guide to running the R scripts.

Discussion

The main goal of our work was to develop an approach for the quantitative characterization of

tumor heterogeneity from spatially resolved molecular measures of cells. Although we utilized

a MxIF tissue imaging dataset to demonstrate our method, the MOHA algorithm can be

applied to any dataset that provides spatially resolved molecular measures. We strived to main-

tain some level of physical and biological rationale for the diversity metrics and to enable intui-

tive customization of the metrics to best address the biological questions asked. Consequently,

the molecular metrics focused on the cell as the atomic unit of the tissue. The molecular state

of the cell was defined based on signaling pathways and biological based gene sets depending

on their relevance for the specific problem (i.e. the biological question) being examined. The

underlying physiological phenomenon behind the use of touching cell neighbors for comput-

ing the spatial metrics can be primarily attributed to adjacent cell communication through jux-

tacrine signaling. Two other mechanisms of cell communication include synaptic or paracrine

signaling. The distance at which paracrine signaling typically occurs in vivo is uncertain but is

much more likely to effectively occur between two cells in in close spatial proximity of each

other. Our methodology is general enough to emphasis paracrine signaling over juxtacrine sig-

naling by changing the dimensionless critical parameter in our approximate method to deter-

mine if two cells are neighbors. We tuned the critical parameter to identify cells that were in

direct contact with each other based on tissue imaging data. However, this parameter could be

increased to identify cells as neighbors over greater spatial distances to model paracrine signal-

ing occurring over longer distances. The cell coordination number reflects tissue topology

including epithelial cell polarization, basal luminal organization of glandular structures, and

the epithelial-mesenchymal transition in cancer.

Despite their roots in intuitive biological and physical characteristics of the tissue samples,

these metrics are statistical in nature. To be meaningful and representative, the metrics should

be computed based on many cells. For this study, we used tissue microarrays with core diame-

ters of approximately 0.7–0.8 μm and selected the empirical cutoff of 100 cells in a sample at

minimum to pass the first quality filter. This was a realistic compromise to have a non-trivial

number of cells without disqualifying too many samples.

The discriminative power of the cell family, cell neighbor, and cell social spatial metrics

toward cancer stage and tumor grade can be attributed to the combined inclusion of molecular

and spatial information from the tumor tissue. Being able to compute metrics based on each of

these factors separately makes it possible to quantify their contributions independently. Simi-

larly, the gene sets or pathways providing the greatest correlation to cancer stage and tumor

grade can potentially indicate which biological process are driving the progression of the spe-

cific cancer type studied.

We examined the correlation of the diversity metrics with clinical characteristics for the

entire cohort, and separately for stage 2 and grade 2 subjects. Especially at this intermediate

stage, CRC is heterogeneous with multiple treatment options and various tumor responses

that can lead to multiple outcomes. It is critically important to be able to stratify CRC patients

at this intermediate stage to identify the more aggressive phenotype and enable the selection of

a more aggressive therapy to improve long-term survival. Perineural invasion or the expres-

sion of certain non-coding RNA’s are promising prognostic biomarkers, but no final conclu-

sion has been reached about their value [40,41,42]. Tumor heterogeneity metrics could

provide additional prognostic factors computed from pathology tissue or biopsy samples.
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They could potentially provide additional discriminatory power in existing multivariant prog-

nostic models to improve their sensitivity and specificity.

We have shown that both the molecular and the spatial diversity metrics correlate with

tumor stage and grade across the entire cohort to varying degrees. The cell coordination num-

ber, a purely spatial metric, showed an interesting behavior (Figure C in S1 File). Its average

value increased with stage in grade 1 tumors, then it stayed relatively unchanged for grade 2,

followed by a decreasing trend with stage for grade 3 tumors. This observation led us to specu-

late about the ability of the cell coordination number to reflect the longitudinal changes in

tumor spatial structure. Starting from the healthy gland, through a more compact structure

with increasing number of cell neighbors, to a collapsed, irregular structure in which tumor

cells become more isolated with fewer cell neighbors.

We have found the MOHA methodology to be generalizable to other types of cancer

including prostate, breast, lung and brain. This is not to say that the tumor heterogeneity is the

same across all these cancers but that the physical and biological rationale for our diversity

metrics are. For example, the cell coordination number reflects the close spatial proximity of

cells to each other that is critical to juxtacrine, paracrine, and synaptic signaling mechanisms.

Consequentially, the MOHA spatial metrics are defined to imbed the underlying biological

phenomenon (e.g. cell-cell communication) that is common across all tissues. The actual inter-

pretation of the spatial metrics between healthy and the various stages of a disease will be tissue

and disease specific (e.g. epithelial-mesenchymal transition in cancer). Our methodology is

also general from the perspective of working with any gene sets or pathways to define the

molecular state of cells. However, those that provide the greatest insights and discriminatory

power will likely be specific to the biological processes driving the progression of the disease

under study.

Beyond computing the diversity metrics across the entire sample, this methodology can be

used to examine the clonal composition of the tumor. It enables the identification of subsets of

cells and their relative locations within a tumor contributing to correlations with clinical met-

rics across cohorts. This is a direction worth exploring in the immediate future.

Limitations of the MOHA metrics

There are no generally accepted methods available for characterizing tissue heterogeneity at

the cell level, and the number of metrics one can propose could be very large. Testing all of

them is neither feasible nor practical. Our metrics are based on the Shannon diversity index, a

well-known statistical metric frequently used in other scientific areas. What makes these met-

rics tissue specific and potentially relevant is the choice of the state definitions. While we

attempted to make them biologically intuitive, these definitions are exploratory in nature. We

designed them in a way that makes it relatively straightforward to modify them. Further testing

on multiple datasets and tissue types will enable us to judge how to select and modify them to

maximize their usefulness.

Perhaps the most serious limitation of these heterogeneity metrics originates from the

semi-quantitative nature of the immunofluorescence intensities used to characterize bio-

marker levels in the tissue. Ideally, every biomarker specific and fluorescently labeled antibody

should have a set of standards allowing the user to calibrate the intensity measurements and

relate them to true protein concentrations. In addition, every slide of tissue microarrays should

have multiple normal controls to establish disease-relevant ranges for the biomarkers mea-

sured. Unfortunately, none of these are routinely available for existing clinical datasets. The

methodology of computing the MOHA metrics will not change when such standards and con-

trols become a reality, but their predictive power is expected to improve.
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Although we selected measured nodes in the AKT pathway, The MOHA metrics include no

information about the pathway connectivity or the directionality of the interactions. Ways to

incorporate such information into the heterogeneity metrics is a direction worth exploring.

Finally, it is worth mentioning that the spatial metrics proposed here can be somewhat tissue-

dependent which limits the ability to draw general conclusions about the relationship between

spatial heterogeneity and tumor progression across all cancers.

Supporting information

S1 File. Supplementary documents. This pdf file (3.3 MB) contains seven supplementary doc-

ument sections of text and figures. Section 1 presents additional information on methods, the

AKT pathway, gene sets and the CRC cohort. Section 2 presents the change in the number of

correct and incorrect cell neighbor assignments (True Positives, False Positive, False Nega-

tives) by comparing the assignment of the approximate method of computing cell neighbors

relative to the exact method using the cell’s segmented image pixels. Assignments broken out

by cancer stage and tumor grade. Figures showing the correlations between the diversity met-

rics as calculated with the exact method of cell neighbor identification versus the approximate

method. Section 3 presents box charts with diversity metrics by cancer stage and tumor grade.

Section 4 presents plots with molecular disparity, cell family, cell neighbor, and cell social het-

erogeneity versus molecular heterogeneity computed across 7 gene sets corresponding to can-

cer hallmarks and the AKT pathway. The values are colored by cancer stage. Section 5 presents

plots with molecular disparity, cell family, cell neighbor, and cell social heterogeneity versus

molecular heterogeneity computed across 7 gene sets corresponding to cancer hallmarks and

the AKT pathway. The values are colored by cancer grade. Section 6 presents box charts with

diversity metrics by chemotherapy treatment and recurrence calculated based on 7 gene sets

corresponding to cancer hallmarks and the AKT pathway. Box charts of average cell coordina-

tion number, number of cells and age at diagnosis broken down by treatment and recurrence

are also included. Section 7 presents the frequency distributions of cell coordination numbers

and by cancer stage and tumor grade.

(PDF)

S2 File. Supplementary tables. This excel file (0.2 MB) contains three worksheets. Worksheet

A presents the correlation of diversity metrics with cancer stage. Worksheet B presents the cor-

relation of diversity metrics with tumor grade. Worksheet C presents the correlation of diver-

sity metrics with cancer recurrence.

(XLSX)

S3 File. MOHA tool. This zip file (0.5 MB) contains an R script implementation of the

MOHA tool and supporting data files to compute MOHA diversity metrics. The README

document within this zip file contains instructions on running the R scripts.

(ZIP)

Acknowledgments

The authors wish to thank Chris Sevinsky, Michael Gerdes, and Jim Rothman for the helpful

technical discussions and feedback. We would also like to thank Fiona Ginty and Chinnappa

Kodira for their support and encouragement during the development of this work.

Author Contributions

Conceptualization: John F. Graf.

Characterizing the heterogeneity of tumor tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0188878 November 30, 2017 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188878.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188878.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188878.s003
https://doi.org/10.1371/journal.pone.0188878


Data curation: John F. Graf, Maria I. Zavodszky.

Formal analysis: John F. Graf.

Investigation: John F. Graf.

Methodology: John F. Graf.

Validation: John F. Graf, Maria I. Zavodszky.

Writing – original draft: John F. Graf, Maria I. Zavodszky.

Writing – review & editing: John F. Graf, Maria I. Zavodszky.

References
1. McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in can-

cer evolution. Cancer cell 27: 15–26. https://doi.org/10.1016/j.ccell.2014.12.001 PMID: 25584892

2. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, et al. (2012) The life history of 21

breast cancers. Cell 149: 994–1007. https://doi.org/10.1016/j.cell.2012.04.023 PMID: 22608083

3. Casey T, Bond J, Tighe S, Hunter T, Lintault L, et al. (2009) Molecular signatures suggest a major role

for stromal cells in development of invasive breast cancer. Breast cancer research and treatment 114:

47–62. https://doi.org/10.1007/s10549-008-9982-8 PMID: 18373191

4. Jonsson G, Busch C, Knappskog S, Geisler J, Miletic H, et al. (2010) Gene expression profiling-based

identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clinical can-

cer research: an official journal of the American Association for Cancer Research 16: 3356–3367.

5. Gerdes MJ, Sood A, Sevinsky C, Pris AD, Zavodszky MI, et al. (2014) Emerging understanding of multi-

scale tumor heterogeneity. Frontiers in oncology 4: 366. https://doi.org/10.3389/fonc.2014.00366

PMID: 25566504

6. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, et al. (2013) Emerging landscape of onco-

genic signatures across human cancers. Nat Genet 45: 1127–1133. https://doi.org/10.1038/ng.2762

PMID: 24071851

7. TCGA (2015) The Molecular Taxonomy of Primary Prostate Cancer. Cell 163: 1011–1025. https://doi.

org/10.1016/j.cell.2015.10.025 PMID: 26544944

8. Hong MK, Macintyre G, Wedge DC, Van Loo P, Patel K, et al. (2015) Tracking the origins and drivers of

subclonal metastatic expansion in prostate cancer. Nat Commun 6: 6605. https://doi.org/10.1038/

ncomms7605 PMID: 25827447

9. Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW (2015) Intra-tumor genetic heterogeneity and mor-

tality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med 12:

e1001786. https://doi.org/10.1371/journal.pmed.1001786 PMID: 25668320

10. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, et al. (2016) Pan-cancer analysis of the extent and

consequences of intratumor heterogeneity. Nat Med 22: 105–113. https://doi.org/10.1038/nm.3984

PMID: 26618723

11. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, et al. (2015) PhyloWGS: reconstructing subclonal

composition and evolution from whole-genome sequencing of tumors. Genome Biol 16: 35. https://doi.

org/10.1186/s13059-015-0602-8 PMID: 25786235

12. Hajirasouliha I, Mahmoody A, Raphael BJ (2014) A combinatorial approach for analyzing intra-tumor

heterogeneity from high-throughput sequencing data. Bioinformatics 30: i78–86. https://doi.org/10.

1093/bioinformatics/btu284 PMID: 24932008

13. Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, et al. (2014) Phylogenetic quantification of

intra-tumour heterogeneity. PLoS Comput Biol 10: e1003535. https://doi.org/10.1371/journal.pcbi.

1003535 PMID: 24743184

14. Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C, et al. (2015) In situ single-cell analysis identi-

fies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat

Genet 47: 1212–1219. https://doi.org/10.1038/ng.3391 PMID: 26301495

15. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, et al. (2015) Single-cell analysis reveals a

stem-cell program in human metastatic breast cancer cells. Nature 526: 131–135. https://doi.org/10.

1038/nature15260 PMID: 26416748

16. Naik RR, Gardi NL, Bapat SA (2016) Elucidation of molecular and functional heterogeneity through dif-

ferential expression network analyses of discrete tumor subsets. Sci Rep 6: 25261. https://doi.org/10.

1038/srep25261 PMID: 27140846

Characterizing the heterogeneity of tumor tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0188878 November 30, 2017 18 / 20

https://doi.org/10.1016/j.ccell.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25584892
https://doi.org/10.1016/j.cell.2012.04.023
http://www.ncbi.nlm.nih.gov/pubmed/22608083
https://doi.org/10.1007/s10549-008-9982-8
http://www.ncbi.nlm.nih.gov/pubmed/18373191
https://doi.org/10.3389/fonc.2014.00366
http://www.ncbi.nlm.nih.gov/pubmed/25566504
https://doi.org/10.1038/ng.2762
http://www.ncbi.nlm.nih.gov/pubmed/24071851
https://doi.org/10.1016/j.cell.2015.10.025
https://doi.org/10.1016/j.cell.2015.10.025
http://www.ncbi.nlm.nih.gov/pubmed/26544944
https://doi.org/10.1038/ncomms7605
https://doi.org/10.1038/ncomms7605
http://www.ncbi.nlm.nih.gov/pubmed/25827447
https://doi.org/10.1371/journal.pmed.1001786
http://www.ncbi.nlm.nih.gov/pubmed/25668320
https://doi.org/10.1038/nm.3984
http://www.ncbi.nlm.nih.gov/pubmed/26618723
https://doi.org/10.1186/s13059-015-0602-8
https://doi.org/10.1186/s13059-015-0602-8
http://www.ncbi.nlm.nih.gov/pubmed/25786235
https://doi.org/10.1093/bioinformatics/btu284
https://doi.org/10.1093/bioinformatics/btu284
http://www.ncbi.nlm.nih.gov/pubmed/24932008
https://doi.org/10.1371/journal.pcbi.1003535
https://doi.org/10.1371/journal.pcbi.1003535
http://www.ncbi.nlm.nih.gov/pubmed/24743184
https://doi.org/10.1038/ng.3391
http://www.ncbi.nlm.nih.gov/pubmed/26301495
https://doi.org/10.1038/nature15260
https://doi.org/10.1038/nature15260
http://www.ncbi.nlm.nih.gov/pubmed/26416748
https://doi.org/10.1038/srep25261
https://doi.org/10.1038/srep25261
http://www.ncbi.nlm.nih.gov/pubmed/27140846
https://doi.org/10.1371/journal.pone.0188878


17. de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, et al. (2014) Spatial and temporal diversity

in genomic instability processes defines lung cancer evolution. Science 346: 251–256. https://doi.org/

10.1126/science.1253462 PMID: 25301630

18. McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ, et al. (2017) Optimized multiplex immunofluores-

cence single-cell analysis reveals tuft cell heterogeneity. JCI insight 2.

19. Harizanova J, Fermin Y, Malik-Sheriff RS, Wieczorek J, Ickstadt K, et al. (2016) Highly Multiplexed

Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions. PLOS ONE

11: e0160591. https://doi.org/10.1371/journal.pone.0160591 PMID: 27519053

20. Sood A, Miller AM, Brogi E, Sui Y, Armenia J, et al. (2016) Multiplexed immunofluorescence delineates

proteomic cancer cell states associated with metabolism. JCI insight 1.

21. Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, et al. (2013) Highly multiplexed single-cell analy-

sis of formalin-fixed, paraffin-embedded cancer tissue. Proceedings of the National Academy of Sci-

ences of the United States of America 110: 11982–11987. https://doi.org/10.1073/pnas.1300136110

PMID: 23818604

22. Heindl A, Nawaz S, Yuan Y (2015) Mapping spatial heterogeneity in the tumor microenvironment: a

new era for digital pathology. Lab Invest 95: 377–384. https://doi.org/10.1038/labinvest.2014.155

PMID: 25599534

23. Kovacheva VN, Khan AM, Khan M, Epstein DB, Rajpoot NM (2014) DiSWOP: a novel measure for cell-

level protein network analysis in localized proteomics image data. Bioinformatics 30: 420–427. https://

doi.org/10.1093/bioinformatics/btt676 PMID: 24273247

24. Kolling J, Langenkamper D, Abouna S, Khan M, Nattkemper TW (2012) WHIDE—a web tool for visual

data mining colocation patterns in multivariate bioimages. Bioinformatics 28: 1143–1150. https://doi.

org/10.1093/bioinformatics/bts104 PMID: 22390938

25. Schubert W (2014) Systematic, spatial imaging of large multimolecular assemblies and the emerging

principles of supramolecular order in biological systems. Journal of molecular recognition: JMR 27: 3–

18. https://doi.org/10.1002/jmr.2326 PMID: 24375580

26. Kruger JM, Wemmert C, Sternberger L, Bonnas C, Dietmann G, et al. (2013) Combat or surveillance?

Evaluation of the heterogeneous inflammatory breast cancer microenvironment. J Pathol 229: 569–

578. https://doi.org/10.1002/path.4150 PMID: 23192518

27. Nawaz S, Heindl A, Koelble K, Yuan Y (2015) Beyond immune density: critical role of spatial heteroge-

neity in estrogen receptor-negative breast cancer. Mod Pathol 28: 766–777. https://doi.org/10.1038/

modpathol.2015.37 PMID: 25720324

28. Setiadi AF, Ray NC, Kohrt HE, Kapelner A, Carcamo-Cavazos V, et al. (2010) Quantitative, architec-

tural analysis of immune cell subsets in tumor-draining lymph nodes from breast cancer patients and

healthy lymph nodes. PLOS ONE 5: e12420. https://doi.org/10.1371/journal.pone.0012420 PMID:

20811638

29. Yuan Y, Failmezger H, Rueda OM, Ali HR, Graf S, et al. (2012) Quantitative image analysis of cellular

heterogeneity in breast tumors complements genomic profiling. Sci Transl Med 4: 157ra143. https://

doi.org/10.1126/scitranslmed.3004330 PMID: 23100629

30. Plancoulaine B, Laurinaviciene A, Herlin P, Besusparis J, Meskauskas R, et al. (2015) A methodology

for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on

hexagonal tiling of digital image analysis data. Virchows Arch.

31. Laurinavicius A, Plancoulaine B, Rasmusson A, Besusparis J, Augulis R, et al. (2016) Bimodality of

intratumor Ki67 expression is an independent prognostic factor of overall survival in patients with inva-

sive breast carcinoma. Virchows Arch 468: 493–502. https://doi.org/10.1007/s00428-016-1907-z

PMID: 26818835

32. Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis GA, Cohen C (2010) Intratumoral heterogeneity of

immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study. Appl

Immunohistochem Mol Morphol 18: 433–441. https://doi.org/10.1097/PAI.0b013e3181dddb20 PMID:

20485156

33. Zhong Q, Ruschoff JH, Guo T, Gabrani M, Schuffler PJ, et al. (2016) Image-based computational quan-

tification and visualization of genetic alterations and tumour heterogeneity. Sci Rep 6: 24146. https://

doi.org/10.1038/srep24146 PMID: 27052161

34. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674. https://

doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

35. Knijnenburg TA, Bismeijer T, Wessels LF, Shmulevich I (2015) A multilevel pan-cancer map links gene

mutations to cancer hallmarks. Chin J Cancer 34: 439–449. https://doi.org/10.1186/s40880-015-0050-

6 PMID: 26369414

Characterizing the heterogeneity of tumor tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0188878 November 30, 2017 19 / 20

https://doi.org/10.1126/science.1253462
https://doi.org/10.1126/science.1253462
http://www.ncbi.nlm.nih.gov/pubmed/25301630
https://doi.org/10.1371/journal.pone.0160591
http://www.ncbi.nlm.nih.gov/pubmed/27519053
https://doi.org/10.1073/pnas.1300136110
http://www.ncbi.nlm.nih.gov/pubmed/23818604
https://doi.org/10.1038/labinvest.2014.155
http://www.ncbi.nlm.nih.gov/pubmed/25599534
https://doi.org/10.1093/bioinformatics/btt676
https://doi.org/10.1093/bioinformatics/btt676
http://www.ncbi.nlm.nih.gov/pubmed/24273247
https://doi.org/10.1093/bioinformatics/bts104
https://doi.org/10.1093/bioinformatics/bts104
http://www.ncbi.nlm.nih.gov/pubmed/22390938
https://doi.org/10.1002/jmr.2326
http://www.ncbi.nlm.nih.gov/pubmed/24375580
https://doi.org/10.1002/path.4150
http://www.ncbi.nlm.nih.gov/pubmed/23192518
https://doi.org/10.1038/modpathol.2015.37
https://doi.org/10.1038/modpathol.2015.37
http://www.ncbi.nlm.nih.gov/pubmed/25720324
https://doi.org/10.1371/journal.pone.0012420
http://www.ncbi.nlm.nih.gov/pubmed/20811638
https://doi.org/10.1126/scitranslmed.3004330
https://doi.org/10.1126/scitranslmed.3004330
http://www.ncbi.nlm.nih.gov/pubmed/23100629
https://doi.org/10.1007/s00428-016-1907-z
http://www.ncbi.nlm.nih.gov/pubmed/26818835
https://doi.org/10.1097/PAI.0b013e3181dddb20
http://www.ncbi.nlm.nih.gov/pubmed/20485156
https://doi.org/10.1038/srep24146
https://doi.org/10.1038/srep24146
http://www.ncbi.nlm.nih.gov/pubmed/27052161
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.1186/s40880-015-0050-6
https://doi.org/10.1186/s40880-015-0050-6
http://www.ncbi.nlm.nih.gov/pubmed/26369414
https://doi.org/10.1371/journal.pone.0188878


36. Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27:

623–656.

37. Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27:

379–423.

38. Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biol-

ogy 21: 24–43.

39. Twu P, Mostofi Y, Egerstedt M. A measure of heterogeneity in multi-agent systems; 2014 4–6 June

2014. pp. 3972–3977.

40. Perakis SO, Thomas JE, Pichler M (2016) Non-coding RNAs Enabling Prognostic Stratification and

Prediction of Therapeutic Response in Colorectal Cancer Patients. Adv Exp Med Biol 937: 183–204.

https://doi.org/10.1007/978-3-319-42059-2_10 PMID: 27573901

41. Saus E, Brunet-Vega A, Iraola-Guzman S, Pegueroles C, Gabaldon T, et al. (2016) Long Non-Coding

RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer. Front Genet 7: 54. https://doi.

org/10.3389/fgene.2016.00054 PMID: 27148353

42. Yang Y, Huang X, Sun J, Gao P, Song Y, et al. (2015) Prognostic value of perineural invasion in colorec-

tal cancer: a meta-analysis. J Gastrointest Surg 19: 1113–1122. https://doi.org/10.1007/s11605-015-

2761-z PMID: 25663635

Characterizing the heterogeneity of tumor tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0188878 November 30, 2017 20 / 20

https://doi.org/10.1007/978-3-319-42059-2_10
http://www.ncbi.nlm.nih.gov/pubmed/27573901
https://doi.org/10.3389/fgene.2016.00054
https://doi.org/10.3389/fgene.2016.00054
http://www.ncbi.nlm.nih.gov/pubmed/27148353
https://doi.org/10.1007/s11605-015-2761-z
https://doi.org/10.1007/s11605-015-2761-z
http://www.ncbi.nlm.nih.gov/pubmed/25663635
https://doi.org/10.1371/journal.pone.0188878

