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The prevention and treatment of mental illness is a serious social issue. Prediction and

intervention, however, have been difficult because of lack of objective biomarkers for

mental illness. The objective of this study was to use biometric data acquired from

wearable devices as well as medical examination data to build a predictive model that can

contribute to the prevention of the onset of mental illness. This was an observational study

of 4,612 subjects from the health database of society-managed health insurance in Japan

provided by JMDC Inc. The inputs to the predictive model were 3-months of continuous

wearable data and medical examinations within and near that period; the output was

the presence or absence of mental illness over the following month, as defined by

insurance claims data. The features relating to the wearable data were sleep, activity,

and resting heart rate, measured by a consumer-grade wearable device (specifically,

Fitbit). The predictive model was built using the XGBoost algorithm and presented an

area-under-the-receiver-operating-characteristic curve of 0.712 (SD = 0.02, a repeated

stratified group 10-fold cross validation). The top-ranking feature importance measure

was wearable data, and its importance was higher than the blood-test values from

medical examinations. Detailed verification of the model showed that predictions were

made based on disrupted sleep rhythms, mild physical activity duration, alcohol use,

and medical examination data on disrupted eating habits as risk factors. In summary,

the predictive model showed useful accuracy for grouping the risk of mental illness

onset, suggesting the potential of predictive detection, and preventive intervention using

wearable devices. Sleep abnormalities in particular were detected as wearable data 3

months prior to mental illness onset, and the possibility of early intervention targeting the

stabilization of sleep as an effective measure for mental illness onset was shown.

Keywords: machine learning, medical examination, mental illness, mHealth, physical activity, predictive detection,

sleep, wearable data

INTRODUCTION

Mental illness, including depression, is highly prevalent worldwide, and the lifetime prevalence has
been reported to be as high as ∼50 and 20% in the United States and Japan, respectively (1, 2).
Because mental illness causes a significant decrease in quality of life and socioeconomic loss, its
treatment and prevention are among the most serious societal challenges of today (3). Prevention
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and detection at the onset of mental illness are extremely
important because of the generally low remission rate for mental
illness and the favorable prognosis of early initiation of treatment
(4, 5). Predictive detection is difficult, however, because there are
no objective biomarkers for mental illness.

Meanwhile, the spread of wearable sensor technologies has
enabled the continuous acquisition of detailed daily lifestyle
data (e.g., sleep and activity) from individuals (6). Furthermore,
advances in computational processing capabilities and machine
learning have enabled the development of predictive models
that utilize high-frequency and high-dimensional data linked
from wearable devices. Therefore, research combining big health
data collection, machine learning, and artificial intelligence (AI)
analysis in the health care field has attracted attention, and
there are high expectations for their application to the objective
examination and onset prediction of mental illness (7–12).

Previous studies have primarily examined the usefulness
of sleep and physical activity data. Fang et al. reported that
irregular sleep rhythms were associated with worsening of
mood and depressive symptoms the following day, indicating
the importance of maintaining regular sleep habits for the
maintenance and improvement of mental health (13). Nakamura
et al. reported that time-series analysis of physical activity data
could distinguish depression and schizophrenia (14, 15) and
that the depressive scores of healthy and depressed subjects
could be continuously estimated from local time-series statistics
of physical activity (16). Cho et al. showed the possibility of
constructing a predictive model of mood level among patients
with mood disorders by applying machine learning to wearable
data, such as sleep, activity, and heart rate (17). Sano et al. showed
that the application of machine learning to physiological and
behavioral data acquired by wearable sensors and mobile phones
could be used to classify students’ self-reported mental health
statuses (18). However, the sample sizes or observation periods
of these studies were insufficient, and they have not reached
the point where they look beyond symptoms and pathological
evaluations to detect disease onset. In particular, the construction
of a highly accurate disease onset predictive model that applies
machine learning to large-scale data has not yet been achieved.

In addition to wearable data, blood- and urine-sample data
collected during regular medical examinations can also be used
as biomarker candidates for mental illness. Multiple blood
metabolites have been shown to be associated with depression
severity, with tryptophan concentration being particularly useful
in classifying depressed individuals (19, 20). However, the
construction of a highly accurate mental illness onset event
predictive model that combines daily behavioral data relating
to sleep or physical activities acquired by wearable devices with
biochemical data based on blood and urine samples regularly
acquired during medical examinations has not been achieved.
This is primarily because big data that link medical examination
and wearable data did not exist at the time.

The objective of this study was to build a model that can
objectively predict the possibility of onset of mental illness from
wearable and medical examination data. We have been engaged
in the construction of a database that links insurance claims
and medical examination data from society-managed health

insurance (21), and wearable data linked to personal health
records (PHRs), provided by information and communications
technology (ICT) services for society-managed health insurance
members. The data specifically include sleep, physical activity,
and heart rate metrics measured using a consumer-grade
wearable Fitbit device. In this study, we built a machine learning
predictive model for mental illness onset that was trained using
past insurance claims data. This study is meaningful in that the
construction of a predictive model of disease onset based on the
objective monitoring of human daily life and health status can
facilitate the detection and prevention of the onset of mental
illness and contribute to resolving widespread mental health
issues in society.

METHODS

Study Design and Dataset
We conducted analyses of a database constructed by JMDC
Inc. (21), which includes information on more than seven
million society-managed health insurance members in Japan
(insured individuals and dependents). This was comprised of
our subject base, which is on large-scale and includes insurance
claims (e.g., outpatient, hospitalization, and dispensary) and
medical examination results. Notably, it also includes a trove of
wearable data.

The subjects in this study were chosen from those satisfying
the following conditions:

• Society-managed health insurance member;
• Individual whose wearable data are linked to PHRs [service

name: Pep Up (https://pepup.life)], which is an ICT service by
JMDC Inc. for society-managed health insurance members;

• Individual having a history of continuously linking wearable
data for more than 3 months (15+ days per month); and

• Individual undergoing regular medical examinations.

The survey period ran from August 2016 to January 2020. The
data were anonymized. Written informed consent was waived
owing to the retrospective nature of this study while the subjects
agreed to have their data analyzed when linking their data
to PHRs. The ethical review of this study was performed by
the Ethics Committee of the Research Institute of Healthcare
Data Science (RIHDS). Date of approval: October 26, 2020;
Approval number: RI2020013. The procedures were carried out
in accordance with the approved guidelines.

Outcome Definition
Mental illness differs by individual in its duration from onset
to hospitalization. However, as taken from the insurance claim
data, the start of the onset was unclear. Hence, we based the
onset period on the time of the first mental illness consultation.
Relevant insurance claim information included the following
qualifying criteria:

• Administration of hypnotics, anxiolytics, or antidepressants:
prescription of medicine corresponding to Anatomical
Therapeutic Chemical (ATC) Classification System codes
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(i.e., N05B, N05C, and N06A) as defined by the European
Pharmaceutical Market Research Association (EphMRA);

• Psychiatric visits: calculation of medical practices
corresponding to the Quick Reference Table of Medical
Score classification codes I002 and I002-2.

Because hypnotics and anxiolytics are effective treatments for
mental illness, they are frequently prescribed as a temporarily
treatment for surgical hospitalization. Thus, to strictly determine
that the administration was connected to a mental illness,
we chose the initiation of both “administration of hypnotics,
anxiolytics, or antidepressants” and “psychiatric visits” as the
qualifying outcome. Henceforth, this combined outcome is
referred to as “mental illness onset”. Although this study did
not target a specific type of mental illness, this definition
approximately narrows the range of the targets to people with
depression or anxiety symptoms.

Exclusion Criteria
Potential subjects who met the following conditions were
excluded from the subject data of this study:

• Individuals with mental illness onset prior to linking wearable
data, during discontinued linking of data, or within 3 months
after starting data linking; and

• Individuals with different months of meeting the qualifying
outcomes listed above.

Wearable Data
The wearable data used in this study were acquired from Fitbit
wearable devices from Fitbit Inc. The device model differed
among subjects, but high inter-device reliability was reported
(22). The data were systematically acquired through the Fitbit
application programming interface (API) and consolidated into
a single-format database.

The information for sleep-related items collected for each
sleep session included isMainSleep, timeInBed, minutesAsleep,
minutesToFallAsleep, minutesAfterWakeup, deepMinutes,
remMinutes, lightMinutes, wakeMinutes, and startTime data
items. isMainSleep is a Boolean that determines whether the
given sleep event is main or not, e.g., long- or short-term sleep.
timeInBed is the time spent in bed; minutesAsleep is the total
sleep time excluding awakening time; minutesToFallAsleep is the
time until falling asleep; minutesAfterWakeup is the time until
getting out of bed after waking up; remMinutes, ligthMinutes,
deepMinutes, and wakeMinutes are the times spent in each sleep
stage [i.e., rapid eye movement (REM), light non-REM (NREM),
deep NREM, and wakefulness, respectively]; and startTime is
the bedtime.

The information for activity-related items collected for each
day included steps, veryActiveMinutes, fairlyActiveMinutes, and
lightlyActiveMinutes. The physical activity times according to
activity intensity were assigned based on the heart rate measured
by the Fitbit. The heart rate information was acquired each day
from RestingHeartRate.

Medical Examination Data
The medical examination data used in this study were acquired
from annual medical examinations, which are required by law
to be carried out by businesses affiliated with society-managed
health insurers. The measurement items included body mass
index (BMI), blood pressure (systolic and diastolic), blood-
test items [i.e., triglyceride (TG), high-density lipoprotein
(HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,
aspartate aminotransferase (AST), alanine aminotransferase
(ALT), gamma glutamyl transferase (GT), fasting blood
sugar (FBS), and hemoglobin A1c (HbA1c)], urine-test
items (i.e., urinary sugar and uric protein qualitative),
and interview items related to smoking, drinking, and
exercise habits.

Data Preprocessing
The predictive model in this study predicted the presence of the
onset of mental illness within 1 month using three continuous
months of Fitbit and medical examination data closest to (i.e.,
within or prior to) the period.When a single subject had multiple
time series that could be used as training data, all of them
were used. Only the time series at the time of mental illness
onset, however, was used for individuals who actually had mental
illness onset.

The features used to build the predictive model are shown
in Table 1. The wearable data were collected each month, with
monthly features for 3 months being created. These features
were labeled “[featurename]n,” where n = 1, 2, or 3 for the
nth continuous month of data. The sleep data automatically
acquired from the Fitbit were used to calculate social jet lag,
sleep regularity index (SRI), and chronotype, which express sleep
habits that are closely associated with mental health. Social jet
lag is an index that indicates circadian misalignment and is
calculated as the absolute difference between the mid-point of
the sleep hours on weekdays and weekends (23). A larger social
jet lag is known to exacerbate various health risks (24, 25).
SRI quantifies the regularity of daily sleep–wake rhythms and
is calculated as the concordance rate of sleep–wake occurrences
in 24-h units (26, 27). Decreased SRI has been associated with
stress, depression, poorer academic performance, and increased
illness risk. Chronotype indicates morningness–eveningness
preference and is often measured using questionnaires (28, 29).
It is also associated with mental illness (e.g., depression) (30,
31). In this study, the chronotype calculated from wearable
devices was used as an index to calculate corrected mid-sleep
time on weekends for those with sleep debt corrected by its
magnitude (32).

The monthly features of wearable data are described as
“[featurename]1–3,” corresponding to the 1st−3rd month of the
continuous 3-month data-linked period [e.g., SRI 1 is the SRI of
the first month (earliest) of the data-linked period, and SRI 3 is
the SRI of the last month (latest) of the data-linked period].

Machine Learning and Validation
The XGBoost binary classification model, which is known
to exhibit superior predictive performance using table data,
was used as the machine learning algorithm (33). XGBoost is
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TABLE 1 | Features used in building the predictive model.

Feature name Unit Description

Wearable data [heart rate]

RHR bpm monthly average of daily RestingHeartRate

Wearable data [activity]

veryActiveMinutes min monthly average of daily veryActiveMinutes

fairlyActiveMinutes min monthly average of daily fairlyActiveMinutes

lightlyActiveMinutes min monthly average of daily

lightlyActiveMinutes

Steps steps monthly average of daily steps measured

log_count.active days monthly number of days for activity data

linkage

Wearable data [sleep]

notMainSleep.minutes min monthly average of daily minutes of sleep

determined to be “isMainSleep=False”

notMainSleep.counts times monthly counts of sleep determined to be

“isMainSleep=False”

log_count.sleep days monthly number of days for activity data

linkage

timeInBed min monthly average of daily timeInBed

minutesAsleep min monthly average of daily minutesAsleep

minutesToFallAsleep min monthly average of daily

minutesToFallAsleep

minutesAfterWakeup min monthly average of daily

minutesAfterWakeup

deepMinutes min monthly average of daily deepMinutes

remMinutes min monthly average of daily remMinutes

lightMinutes min monthly average of daily lightMinutes

wakeMinutes min monthly average of daily wakeMinutes

startTime.sleep [hhmmss] monthly average of daily bedtime

SC_lag min monthly social jetlag

chronotype [hhmmss] monthly chronotype

SRI - monthly Sleep Regularity Index

Health Examination Data

BMI kg/m2 Body Mass Index

SBP mmHg Systolic Blood Pressure

DBP mmHg Diastolic Blood Pressure

TG mg/dl Triglyceride

HDL mg/dl HDL cholesterol

LDL mg/dl LDL cholesterol

AST U/l Aspartate aminotransferase

ALT U/l Alanine aminotransferase

GT U/l Gamma glutamyl transferase

FBS mg/dl Fasting blood sugar

HBA1C % (NGSP) HbA1c

US - Urinary sugar

(1=-, 2= +/-, 3= +, 4= ++, 5= +++)

UP - Uric protein qualitative

(1=-, 2= +/-, 3= +, 4= ++, 5= +++)

Health examination data [questionnaire]

SMOKE - Do you habitually smoke?

You habitually smoke if you have ever

smoked over 100 cigarettes in total or for 6

months or more and have also smoked in

the last month.

(1 = Yes, 2 = No)

(Continued)

TABLE 1 | Continued

Feature name Unit Description

DRINK - How often do you drink (sake, distilled

spirit, beer, liquor)?

(1 = Every day, 2 = Sometimes, 3 = Rarely)

AMOUNT_DRINK - Amount of drinking per day on days when

you drink.

1 go of sake is equivalent to the following: a

medium bottle of beer (around 500ml),

distilled spirit (80ml), a glass of double

whiskey (60ml), two glasses of wine

(240ml)

(1 = <1 go, 2 = 1 go to <2 go, 3 = 2 go to

<3 go, 4 = 3 go or more)

FITNESS - Do you exercise more than 30min, more

than twice in a week and continue this

exercise habit more than 1 year?

(1 = Yes, 2 = No)

WALK - Do you walk or perform same level of

physical activity as walk more than 1 h per

day?

(1 = Yes, 2 = No)

Other data

GENDER - Gender

(1 = Male, 2 = Female)

AGE years Age at the end of the 3 months

YM [yyyymm] the end period of 3 months

YEAR - the Year of YM

MONTH - the Month of YM

particularly suitable for cases where a strong correlation between
features and/or a non-linear relationship between features and
targets is assumed, as in this dataset. The outline of the
model is shown in Figure 1. We used the “xgboost” package
(v.0.81.0.1) of R analytics software (https://www.r-project.org).
The loss function was a weighted logloss so that it would
accommodate imbalanced data having few positive examples
(34). For hyperparameters, eta (step size shrinkage used in
update to prevent overfitting) was set at 0.05; max_depth (i.e.,
maximum depth of a tree),min_child_weight (i.e., minimum sum
of instance weight (hessian) needed in a child), colsample_bytree
(i.e., subsample ratio of columns when constructing each
tree), and class_weight (i.e., weighting of positive examples in
weighted logloss) were determined via grid search. For the other
hyperparameters, the default values were used [https://xgboost.
readthedocs.io/en/latest/parameter.html (accessed 2021-04-20)].

Predictive performance was evaluated via area-under-the-
curve (AUC) using stratified 10-fold cross validation (CV).
Because the dataset included different time series from a single
person, partition division was conducted to avoid including the
same person in the model training and testing data in each
fold (group CV) (35). The validation data from each fold were
merged, and the AUC for CVwas evaluated for the entire training
data set. This method is used for datasets having few positive
examples, but it has been shown that it may underestimate
performance as a classifier (36). Furthermore, the robustness of
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FIGURE 1 | Overview of the predictive model construction and validation. (A) The predictive model was built using the XGBoost algorithm. The inputs to the model

were 3-month’s continuous wearable data and those of the medical examinations closest to (i.e., within or prior to) that period; the output was the presence or

absence of mental illness over the following month, which was defined based on insurance claims data. (B) Predictive performance was evaluated using a repeated

stratified 10-fold cross validation (CV). Because the dataset included different time series from a single person, partition division was conducted to avoid including the

same person in the model training and testing data in each fold (group CV).
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the evaluation index was ensured by conducting CV 10 times by
changing the cutting method of the fold, and the average AUC
was used as the predictive performance of the model constructed
in this study (i.e., repeated CV).

Statistical Analyses
The intervention range and methods of preventing mental
illness onset using the predictive model were investigated by
comparing the density estimation curve of the onset probability
that was output by the predictive model between individuals with
and without onset. A specific threshold was set for the onset
probability that was output by the prediction model based on the
receiver-operating-characteristic (ROC) and density estimation
curves, and the statistical significance of the onset probabilities of
the two groups was verified using Fisher’s exact test. The subject
records were created by merging the verification data of each fold
in 10-fold CV.

The contribution of each feature to the outcome was
confirmed using feature importance (gain), which indicates the
contribution of each feature in the model-learning process.
Because XGBoost is an algorithm that presumes interactions, the
effect that fluctuations in each feature have on the predictive
value cannot be unified and accurately shown. Therefore, we
adopted a novel method of calculating the maximum value of
the threshold and the fraction at which the threshold value
becomes the mode value (cover) at each branch of the model
built for each feature with high importance. The significance
of the onset probabilities of the two groups divided by the
threshold value of the total training data in this way was
verified using Fisher’s exact test. The p < 0.05 were considered
statistically significant.

RESULTS

The dataset comprised of 37,856 time series and 4,612 subjects
(see Figure 2 for the details of subject inclusion). Table 2 shows
the demographic data for the subjects. Among the subjects, 24
individuals (24 time series) exhibited mental illness onset.

The average AUC from repeated CV was 0.712 [standard
deviation (SD) = 0.02]. Figure 3 shows the ROC curve for a
given CV (AUC = 0.711). The primary hyperparameters were
max_depth = 2, min_child_weight = 16, colsample_bytree =

0.8, class-weight = 10, and nrounds = 137. Figure 4 shows the
relationship between class-weight and predictive performance;
changing the loss function to a weighted logloss improved the
AUC from 0.63 (class_weight = 1) to 0.71 (class_weight = 10).

Figure 5 shows the density estimation curve of the onset
probability output by the predictive model. When grouping this
onset probability with a threshold value of 1%, the actual onset
rate of the group having a predictive probability > 1% was 0.17%
(n = 7,592, x = 13) and the actual onset rate of the group with
predictive probability < 1% was 0.04% (n= 30,264, x = 11), and
there was a significant difference in the onset rates of the two
groups (p < 0.001).

The top-10 features of the feature importance (gain) generated
when the XGBoost model was built were, in order of decreasing

importance, notMainSleep.counts1, lightlyActiveMinutes3,
SC_lag1, minutesAsleep1, remMinutes1, SRI1, log_count.sleep2,
DRINK, TG, and GT (Figure 6). When confirming the most
important features of the wearable data from the perspective of
the time series, sleep-related features were all in the first month,
whereas the days having linked sleep data occurred during the
second month, and the mild activity time occurred during the
third month.

Table 3 shows the mode of the branches of the most
important features and the percentage at which the threshold
value became the mode value (cover) as well as the onset
probabilities of the two groups. With regards to the onset
probabilities in the grouping based on the threshold value in
the training data, the onset probability was significantly higher
in the group having a feature value higher than the threshold
value than in the group having a feature value lower than
the threshold for notMainSleep.counts1, lightlyActiveMinutes3,
minutesAsleep1, TG, and GT. The onset probability was
significantly higher in the group having a feature value lower than
the threshold than in the group having a feature value higher
than the threshold for remMinutes1, SRI1, and log_count.sleep2.
Regarding DRINK, subjects with a drinking habit (threshold
< 2.5 for DRINK indicates a drinking habit; see Table 1)
exhibited a higher tendency for onset probability than those
without a drinking habit (p = 0.059). SC_lag1 did not exhibit
any significant differences in onset probability between the two
groups according to mode split value (p = 0.278). Furthermore,
notMainSleep.counts1, lightlyActiveMinutes3, log_count.sleep2,
andDRINK had the same threshold for all branches (cover of 100
%), whereas SC_lag1, SRI1, and TG had a relatively low cover of
around 50%.

DISCUSSIONS

Summary of the Findings
In this study, we used machine learning to build a predictive
model that used sleep and activity data acquired from Fitbit
wearable devices and medical examination records to establish
the criteria leading to mental illness onset. The results showed
that the robust evaluation index of the constructed predictive
model had an AUC that exceeded 0.7 and exhibited a moderate
level of predictive performance. The relative strength of the
relationship between wearable data and mental illness when
compared with medical examination data was shown from the
feature importance obtained. The top-ranking features of the
constructed model included wearable data, specifically those
of sleep-related indices. Analysis of the results of the model
built with machine learning suggested that sleep abnormalities,
especially the destabilization of sleep rhythms, are associated with
an increased illness onset probability and that sleep disturbances
may be a predictor of mental illness onset. Furthermore, activity-
related indices and medical examination data relating to alcohol
consumption were included in the topmost features, and these
were also suggested to be factors. Early intervention aimed at
sleep stabilization has been shown to be potentially effective in
the prevention of mental illness.
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FIGURE 2 | Flow diagram detailing subject inclusion. PHRs, personal health records.

Possible Interpretations and Implications
of the Findings
The model developed in this study had an AUC > 0.7 and
was thought to have achieved a moderate level of accuracy. A

predictive model was built using data acquired from a consumer-

grade wearable device (i.e., Fitbit). A disadvantage of Fitbit

is that its data processing algorithm has not been completely

disclosed, and its details are unknown. However, the fact that
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a good-accuracy model was built using the machine learning
XGBoost method shows that actual societal applications can be
expected (37). The accuracy of consumer-grade wearable devices
has continually increased, and many validation studies have
discussed methods for evaluating and utilizing the quality of

TABLE 2 | Demographic data of the subjects (N = 4,612).

Age (years), mean (SD) 45.9 (9.1)

Gender (male), N (%) 3,289 (71.3)

Body mass index (kg/m2 ), mean (SD) 23.2 (3.3)

N, number of subjects; SD, standard deviation.

such devices (38–51). Recent systematic reviews relating to the
measurement accuracy of sleep and physical activity by Fitbit
have shown that, although there are still areas for improvement,
it is fundamentally accurate (52–55). The results of this study
provide evidence that precision preventive behavioral medicine
(56) can be achieved by longitudinally acquiring personal health-
related data using wearable devices.

The dataset used in this study was unbalanced with very
few positive examples, and the prediction performance could
be greatly improved by using weighted logloss as the loss
function. Top-ranked features in terms of feature importance
included SRI and SC_lag, and it is thought that the generation
of features that reflect sleep rhythms from acquired wearable
data will contribute to improved accuracy. Meanwhile, because

FIGURE 3 | Receiver-operating-characteristic (ROC) for merged validation data created by 10-fold cross validation. Area-under-the-curve (AUC) = 0.711. The point

closest to the top left (0,1) was (0.23, 0.67), and the corresponding cut-off value was 0.9%.
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FIGURE 4 | Area-under-the-curve (AUC) when the class-weight was moved from 1 to 20 in one-value increments (10-fold cross validation). Other hyperparameters

were fixed at the final parameter.

there are many negative examples despite the high AUC, as
shown at the point closest to the top left on the ROC curve
in Figure 3, interventions need to be conducted on ∼23%
of all data-linked individuals to cover 67% of those having
mental illness onset, owing to the percentage of negative
cases ≥ 99%. As shown in Figure 5, the predicted probability
of the model is at most a few percent per month, and
even with a high threshold, many of the cases can be false
positives. Although false positive cases are “healthy” in the
sense that psychiatrists do not administer hypnotic, anxiolytic,
or antidepressant drugs in the following month, the risk of
mental health problems may be relatively high. Therefore, soft
interventions based on the high rate of false positives are required
in this way, and specific candidates for this include advice

without concerns about side effects relating to sleep, eating habits,
or exercise.

The top-seven features contributing to the prediction of onset
of mental illness included information acquired by wearable
devices, indicating the importance of daily life monitoring of
health metrics. In particular, six out of the seven features are
related to sleep and, as mentioned in many previous studies (57–
61), these results suggest the possibility of a close association
between sleep abnormality and mental illness onset. Because
activity-related features were also ranked second in importance,
and three items acquired from themedical examination data were
also included in the top-10 items, physical activity and medical
examination data were confirmed to contribute to the diagnosis
of mental illness onset to a degree.
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FIGURE 5 | Density estimation curve of the onset probability output by the predictive model for the merged validation data created by 10-fold cross validation. The

solid line (FLAG = 1) corresponds to individuals with mental illness onset, and the dashed line (FLAG = 0) corresponds to those without mental illness onset.

In this study, we not only applied machine learning to data
in order to build a model having high predictive accuracy,
but we also confirmed the directionality of the associations
between features and illness onset probability by investigating
the detailed data using the model (Table 3). The manner in
which the relationship between each feature and the outcome
was determined was inferred by the mode values of the
branches, the percentage at which the threshold value became
the mode value (cover), and the onset probabilities of two
groups with a grouping based on those values. Features having
a cover of over 80% where the onset probability significantly
differed between groups (p < 0.05) (notMainSleep.counts1,
lightlyActiveMinutes3, minutesAsleep1, TG, GT, remMinutes1,
SRI1, and log_count.sleep2) had a monotonic relationship with

the outcome, suggesting a strong correlation by them without the
premise of interaction. There were no significant differences in
the onset probability between groups with regard toDRINK (p=
0.059), but the cover was 100%, suggesting that interactions may
strengthen its effect on the outcome. The feature importance of
SC_lag1 was ranked third, but no significant differences in onset
probability were seen between groups (p = 0.278), and the cover
was relatively low at 41%. Hence, it is suggested that the optimal
threshold value changed significantly depending on whether the
effect on outcome was quadratic functional (high risk even if
the value was too large or too small) or by interactions. When
confirming branches where that of SC_lag1was amode split value
(105), it can be seen that the SC_lag1 branch was configured after
(log_count.sleep2 ≥ 30) = TRUE for all cases. When grouping
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FIGURE 6 | Top-10 features in feature importance (gain) of the XGBoost model built using all of the training data.

was conducted based on whether SC_lag1was above or below the
mode split value for the records with log_count.sleep2 ≥ 30 in
the training data, the onset probability of the “less than” group
was 0% (0 / 14,367), and the onset probability of the “more than”
group was 0.27% (3 / 1,108), with significant differences in the
onset probability between groups (p < 0.001).

Among the sleep-related features, the most important,
notMainSleep.counts1, was evaluated as high risk when
notMainSleep exceeded five occurrences in a month. Increases
in notMainSleep suggested increases in short-term sleep or
polyphasic sleep, such as napping, and it is speculated that the
decreased quality of MainSleep (i.e., sleep disturbances) is a
background factor in mental illness onset. These results are

consistent with the results of a previous study in which the
number of naps was included in the top-ranking features used
to predict the mental health status of students (18). Increases
in SC_lag1 were evaluated as high risk, and this is consistent
with the results of previous studies that showed that increased
social jet lag increased various health risks (24, 25). However,
it should be noted that the relationship of SC_lag1 may change
according to the interactions with other features. Increases in
minutesAsleep1 were evaluated to be at high risk. The threshold
value was 7 h, and these results may be counterintuitive.
However, the long period regardless of sleep quality, represented
by deepMinutes, may reflect the loss of the sleep–wake rhythm
and longer periods spent lying down or increased physiological
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TABLE 3 | Mode values of branches in the most important features and significant differences in onset probability owing to related groups.

Feature Mode split Probability p-value

Value Cover Less than More than or equal

notMainSleep.counts1 5 100% (62/62) 0.02% (4/20,471) 0.16% (17/10,453) <0.001

lightlyActiveMinutes3 260 100% (20/20) 0.04% (13/30,008) 0.14% (11/7,848) 0.005

SC_lag1 105 41% (7/17) 0.06% (20/34,264) 0.11% (4/3,556) 0.278

minutesAsleep1 419 92% (23/25) 0.06% (21/36,840) 0.30% (3/1,016) 0.026

remMinutes1 75 88% (15/17) 0.15% (7/4,553) 0.03% (2/7,326) 0.032

SRI1 0.92 54% (7/13) 0.09% (22/23,637) 0.01% (2/14,219) 0.002

log_count.sleep2 30 100% (14/14) 0.09% (21/22,381) 0.02% (3/15,475) 0.006

DRINK 2.5 100% (9/9) 0.08% (21/25,439) 0.02% (2/8,946) 0.059

TG 608 54% (13/24) 0.06% (22/37,776) 2.50% (2/80) 0.001

GT 19 91% (10/11) 0.01% (1/10,431) 0.08% (23/27,425) 0.010

“Mode split cover” is the percentage of the mode in all branches used by the applicable feature. “Probability” is the onset probability of being less than or more than the mode split value

relative to the entire training data. Records missing a feature value were excluded. The “p-value” was calculated using Fisher’s exact test. GT, glutamyl transferase; SRI, sleep regularity

index; TG, triglyceride.

need for long periods of sleep caused by psychosomatic burdens,
thereby increasing the illness onset risk. A remMinutes1 value less
than ∼75min was evaluated as high risk. A previous study using
a polysomnography showed that shortened REM sleep latency
was associated with depression (62), whereas the disruption and
shortening of REM sleep was associated with poor physical and
mental health (63–67). Some Fitbit models have been reported
to have favorable REM sleep estimation accuracies (46), but
care should be taken with regards to the sleep-stage estimation
accuracy from consumer-grade wearable devices. Smaller SRI1
was evaluated as high risk, and this is consistent with previous
studies that stated that irregular daily sleep times led to poor
mental and physical states (60, 68, 69). Unlike conventional
evaluative indices, which focus only on the main sleep phase,
SRI is attracting attention as an index that can evaluate the sleep
timing over a 24-h period (26, 27), which is consistent with
the findings related to notMainSleep.counts. Overall, the results
suggest that the mental illness onset probability increases when
the sleep–wake rhythm is disrupted, rest-activity balance is lost,
and REM sleep decreases.

With regards to activity-related features, it was confirmed
that lightlyActiveMinutes3, which was the second-highest in
terms of feature importance, was evaluated as high risk when
exceeding 260min. This threshold value was in the top 20% of the
overall record.Mental illness and depressive symptoms have been
associated with low activity and slow movement (14–16, 70), and
it is thought that there is a possibility of increased light activity
intensity in the form of decreased physical activity immediately
before illness onset, alongside disruptions in sleep rhythms and
decreased balance.

The 8th−10th-ranked features in terms of feature importance
were medical examination data, which included drinking habits
(DRINK), triglycerides (TG), and γ-GTP (GT). All features
were related to dietary lifestyle, including alcohol consumption.
Drinking habits and high values indicating liver dysfunction were
evaluated as high risk, and the results showed a link between
dietary lifestyle and mental illness. Meanwhile, the importance

of each of these features was lower than that of the wearable
device-related features, and the results once again suggested the
importance of wearable device data for the predictive detection
of mental illness.

Focusing on temporal (monthly) information of wearable
device-related features in terms of feature importance, the
highly ranked sleep-related features were those from the first
month, whereas the number of days with linked sleep data
included features from the second month in the top rankings.
This suggests the background of sleep habit disturbances first
occurring prior to mental illness onset, which then lead to
behavioral changes (e.g., taking off the Fitbit when going to
sleep). It is interesting that the information gleaned prior to
the month of the psychiatric consultation was important. The
existence of a critical slowing down is known to be an early
warning signal for a phase transition within complex dynamical
systems (71). Moreover, reports have indicated that there are
larger mood fluctuations immediately prior to the onset or
termination of depression (72), as well as increased circadian
rhythm instability in animal models prior to the establishment
of alcohol dependence (73). From the results obtained regarding
the manifestation of sleep rhythm instability, we can conclude
that it provides an early warning for mental illness onset.
Therefore, interventions that promote sleep improvement, in
which abnormalities appear at an early stage, are thought to
be effective.

Finally, although this study constructed a generalized
model that predicts mental illness onset, individual differences
can be understandably high. Individual differences may
arise from complex interactions among biological/genetic,
psychological/behavioral, and social/environmental factors.
Therefore, utilizing a longitudinal personal time-series model
with multiple, continuous, and objective data and records for one
person should be more promising to achieve precision psychiatry
(9) as well as precision preventive behavioral medicine (56).
Machine learning and AI approaches should be very powerful
tools for this purpose.
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Limitations
The results in this study are from a dataset having only a
small number of people with mental illness (24). The feature
importance shown in this study also cannot be said to be
sufficiently universal. It is possible that features unique to these
24 people were captured, and that other important features were
overlooked. The interactions between the features in this study
may not have been sufficiently trained with just 24 positive
examples, and it may not have fully captured these aspects. In
fact, max_depth = 2 was used for hyperparameter selection by
grid search, and the predictive model that was built in this study
does not incorporate complicated interactions. Efforts must be
made to continuously expand the dataset and to re-verify it.

The mental illness onset defined within this study’s scope
can be captured from health insurance claims. However, many
mentally ill people do not go to the hospital, even with obvious
symptoms such as insomnia and depression. Nevertheless, the
threshold for psychiatric consultations is particularly high in
Japan compared with other countries. Hence, using variables
of “administration of hypnotics, anxiolytics, or antidepressants”
and “psychiatric visits” in this study is thought to have
only captured in relatively severe cases. Clinically, onset is
synonymous with confirmed diagnosis. Thus, for this study,
the insurance paradigm was acceptable. Mental illness generally
shows high variance in symptoms as well as underlying causes.
As most of the positive cases in this study are thought to
be people with depression and anxiety symptoms, the cases
can be used to construct disease-specific predictive models in
future studies.

This study used values measured by a specific device (i.e.,
Fitbit); the measurement items may not provide sufficient
accuracy or may have proprietary/unclear features. This would
not be a problem if we were to restrict our scope to Fitbit wearers.
However, when comparing these results to those obtained using
other wearable devices, appliance differences must be taken
into account. Although there are limits to the generalizability
of the results in this study, they are compelling in that they
demonstrate the possibility of predicting illness onset using
wearable data.

The period of the wearable data analyzed had to be restricted
to three continuous months to secure a reasonable amount of
data. The closest annual medical examination data to the mental
illness onset was used in the analyses, which means that the
timing of the medical examination was not the same as that of
the wearable data. However, medical examination data generally
do not change abruptly in such a short period (∼several months),
which should support the validity of our study design.

Biases associated with wearable data linkages should also be
noted. This was an observational study, and it is always an
individual’s choice to attach and use wearable devices for any
reason. Therefore, there is the possibility that a person who feels
physically and mentally fulfilled will continue to wear the device
and link multiple time-series records. Conversely, those who feel
mentally offset may discontinue wearing the device. Hence, the

onset probability predicted by the model is likely lower than that
actually found in society as a whole. Nevertheless, there is some
value in considering the utilization of a model that focuses on the
magnitude of predictive probability and conducting preventive
interventions based on a given threshold value.

CONCLUSIONS

This study demonstrated the possibility of developing a machine
learning model that predicts mental illness onset using wearable
data collection items and extant medical examination data. The
feature importance in the predictive model developed in this
study suggests that metrics such as sleep and activity cycles may
be more useful in predicting the onset of mental illness than
blood-test data. Sleep disturbances were detected as symptoms 3
months prior to onset, and early stage intervention that focused
on improving sleep showed the potential for effective prevention.
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