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ABSTRACT

In earlier work, we introduced and discussed a
generalized computational framework for identifying
horizontal transfers. This framework relied on a
gene’s nucleotide composition, obviated the need
for knowledge of codon boundaries and database
searches, and was shown to perform very well across
a wide range of archaeal and bacterial genomes
when compared with previously published appro-
aches, such as Codon Adaptation Index and C 1 G
content. Nonetheless, two considerations remained
outstanding: we wanted to further increase the sens-
itivity of detecting horizontal transfers and also to be
able to apply the method to increasingly smaller gen-
omes. In the discussion that follows, we present such
a method, Wn-SVM, and show that it exhibits a very
significant improvement in sensitivity compared with
earlier approaches. Wn-SVM uses a one-class sup-
port-vector machine and can learn using rather
small training sets. This property makes Wn-SVM par-
ticularly suitable for studying small-size genomes,
similar to those of viruses, as well as the typically
larger archaeal and bacterial genomes. We show
experimentally that the new method results in a
superior performance across a wide range of organ-
isms and that it improves even upon our own earlier
method by an average of 10% across all examined
genomes. As a small-genome case study, we analyze
the genome of the human cytomegalovirus and dem-
onstrate that Wn-SVM correctly identifies regions that
are known to be conserved and prototypical of all
beta-herpesvirinae, regions that are known to have

been acquired horizontally from the human host
and, finally, regions that had not up to now been
suspected to be horizontally transferred. Atypical
region predictions for many eukaryotic viruses,
including the a-, b- and g-herpesvirinae, and 123
archaeal and bacterial genomes, have been made
available online at http://cbcsrv.watson.ibm.com/
HGT_SVM/.

INTRODUCTION

For several decades, scientists have been documenting the
ability of microbes to incorporate foreign DNA into their
genome (1). Even though in the early years, claims of extens-
ive horizontal transfers were met with skepticism, the data
gathered by the various genome sequencing projects have
provided overwhelming evidence of how widespread this phe-
nomenon is. For an extensive discussion of various aspects of
horizontal gene transfer (HGT), the reader is referred to (2),
which provides an excellent introduction to the topic.

In our earlier work on the subject of horizontal gene transfer
(3), we reviewed extensively the numerous computational
methods, which have been devised over the years for identi-
fying such events. Consequently, in what follows we will only
summarily describe the main categories of methods, namely,
phylogenetic and composition-based methods, and outline
their key characteristics.

Phylogenetic methods depend on the knowledge of ortho-
logous sequences and are very robust if sufficient amounts of
data are available. They are particularly effective in identify-
ing transfers and this has already been demonstrated by many
researchers (4). On the other hand, compositional methods rely
on the premise that a given organism exhibit compositional
features which remain relatively constant across its genomic
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sequence and can thus be used to generate a ‘description’ of
the organism. As one might expect, a great variety of
approaches have been proposed in this category: the methods
ranged from the use of the G + C content to dinucleotide
signatures, to codon usage patterns and the Codon Adaptation
Index (CAI) (5–11). Compositional methods based on higher-
order oligonucleotides have also been proposed (12). In addi-
tion to these main two categories, we should also mention the
existence of (i) surrogate methods (13), which attempt to
answer the question of horizontal gene transfer without any
need for orthologous sequences; and (ii) hybrid methods that
combine one or more compositional methods into a single
scheme (14). Finally, and independent of the used method,
highly expressed genes and ribosomal proteins are typically
filtered out (14,15).

Examination of all of the previously published methods
readily reveals that they have focused entirely on the analysis
of archaeal and bacterial genomes. Moreover, and precisely as
one would intuitively expect, the performance of essentially
all composition-based computational techniques generally
improves if more data are available that can be used to define
the average genome ‘signature’. A better-defined genomic sig-
nature will in turn result in an improved signal-to-noise ratio
when determining the provenance of a given gene. Naturally,
for a given composition-based method, the uncertainty in
deciding whether a gene is atypical with respect to the rest
of the genome will increase in inverse proportion to the size
of the processed genome: the smaller the genome, the harder
it becomes to assess the atypicality of its genes. Analogous
observations can be made for phylogenetic approaches: the
larger the collection of orthologous genes that are available,
the greater the confidence in the conclusions.

In view of the above observations, we set out to create a
method that would work equally well with large and small
genomes. In particular, we sought a method that would be
able to sensitively detect horizontal transfers even when the
set of genes used for training was small. Such a method
would result in improved sensitivity when analyzing archaeal
and bacterial genomes while at the same time permitting
the study of the phenomenon of horizontal transfer in viral
genomes.

Viral transduction has been known for quite some time (16)
as a mechanism by which viruses, during their replication,
incorporate in their genome genetic material from their host,
which they then transfer to a new host. In fact, there is no
reason as to why the final recipient host should even be related
to the host in which the genetic material originated. Clearly,
transduction holds substantial potential for virus-mediated
genetic engineering. However, it remains unclear whether
transduction is as an important enabler of evolutionary change,
if at all. Because of the latter uncertainty and the lack of
methods that could sensitively detect horizontal transfers in
small genomes, viruses have remained until now uncharted
territory from the standpoint of horizontal transfer analysis.

In what follows, we present a new method that builds on
a representation scheme that we introduced recently (3). This
new method can learn very effectively from small training sets
and works well with archaeal and bacterial as well as viral
genomes. Notably, the new method even improves upon the
Wn method, which we introduced in (3), by an average of
10% across a very large collection of tested genomes.

MATERIALS AND METHODS

Brief overview of our generalized compositional
framework

In (3), we introduced a generalized, composition-based frame-
work for HGT detection. Summarily, our framework extends
and generalizes composition-based methods in three distinct
ways:

(i) it uses higher-order nucleotide sequences (templates); this
leads to improved discrimination power and an improved
ability to classify genes when compared with the pre-
viously proposed di- and tri-nucleotide models;

(ii) it extends composition-based schemes through the ability
to ‘ignore’ certain nucleotide positions; this was achieved
with the use of generating templates that include ‘wild-
cards’ and thus comprise non-consecutive nucleotides; and

(iii) it permits the optional consideration of the periodicity of
the DNA code; in particular, when collecting the instances
of a template, we can optionally align the template with
codon boundaries.

Given a genome sequence, our ultimate objective is to char-
acterize coding and non-coding regions of the genome in terms
of how ‘atypical’ they are compared to the ‘average’ composi-
tion. Let f(s) = (a1, a2, . . . ,aq) denote the compositional
feature vector for any given DNA sequence s over a set of
templates p = {p1, p2, . . . ,pq}; ai is the frequency of template
pi in sequence s. Similarly, we compute the compositional
feature vector f(G) for the whole genome G as the average
of the compositional feature vectors of the given sequences.
With the help of a standard similarity measure (e.g. correla-
tion, covariance, c2 test, Mahalanobis distance, relative
entropy, etc.), we assign a typicality score SG(g) to each
gene g of genome G: the higher the score the more typical
the gene is for the genome. Genes with low scores are thus
candidates to be the result of horizontal gene transfer events.
We called the resulting method Wn, where n is an integer
greater than two and equal to the size of the template.

Our extensive analysis in (3) demonstrated that for template
sizes greater than two, the optimal performance is obtained
when the codon boundaries are ignored (i.e. all the templates
are counted, including those that begin at the second and third
codon positions), the templates include no wildcards, and
covariance is used as the similarity measure for computing
typicality scores. Moreover, the performance of the method
increased with the size of the template, reaching a maximum
for n = 8; performance deteriorated with further increases in
the size of the template.

A new similarity measure: one-class support-vector
machines (SVM)

Given a set of training data points in a high-dimensional input
space, the objective of the one-class SVM method (17) is to
learn a function that will take the value +1 in the region where
the majority of the data points are concentrated, and the
value �1 everywhere else. The function to be learned is
modeled as a hyperplane in a transformed space (= feature
space), and hyperplane parameters are estimated so that its
margin with respect to the training data is maximized, as
dictated by the data-driven distribution-free paradigm.
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More formally, let us consider the training objects x1, . . . , x1

2 X and a feature map f: X ! R
m, which maps objects from

the input space X to points in the feature space R
m, where

m is the number of features associated with each object.
The maximum margin solution of the one-class SVM prob-
lem, i.e. the problem of finding the maximum-margin
hyperplane in the feature space that separates the data
from the origin, is obtained by solving the following quad-
ratic optimization problem:

min
u2Rm‚xi>0‚r2R

1

2
kuk2 þ 1

vl

Xl

i¼1

xi � r

s:t:
hu � f xð Þi> r � xi‚

xi > 0‚1 < i < l‚

where u 2 R
m is a vector describing the hyperplane in the

feature space, r 2 R is the margin of the hyperplane with
respect to the data, xi are non-zero slack variables allowing
for a soft margin, and v 2 (0,1) is a parameter that rep-
resents an upper bound on the fraction of outliers in the
data. Finally, the decision function inferred by the learned
hyperplane is:

f xð Þ ¼ sgn hu � f xð Þi � rð Þ:

The optimization problem is solved by applying the
Lagrange multipliers, thus converting it to the equivalent
dual problem:

min
a2Rl

1

2

Xl

i¼1

Xl

j¼1

aiajhf xið Þ � f xj

� �
i

s:t:

Xl

i¼1

ai ¼ 1‚

0 < ai <
1

vl ‚

with the hyperplane parameters given by u ¼
Pl

i¼1 aif xið Þ.
In the context of the HGT detection problem, the input space

X is the set of all possible nucleotide sequences, whereas the
feature space R

m comprises the selected set of compositional
features of the nucleotide sequences, i.e. the frequencies of
all templates of size n. We can use the learned decision
function to induce a scoring measure SG of genes belonging
to a fixed genome G, where more atypical genes will receive
lower scores: SG (x) = hu · f(x)i.

When v = 1, this last measure, SG, is proportional to the
covariance of the two vectors involved in the inner product.
Furthermore, it is worth pointing out that for any feature
map f, the typicality measure obtained from the solution of
the one-class SVM optimization problem and the covariance
measure discussed previously (3) will result in the same rel-
ative ranking of genes with respect to typicality. This can be
shown with the help of the Lemma contained in Appendix A.

However, for values of v < 1, the optimal hyperplane solu-
tion will have some coefficients ai assume a value of zero; the
genes for which ai = 0 will not contribute their compositional
features f(xi) to the computation of u.

From the above, we can give a natural interpretation to
the optimal hyperplane u as a generalized genome signature:
when v = 1, the generalized signature is equivalent to the usual
genome signature which is computed as the mean of the gene
signatures in the genome; for 0 < v < 1, the generalized
signature will comprise only a subset of special ‘signature
genes.’ This also constitutes a natural interpretation of the
parameter v for the problem that we try to solve here as an
upper bound on the fraction of gene transfers in the genome. In
the following section, we use this fact to estimate, via a series
of experiments, the optimal parameter v for any given genome
so that the number of recovered horizontal gene transfers is
maximized. The worst-case performance of the one-class
SVM-based method can be as good as the covariance-based
method that we introduced previously (3) (this is again a direct
sequence of the Lemma in Appendix A). However, in practice,
the Wn-SVM method achieves an average improvement of
>10% across the 123 archaea and bacterial genomes that
we have used as a reference.

RESULTS

Evaluation of Wn-SVM: archaeal and bacterial genomes

For each of the 123 host organisms in turn, we conducted
k = 20 experiments of simulated transfers from a gene pool.
As in (3), this simulation was carried out using a pool of more
than 350 000 archaeal and bacterial genes: in fact, we permit-
ted all our genomes to exchange genes with one another while
making sure that a given genome did not become a gene donor
for itself. The genes were randomly selected from the pool and
‘inserted’ in the i-th genome: the task at hand for each of the
tested methods was to recover as many as possible of these
artificially inserted genes. To the best of our knowledge, it is
important to note here that this simulation as well as those
mentioned in (3) are unique in that they are carried out using
donor sets comprising actual genes. The methods we tested
included CAI, Wn and Wn-SVM. Moreover, the set of donors
was the same as the set of acceptors, in other words we allowed
the tested genomes to exchange genes with one another in any
conceivable combination. As such, this is a realistic simulation
of what happens naturally (as it is currently understood). In
each experiment, the number of added genes was chosen to be
a fixed percentage of the number of genes in the host genome.
The ‘transferred’ genes were selected from the donor pool at
random and with replacement. The simulated-transfer experi-
ments were carried out for transfer percentages which ranged
between 1 and 8% of the genes in the host genome under
consideration.

Given each genome and transfer percentage combination,
each of the tested methods had to recover as many of the arti-
ficially transferred genes as possible, without using any a priori
knowledge about the host genome or the donor genes. The ideal
method should recover each and every one of the artificially
added genes. However, our artificial insertions compete for the
top, putative-transfer positions with the horizontal gene trans-
fers that are already present in the genome under consideration.
Consequently, not all of the artificially inserted genes will
occupy the top, putative-transfer positions: we use the term
‘hit ratio’ to refer to the fraction of the artificially inserted
genes that a tested method manages to recover. We should
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point out that this situation poses no problem for the purposes of
simulation as it holds true for all of the tested methods, and thus
no method is favored at the expense of another.

In (3), we showed that the best performance was achieved
by Wn for templates of size n = 8 and that the second best
method was the CAI. These are the three methods that we
evaluated. Table 1 summarizes the characteristics of the
three methods. Method m’s overall performance across the
N genomes under consideration is defined as:

Perfm ¼ 1

N

X
G

�
1

k

Xk

i¼1

rm
i Gð Þ

�
‚

where rm
i Gð Þ is the hit ratio obtained by the method m

for genome G at the i-th iteration of the experiment (with
1 < i < k).

For the one-class SVM method, we have the additional task
of estimating the parameter v, which controls the fraction of
genes that contribute to the genome signature. For each gen-
ome and each given percentage of added genes, we estimate
the optimal value of the parameter v so that the fraction of the
artificially inserted genes recovered by the SVM method is
maximized. This estimation is carried out by varying the value
of v from 0 to 1 using a step of 0.1 and conducting k = 20
experiments for each value; performance was averaged over
these 20 experiments and the value of v that maximized the
performance was chosen as the optimal value for v. The highly
optimized SVM package LibSVM by Chang and Lin was used
to solve a total of 200 quadratic problems per organism. The
code and reference manuals for LibSVM can be found online
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

In Table 2, we list the overall performance of all methods
for different percentages of artificially added genes. Table 3
shows the improvement that our new W8-SVM method
achieves when compared with the remaining methods: the
improvement is shown both in absolute percentage points
and in terms of relative values and represents the average
across the 20 experiments that we carried out for each genome
and artificial transfer percentage value. Table 3 is also depicted
graphically in Figure 1. The amount of relative improvement
that W8-SVM achieves relative to method m is computed
using the following formula:

Relm ¼ 1

N

X
G

Relm
G ¼ 1

N

X
G

PerfW8=SVM Gð Þ� Perfm Gð Þ
Perfm Gð Þ ‚

and is a measure of how many more horizontal transfers are
detected by W8-SVM. For example, in the experiments with
2% added genes from the pool, the W8-SVM method achieved
a relative improvement of 10.6% compared with W8 and
33.6% compared with CAI.

In Figure 2, we show a comparison between W8-SVM
and W8 for each of the 123 genomes and for those experiments
where we added 2% donor genes. As predicted theoretically,
W8-SVM improves upon W8 across all the genomes with
which we experimented (but of course is in no case inferior
to W8).

In Figure 3, we compare W8-SVM with the CAI method:
green solid bars indicate the cases where W8-SVM outper-
forms CAI, whereas red bars are used when CAI outperforms
W8-SVM. The height of each bar corresponds to the relative
improvement Relm

G achieved by our method over CAI as an
average over the 20 experiments and can be either positive
(green bars) or negative (red bars).

Evaluation of Wn-SVM: analysis of the human
cytomegalovirus genome

In addition to the simulation and analysis of archaea and
bacteria, we present an analysis of the human cytomegalovirus
genome from the standpoint of horizontal gene transfer and
compare our results with existing knowledge from the liter-
ature about the genes of this virus. This experiment is of
particular relevance given that we set out to create a method
that would be suitable for the analysis of large and small
genomes. As an example of a small genome to analyze with
our Wn-SVM method, we selected the human cytomega-
lovirus (also known as human herpesvirus 5 or HHV5). The
reason for this particular choice is due to our long standing
interest in the cytomegalovirus in conjunction with the fact
that this is a virus that transmits very easily, knows no age or
geographic boundaries, has no seasonal dependencies and
affects a very large percentage of the population in modern
societies (18–20).

Figure 4 shows a map of the HHV5 genome marked by
Wn-SVM. The strain with which we worked with was the
laboratory strain AD169 (21). In the absence of detailed
knowledge as to the extent of horizontal transfers into the

Table 1. Gene scoring methods

Name Width Step Measure Description

CAI 3 3 N/A Codon Adaptation Index
W8 8 1 covariance 8 nt composition (no wildcards)
W8-SVM 8 1 SVM 8 nt composition (no wildcards)

Table 2. The overall performance Perfm for the methods under evaluation is

shown: higher numbers for the overall performance are more preferable—see

also text for a definition of Perfm

% HGT CAI (%) W8 (%) W8-SVM (%)

1 46.3 51.6 56.6
2 51.6 56.2 60.6
4 56.5 60.9 64.1
8 61.5 65.4 67.7

Table 3. Improvement of the new W8-SVM method over CAI and over W8

% HGT W8-SVM versus CAI (%) W8-SVM versus W8 (%)

% Improvement in overall performance
1 10.3 5.0
2 9.0 4.4
4 7.6 3.2
8 6.2 2.3

% Average relative improvement
1 52.0 15.0
2 33.6 10.6
4 23.5 6.3
8 15.4 3.8
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Figure 1. Achieved relative improvement of W8-SVM versus CAI and of W8-SVM versus W8. The results represent an average over all experiments and all
genomes (see also text).

Figure 2. Average relative improvement RelW8
G of W8-SVM over W8 for each one of 123 organisms. Each value is an average over 20 experiments with donor genes

drawn from the archaeal and bacterial gene pool (see also text).
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cytomegalovirus genomes, we generated results for three val-
ues of v, namely 1.0, 0.9 and 0.8, and reported a region as a
candidate for gene transfer if and only if it were marked as
atypical by Wn-SVM at all three values of v. Supplementary
Figure 1 shows the boundaries of the evaluated genomic
regions, the genes that overlap with each region and the sim-
ilarity score assigned by Wn-SVM to each region. The forward
and reverse strands of the genome are treated separately and
the genes are shown on their respective strand. The evaluated
regions were 300 nt in length and consecutive regions had an
overlap of 200 nt.

Several interesting results can be seen from Figure 4 and
Supplementary Figure 1. With some very interesting excep-
tions that clearly demonstrate the capabilities of Wn-SVM
and which we will discuss next, effectively every single
one of the blocks of genes that are known to be conserved
across the b-herpesvirinae is marked by Wn-SVM as typ-
ical (native) to the cytomegalovirus genome, precisely as
described in (22). These blocks are genes UL22 through
UL33, UL45 through UL53, UL69 through UL72, UL75
through UL80, UL85 through UL87, UL89 through UL105,
UL112 through UL117, and the TRL/IRL and TRS/IRS
regions.

Although the above mentioned blocks of genes are marked
as herpesvirinae-specific, there are a few small regions within
them with atypical composition. In particular, and as shown in
Figure 4, genes UL33, UL78, US12 and US21 are all reported
by Wn-SVM as atypical and thus as horizontal transfer can-
didates. This is in fact a correct result given that all four of
these genes are G-protein coupled receptor homologs and
thus eukaryotic in origin. Also marked, in a piece-meal fashion
this time, was UL48, a gene coding for a virion protein that is
known to comprise several distinct, non-contiguous domains
(hence the piece-meal marking by Wn-SVM) with eukaryotic
character. This was in fact described previously (19)—see
relevant entry from Table 1.

A few additional observations are warranted here as they
further demonstrate the new method’s capabilities and
increased sensitivity. First, we would like to point out that
several areas of the genomic sequence, outside the gene blocks
that are known to be conserved across herpesvirinae, show
a typical composition and have been marked as horizontal
transfer candidates. This is a very interesting result which
does not contradict the current knowledge about the cyto-
megalovirus and which suggests several new avenues of
investigation.

Figure 3. Average relative improvement RelCAI
G of W8-SVM over CAI for each one of 123 organisms. Each value is an average over 20 experiments with donor genes

drawn from the archaeal and bacterial gene pool (see also text).
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Figure 4. Atypical regions (candidate horizontal transfers) in the HHV5 genome, strain AD169.
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Another interesting region is the one that genes UL107,
UL108 and (in part) UL109 span. The region is marked as
atypical and we believe that this is a correct result as well.
Indeed, in our earlier analysis of this virus’ genome that we
described previously (20) concluded that UL106 through
UL111 are unlikely to code for genes. This claim was verified
by very recent work (23) that has shown that the corresponding
5 kb region does in fact code for a spliced intron. More import-
antly, this region is not conserved in the murine cytomega-
lovirus, a strain that is close to the analyzed AD169 strain.
Taken together, these observations corroborate the Wn-SVM
results regarding the region in question.

Finally, and as shown in Figure 4, the TRL6/7 and IRL6/7
regions are reported by Wn-SVM to be non-native to the
human cytomegalovirus. Although this last statement may
be in disagreement with the discussion presented previously
(22), it bodes well with the more recent findings of (20) accord-
ing to which these two blocks are unlike the rest of the TRL
and IRL regions and may in fact be non-coding.

In closing, we would like to make some general comments
on the findings of Figure 4: our analysis suggests that the
cytomegalovirus genome comprises numerous regions with
atypical composition, including ones that are known to have
been the result of horizontal gene transfer, e.g. the G-protein-
coupled receptors that we discussed above. If the rest of the
atypical regions do indeed correspond to transfer events, then
the cytomegalovirus must have incorporated these regions
relatively recently [see for example the discussion in (6)]. It
would then follow that such events may be happening much
more frequently than we might have expected. This is a very
important research topic in its own right, which we will
be addressing in future work as it escapes the scope of this
presentation.

CONCLUSION

In this paper, we continued our earlier work on horizontal
gene transfer and introduced a new more sensitive method,
Wn-SVM, for detecting atypical composition that is based
on a one-class SVM. Wn-SVM utilizes the generalized com-
positional features that we proposed in our earlier work. Our
current work represents a substantial point of departure in that
Wn-SVM relies on a distribution-free, one-class SVM method
in order to draw conclusions instead of defining an a priori
model as in the case of the covariance measure. For each gene
in turn, the new method computes a typicality score, which is
then used as a proxy for the probability that the gene
under consideration has been acquired through a horizontal
transfer event.

Additional very important methodological differences
involve the manner in which the genome’s compositional sig-
nature (‘reference signature’) is now computed. In the earlier,
covariance-based method, all genes of the genome at hand
contributed equally to the genomic signature. However,
in the Wn-SVM method weights are chosen optimally using
the maximum margin criterion. As such, Wn-SVM extends
the notion of a compositional genomic signature by enforcing
genes to contribute their compositional features in a non-
uniform fashion. In fact, due to the constraints of the optim-
ization problem, some genes may end up not contributing at
all to the genomic signature (they will be assigned a weight of

zero). Interestingly enough, preliminary analysis shows that
the informational genes are under-represented in this group
of signature genes, exactly as anticipated: these genes tend
to have atypical compositions and therefore should not be
contributing to the genomic signature.

It is also worth pointing out that from a mathematical stand-
point, our previous method, (3), can be viewed as a special
case of the one-class SVM category of approaches. It in fact
corresponds to a fixed parameter v = 1, which does not neces-
sarily yield the optimal performance. Also, it should be
pointed out that although the compositional features used in
this paper were based on templates of size 8, further perform-
ance improvements may be possible through the application of
Gaussian or polynomial kernels on the same features, or
through the use of especially designed kernel functions that
are applied directly on sequences without any need to first
extract the compositional features [see chapter 8 of (24)].

We evaluated the performance of Wn-SVM by carrying
out a comparative analysis of W8-SVM, W8 and CAI by
inserting random, varying-size collections of genes in each
of 123 host genomes (archaea and bacteria) and processing
those artificially created genomes with each method in turn.
Our findings clearly show that Wn-SVM offers significant
sensitivity improvements over Wn. We further validated
Wn-SVM by demonstrating its applicability to the analysis
of smaller viral genomes, an area of research that has to
date remained unexplored from the standpoint of horizontal
gene transfer. As a case study, we analyzed the genome of
the human cytomegalovirus (HHV 5) and showed that we
can successfully mark genomic regions as atypical, in direct
agreement with earlier independent studies. Finally, we have
made available Wn-SVM’s predictions for numerous, publicly
available archaeal, bacterial and viral genomes on the world-
wide web at http://cbcsrv.watson.ibm.com/HGT_SVM/.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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APPENDIX

LEMMA. For v = 1, the solution vector u of the optimization
problem is equal to the feature vector of the entire genome
� (G), i.e. the genome compositional signature, defined as the
average of the feature vectors of all the genes in the genome.

PROOF. For v = 1, the constraints of the dual problem are
simplified to 0<ai < 1=l and

Pl
i¼1 ai ¼ 1. These constraints

can only be satisfied if all ai attain the maximum allowed
value, i.e. if ai ¼ 1=l. This is the only feasible point for the
optimization problem, and therefore it must also be the optimal
solution. This means that:

u ¼
Xl

i¼1

aif xið Þ ¼ 1

l

Xl

i¼1

f xið Þ ¼ f Gð Þ:

From this Lemma, we immediately conclude that because
the two typicality measures are proportional to each other, they
will induce identical rankings, and therefore the two methods
will produce identical results with respect to identifying atyp-
ical genes in a genome.
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