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Abstract

The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of
natural systems. More contentious is whether the capacity of organisms to adapt (or ‘‘evolvability’’) can itself evolve and the
mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more
readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in
stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to
effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks
displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and
adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic
effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may
constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations
compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with
recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms
potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic
interactions.
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Introduction

In his classic studies of evolution in heterogeneous environ-

ments, Levins proposed that a population’s reduction in mean

fitness due to temporal environmental variation can be alleviated if

the temporal covariance between its mean phenotype and the

changing optimal phenotype is sufficiently large [1,2]. The ability

to track environmental change depends on the presence of additive

genetic variance. However, genetic variance also reduces fitness by

introducing non-optimal phenotypes to a population. Thus, a

genetic response to a changing environment will only be favored if

it is rapid and accurate enough such that covariances compensate

for any fitness losses due to phenotypic variation. In weakly

autocorrelated or randomly varying environments there is little

opportunity for populations to accurately track environmental

variation and selection for variant phenotypes is weak. Only when

environmental fluctuations exhibit a sufficient degree of autocor-

relation and predictability through time (i.e., when fluctuations are

‘‘reddened’’ or ‘‘red shifted’’) will the presence of additive genetic

variance and tracking of environmental change be at a selective

advantage [1,2].

One potential facet of a genetic system’s ability to generate

additive genetic variation is its capacity to buffer the deleterious

effects of mutations (what is commonly termed genetic canaliza-

tion); genomes that reduce the lethality of mutations may be better

able to produce phenotypic variation from mutational events,

effectively exploring a greater proportion of genotypic/phenotypic

space without suffering lethal effects from mutations [3–7]. Hence,

the evolution of evolvability may be coupled with the capacity of

genetic buffering mechanisms to respond to selection. The ability

to buffer phenotypic responses to genetic change (whether via

mutation, recombination or gene flow) may include two interde-

pendent properties: genetic robustness (the overall magnitude of

the effect of mutations) and the strength and direction of epistatic

interactions (the degree to which the effects of mutations are

dependent on the presence of other genes). Figure 1A displays

both properties as measured by the effects of mutation accumu-

lation on the log percentage of viable phenotypes (Wm) produced

by a given genotype. The scaling of this relationship, determined

by the parameter b, corresponds to different forms of epistasis (see

Fig. 1 legend). For a given b, robustness is represented as

differences in the overall (or average) effects of mutations on the

percent viable and is inversely related to the normalization

constant (a) [8].

While the capacity to maintain viability in the face of

accumulating mutations is one important aspect of robustness,

robustness can also be measured as the effect of mutations on

phenotypic expression relative to the pre-mutation phenotype.

This definition of robustness is similar to prior treatments of
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genetic canalization and the ability of genetic systems to suppress

phenotypic variation caused by mutations [9]. Greater robustness

in this sense may actually lead to a decrease in a genotype’s

inherent evolvability by diminishing its capacity to produce variant

offspring phenotypes [6]. Similarly, epistatic effects on phenotypic

expression could also influence evolvability; genotypes that exhibit

synergistic epistatic effects on phenotypic expression can produce

phenotypes that differ much more from the wild type as mutations

accumulate compared to those that exhibit antagonistic epistasis

(Fig. 1B).

Prior theoretical investigations have shown that robustness and

epistasis can readily evolve [4,10–13]. Selection for robustness may

be particularly strong when populations harbor a large amount of

genetic variation - a byproduct of several potential factors

including large population size, high mutation rates and recom-

bination [9]. Sexual reproduction, when combined with genetic

variation, can impose a recombination load on populations by

disassembling favorable gene combinations and producing dele-

terious ones, thus selecting for enhanced robustness. While strong

stabilizing selection can counter such effects by reducing genetic

variation within populations [9], temporal variation may in theory

strengthen selection for robustness by promoting diversifying

selection and genetic variation [14–16]. Thus, autocorrelated

temporal variation may select for evolvability via direct and

indirect pathways that feedback on each other - directly by

favoring genotypes that produce highly variant offspring and

indirectly by promoting the maintenance of genetic/phenotypic

variation which then selects for robustness.

The conditions that give rise to the evolution of robustness and

directional epistasis are an area of active debate and research

[5,7,10,17]. Whereas prior studies have shown that mutations that

affect fitness commonly interact with each other and their genetic

backgrounds [18–20], an understanding of the form and

prevalence of directional epistasis in nature remains a major

challenge in evolutionary biology [18]. This is especially important

as directional epistasis can, in theory, influence numerous

evolutionary processes including reproductive isolation, the nature

of the adaptive process (sensu Wright’s shifting balance theory) and

the evolution of sexual reproduction [20]. One potential but little

studied force of change that may shape epistatic interactions and

robustness is temporally varying environmental conditions [21,22].

Although prior studies have shown that changing evolutionary

optima can influence the adaptive capacity of model genetic

systems [4,23], few have explicitly examined the role of colored

environmental noise and the links between the maintenance of

genetic variation, selection for robustness/epistasis, and the

evolution of evolvability. Understanding the evolutionary conse-

quences of autocorrelated environmental variation is especially

important in light of the increasing recognition that environmental

fluctuations in nature are frequently red-shifted (e.g., temperature

and precipitation) and that natural population fluctuations also

commonly exhibit positive autocorrelation [24–26]. Moreover,

anthropogenic effects on climate change may include effects on the

autocorrelational structure of environmental conditions such as

temperature [27]. Thus, comprehending how the color spectra of

environmental variation impact the adaptive capacity of genetic

systems is an important component of predicting future impacts on

natural systems. To address these questions I explored the effects

of environmental fluctuations on the evolution of model gene

networks, building off of a prior model framework [9,10,12,23,28–

30]. In this individual-based model, each genotype in a population

is represented by a matrix of interacting genes (or transcriptional

regulators). Populations of gene networks were allowed to evolve

for 36000 generations (with recombination and mutation) under

Figure 1. Hypothetical relationships between correlates of
fitness (Wm) and number of mutations (m). (A) Effects of lethal
mutations measured as the natural log of the percent of mutants that
are viable (Wm); curves were generated using the relationship
ln(Wm) = 2amb+ ln(100). (B) Effects of mutations on the phenotypic
distance between the mutant and wild type; curves were generated
using Wm = amb. For both A and B, b measures the strength and
direction of epistasis. b.1 indicates negative directional (or synergistic)
epistasis in which each subsequent mutation has a greater effect than
the last, b,1 indicates positive directional (or antagonistic) epistasis in
which effects of mutations become weaker as they accumulate, and
b = 1 indicates effects of mutations are the same as they accumulate.
Each dashed lines corresponds to larger a and stronger effects of
mutations relative to the paired solid line.
doi:10.1371/journal.pone.0052204.g001
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four different selection regimes: stabilizing (no variation), direc-

tional, white noise (random temporal variation), or reddened noise

(positively autocorrelated temporal variation). By combining

explicit genetic interactions with population and evolutionary

processes this model allowed exploration of environmental effects

on the evolution of emergent genetic properties as well as the

mechanisms underlying such responses.

Methods

General Model Framework
Each genotype in a population was represented by a N x N

matrix (A) of N interacting genes (or transcriptional regulators) with

N set at 10 for all simulations. The proportion of non-zero

elements in A characterizes its connectance (c) which was set equal

to 0.75 - chosen to facilitate comparisons with prior studies

[10,12,28]. However, preliminary results using connectance levels

of 0.20 and 0.85 produced patterns qualitatively similar to those

presented here (Fig. S1). An individual’s gene expression levels

during development are contained in the vector S(t) and is

determined for each gene i at time t+1 by:

si(tz1)~f
XN

j~1

aijsj(t)

" #
ð1Þ

where aij are the elements of the interaction matrix A, sj(t) is the

expression level of gene j at developmental time point t, and si(t+1)

is gene i’s expression at time t+1. In equation 1, f(x) is a sigmoidal

function that determines how the combined regulatory input of all

the genes in the network affects the expression of gene i (from a

value of +1 for complete activation to 21 for complete repression)

and is determined by:

f (x)~
2

(1ze{ax)
{1 ð2Þ

In f(x), a determines the degree of nonlinearity from repression to

activation; in all of the simulations a = 1.0, which permitted a

range of expression levels and allowed examination of continuous

variation in optimal phenotypes in the noise environments.

Gene expression levels were determined by first randomly

assigning initial gene expression levels to the S vector and then

iterating equation 1 over a fixed time period of 100 time steps

(analogous to a developmental period). Following previous studies

[9,10,12,23,28], I considered individuals whose gene expression

levels achieved a stable state during this developmental time

period to be viable and developmentally stable. Genotypes that

produced unstable or oscillatory expression patterns were consid-

ered unviable. Hence, a mutation to an A matrix that shifted a

network from a stable expression pattern to one that was

oscillatory would be considered a ‘‘lethal’’ mutation. Develop-

mental stability was evaluated after 100 time steps of development

by assessing variability in expression levels over the last 10 time

steps using:

V~
1

10

X100

t~90

D(Sp(t),Save), where

D(S,S
0
)~

PN
i~1

(si{s
0
i )

2

(4N)

ð3Þ

where Sp(t) was the vector of gene expression values at time t, and

Save was a vector of gene expression values averaged over the last

ten times steps. Following previous studies, if V was less than 1024,

the phenotype was considered viable [10,12,28]. For simplicity, I

call this realized gene expression pattern after 100 time steps of

development (Sp) the ‘‘phenotype’’ of the individual.

Dynamics of Selection
At the start of the simulations, populations were seeded with 250

identical, developmentally stable networks. To generate initial

networks, cN2 ( = 75) entries in an A matrix were randomly chosen

and randomly assigned a value from a standard normal

distribution. Developmental stability was then assessed as

described above. This was repeated until a total of 25 develop-

mentally stable, initial networks were generated which were each

then used to seed 25 initial populations.

Each of the 25 populations was allowed to evolve for 36000

generations under different forms of selection; responses in

robustness, evolvability and epistasis were found to stabilize by

after 10000 generations (see Results). Populations were assumed to

have non-overlapping generations. At each generation of selection,

a pool of 1000 developmentally viable offspring was created by

randomly pairing networks within the population and choosing

with equal probability rows from each parent’s A matrix to form

the offspring matrix (as a form of recombination). Inheritance of

rows from the parent matrices assumes that cis regulatory elements

are tightly linked to genes. Non-zero matrix elements were then

allowed to mutate with probability m/(cN2) where m = 0.1 (the per

genome rate of mutation) with values chosen randomly from a

standard normal distribution. Hence, new network connections

were not allowed to form; only the strength and direction of

regulatory interactions could evolve within a population. Follow-

ing recombination and mutation, developmental stability of the

resultant offspring matrix was assessed as above. A total of 1000

viable offspring matrices were produced with 250 of the most fit

representing the next generation. Fitness (F) was based on the

distance between the offspring phenotype (Sp) and the optimal

phenotype for the environment (Sopt) using the equation:

F (Sp)~e{ D(Sp, Sopt)

s

� �
ð4Þ

where D is as in equation 3 and s determines the degree of non-

linearity of the fitness function. For all simulations, s = 0.05;

however, the shape of the fitness function should not influence my

results as offspring survival to the next generation was based on

fitness rank. Sopt was dependent on the selection regime the

population was experiencing: either stabilizing (no temporal

variation), red noise (positively autocorrelated temporal variation),

white noise (random temporal variation) or directional selection.

For stabilizing selection, Sopt was held constant over time and was

set equal to the initial phenotype at generation 0 (Sinit). For red

noise environments, reddened time-series were produced using:

R(t)~
Xn=2

f ~1

1

f c
sin

2pft

n
zhf

� �
ð5Þ

which generates a colored time series by summing sine waves of

varying frequency [31], where n is the length of the period, f is the

frequency of each component wave, t is the time step (one

generation), hf is a uniform random deviate between 0 and 2p that

adds random phase to each wave, and c determines the degree of
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autocorrelation. For all simulations, I set c= 1 which produces

reddened noise (approximating a sine wave) scaled roughly

between 21 and 1 (Fig. S2). The optimal phenotype for the

population at generation t was then calculated as

Sopt(t) ~ R(t) z Sinit(t): ð6Þ

with expression levels allowed to vary up to a maximum of +1

(complete expression) and a minimum of 21 (complete repres-

sion). A characteristic of reddened noise is that low frequency

fluctuations have larger amplitudes and thus a potentially stronger

influence on evolutionary dynamics [32]. In order to evaluate the

effects of the periodicity of dominant oscillations, networks

experiencing red noise were exposed to four different large

amplitude period lengths (n = 10, 30, 50 or 70 generations).

For random, white noise selection regimes, optimal phenotypes

changed each generation and were calculated using:

Sopt(t)~W (t)zSinit(t) ð7Þ

where W(t) was a white noise time series and where expression

levels were allowed to vary up to a maximum of +1 (complete

expression) and a minimum of 21 (complete repression). White

noise series were created by randomizing a red noise time series

generated using equation 5 and equal in length to the length of the

simulation (36000 generations). This ensured that red and white

noise regimes experienced comparable levels of variation over time

but differed only in their degree of autocorrelation. White noise

series were generated using red noise with large amplitude period

lengths of n = 10, 30, 50 or 70 generations.

Because expression levels were bounded, time-averaged optimal

phenotypes in the fluctuating environments could differ from Sinit

and Sopt in the stabilizing selection environment. To account for

potential effects of this variation in time-averaged optima,

networks were also exposed to five different directional selection

regimes. The optimal phenotypes for the five directional selection

environments were chosen from a red noise time series (with a 50

generation, large amplitude period length) at even intervals across

half a period of the noise series. Hence, the target optima under

directional selection spanned a range of variation comparable to

what networks under fluctuating selection experienced.

A potential driver of robustness is recombination load imposed

by sexual reproduction [10]. To explore the degree to which

robustness, epistasis and evolvability responses were dependent on

this mechanism, I performed a more limited numerical analysis of

selection with asexually reproducing populations. For these

simulations, populations were seeded with the same initial

networks as described above, but the offspring pool was produced

each generation by randomly choosing and cloning matrices from

the parent pool. Networks were allowed to evolve under

stabilizing, red noise (period = 50 generations) and white noise

(period = 50 generations) selection for 36000 generations.

Response Variables
Primary response variables were evaluated for 100 randomly

chosen networks in each population every 2000 generations from

generation 2000 to 36000. To explore evolutionary responses in

the early stages of selection, select response variables in the

directional, red noise and white noise regimes were also examined

every 50 generations from generation 50 to 500. Genetic diversity

was measured as the mean number of unique elements per non-

zero entry in the A matrices of each population (equivalent to

mean allelic diversity). Phenotypic diversity was measured as the

number of unique phenotypes within each population (i.e., at least

one expression level in the S vector was not shared by other

individuals in the population). Evolvability, robustness and

epistasis were measured at each time point for 100 randomly

chosen networks in each population. To measure evolvability of a

given network, the network was extracted from its population,

cloned and used to seed a new population. This population of 250

identical networks was then exposed to directional selection for

four generations towards a randomly generated optimal pheno-

type (repeated for ten different target phenotypes). Selection

proceeded as described above. The rate of adaptation was then

measured as the rate at which the ln(Euclidean distance) between

the target phenotype and the phenotype of each network in the

population decreased per generation using linear regression.

Phenotypic variation produced during the evolvability assay was

also measured as the standard deviation in Euclidean distances

between population phenotypes and the target phenotypes

(averaged over the four generations of the evolvability assay).

Phenotypic variation in the model is equivalent to additive genetic

variation as phenotypic plasticity was not modeled. Evolvability

assays were performed using the same mutation rate (m = 0.1) as

above. Adaptation rates and phenotypic variation were averaged

across targets and networks to obtain mean population-level

measures of evolvability.

Robustness and epistatic effects of mutations were assessed by

imposing mutations (each replicated 50 times) on randomly chosen

non-zero elements of each network (mutant matrix values were

chosen randomly from a standard normal distribution). I then

examined the relationship between the response variable (Wm) and

the number of mutations (m), where Wm was either the percent of

post-mutation networks that were viable (i.e., developmentally

stable) or phenotypic distance (measured as the Euclidean distance

between the pre- and post-mutation phenotypes). The choice of

the number of mutations to impose was constrained by the fact

that maximal effects of mutations were capped in the model at 0%

viability at high levels of mutation. Consequently, patterns of

epistasis may become asymptotic at high levels of mutation load

(resembling antagonistic epistasis), potentially masking patterns of

synergistic epistasis at lower levels of mutation accumulation. This

is especially problematic if networks that evolve under different

selection regimes asymptote at different levels of mutation

accumulation, making comparisons among regimes questionable.

Accordingly, epistatic effects were explored across a relatively

narrow range of one to six mutations. Six mutations was found to

reduce average viability to 32% in the initial, pre-selection

networks (see Results). This mutation range was also on a scale

that was relevant for the evolvability assay in which populations

could produce an average of 100 mutations or 0.4 mutations per

network per generation.

Mutation effects on viability were modeled using

ln(Wm) = 2amb+ln(s); effects on phenotypic distance were modeled

using: Wm = amb where b measures the strength and direction of

epistasis, a is the normalization constant, and s = 100 (the

maximum percentage of networks that were viable at m = 0)

[8,10,11,33]. Log-log linear regression was used to estimate a and

b for each network. In these equations, a is equivalent to either the

log magnitude of the effect of a single mutation on percent viability

[a = ln(100)2ln(W1)] or phenotypic distance [a = ln(W1)]. Hence, I

used the percent viable under a single mutation (W1) as a measure

of ‘‘viability robustness’’, calculated as W1 = exp[ln(100)- a] or the

inverse of phenotypic distance under a single mutation as a

measure of ‘‘phenotypic robustness’’, calculated as 1/W1 = 1/

exp(a).

The Evolution of Evolvability

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52204



For simplicity, results presented in the main text focus on the

red noise selection regime with a 50 generation period length

(which tended to show the strongest responses) and its corre-

sponding white noise control. Effects of period length on select

time-averaged responses can be found in the supporting figures.

To assess differences among the initial networks (pre-selection),

white noise, stabilizing, directional and red noise selection regimes,

response variables were averaged over the last 20000 generations

and analyzed using ANOVA. Responses under directional

selection were averaged across the five selection targets.

I also examined the relationship between time-averaged

evolvability, measured as the rate of adaptation, and several

potential predictors including: viability robustness, phenotypic

robustness, epistatic effects on viability and epistatic effects on

phenotypic distance. Because measures of robustness and epistasis

covaried, I used partial least squares regression which accounts for

multi-collinearities among independent variables by producing

composite latent factors [34]. To interpret loadings of the

predictors on the latent factors, I treated predictors with squared

weighted loadings greater than 0.05 as statistically significant [34].

All response variables were log transformed to attain homogeneity

of variances and normality. Numerical simulations were per-

formed using MATLAB, version 7.10 [35]. All statistical analyses

of response variables were performed in R version 2.15 [36].

Results

While several response variables varied over time, especially

under red and white fluctuating selection, linear regressions of

response variables versus time revealed no significant trends across

selection regimes over the last 20000 generations, indicating that

rates of change were on average not significantly different from

zero (P.0.19, R2,0.003, linear regression). The only exception

was for log fitness, which exhibited a weak negative relationship

with time in the white noise regime (P = 0.005, R2 = 0.025, linear

regression).

Temporal heterogeneity (both random and autocorrelated)

resulted in rapid accumulation of genetic and phenotypic diversity

within populations (Fig. 2). Time-averaged phenotypic and genetic

diversity varied significantly among selection regimes (Fig. 2;

P,0.001, ANOVA). Both measures were higher in the red and

white noise environments compared to the initial networks and the

stabilizing and directional selection regimes; diversity was also

higher in the red noise environment compared to white noise (all

P,0.001, Tukey’s HSD test). No differences were observed among

the directional, initial and stabilizing networks (P.0.80, Tukey’s

HSD).

Mean fitness averaged across populations also stabilized

relatively rapidly, though fluctuations were apparent over time

(Fig. 3). Time-averaged log fitness (i.e. geometric mean fitness)

varied significantly among selection regimes (F 4,120 = 459.2,

P,0.001, ANOVA) with levels significantly lower in the fluctu-

ating environments compared to the initial, stabilizing and

directional selection networks (P,0.001, Tukey’s HSD test).

Geometric mean fitness was also higher in the red noise

environment compared to populations that experienced white

noise (P,0.001, Tukey’s HSD test).

Evolvability measured as either the rate of adaptation or

production of phenotypic variation from the evolvability assays

varied significantly among source environments (P,0.001,

ANOVA). Only networks that evolved under red noise exhibited

significant increases in their time-averaged measures of evolva-

bility relative to the initial networks (Fig. 4A, 4B; rate of

adaptation: P = 0.003, Tukey’s HSD; phenotypic variation:

P = 0.004, Tukey’s HSD). Evolvability showed the opposite

pattern under directional selection, decreasing relative to mean

initial levels (rate of adaptation: P = 0.023, Tukey’s HSD;

phenotypic variation: P = 0.015, Tukey’s HSD). There was some

evidence that evolvability increased in the white noise environ-

ments as well (Fig. 4A, 4B). Indeed, no significant difference

between red and white noise environments was detected for either

production of phenotypic variation (P = 0.46, Tukey’s HSD test) or

the rate of adaptation (P = 0.20, Tukey’s HSD test). However,

mean evolvability in the white noise environment was also not

significantly different from initial levels, indicating that selection

for evolvability was weaker compared to red noise environments

(rate of adaptation: P = 0.51, Tukey’s HSD test; phenotypic

variation: P = 0.46, Tukey’s HSD). As expected, there was a strong

positive relationship between the generation of phenotypic

Figure 2. Effects of selection regime on genetic diversity and
phenotypic diversity over 36000 generations of selection. (A)
Genetic diversity (means, +/2 S.E.) over time; diversity of each
population was measured as the mean number of alleles per locus
across all A matrices. (B) Phenotypic diversity (means, +/2 S.E.)
measured as the number of unique phenotypes within each population.
Results for the fluctuating environments are for red noise with a 50
generation period length and its corresponding white noise control.
doi:10.1371/journal.pone.0052204.g002
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variation and the rate of adaptation in the evolvability assay

(P,0.001, R2 = 0.92, linear regression between time-averages).

A potential confounding factor in the evolvability assays was the

initial difference between the randomly generated target pheno-

types and the phenotypes of the networks being assayed. As there

is likely a limit to how closely a network can match a target

optimal phenotype when under directional selection, networks that

are initially very similar to their targets may exhibit little or no

adaptive change over time. To test and control for this, I analyzed

evolvability measured as the mean rate of adaptation using

ANCOVA in which initial Euclidean distance from the target was

used as the continuous covariate and the fixed effect was

environment (either initial, stabilizing, directional, red noise or

white noise). Evolvability was positively related to mean initial

distance (F1,119 = 10.9, P,0.001, ANCOVA), though effects of

initial distance were driven by two outlier values from a single

initial population with very low initial distance and low evolvability

(Fig. S3). The interaction between the covariate and environment

was not significant (P = 0.49, ANCOVA). However, effects of

selection regime were still significant after controlling for the

covariate (F 4,119 = 27.1, P,0.001, ANCOVA).

When examining epistatic effects of mutations on network

viability, significant effects of selection on time-averages were

present (Fig. 5A; F 4,120 = 36.5, P,0.001, ANOVA of time

averages). Stabilizing, red noise, and white noise selection did not

affect mean viability epistasis relative to initial levels (all P.0.63,

Tukey’s HSD test). However, time-averaged b values were lower

under directional selection relative to initial levels (P,0.001,

Tukey’s HSD test). Effects of selection on viability robustness were

also evident (Fig. 5B; F 4,120 = 7.8, P,0.001, ANOVA of time

averages). Networks that evolved under red noise were on average

more robust compared to initial levels (P = 0.024, Tukey’s HSD

test). In contrast, stabilizing and white noise selection did not differ

from mean initial values (P.0.54, Tukey’s HSD test), while

viability robustness declined under directional selection relative to

initial levels (P = 0.03, Tukey’s HSD test).

Epistatic effects on phenotypic distance also varied among

selection regimes (Fig. 6A; F4,120 = 35.7, P,0.001, ANOVA of

time averages). Stabilizing and red noise selection did not affect

mean phenotypic epistasis relative to initial levels (all P.0.10,

Tukey’s HSD test). However, time-averaged b values were lower

under both directional and white noise selection relative to initial

levels (P,0.001, Tukey’s HSD test). Phenotypic robustness also

responded to selection (Fig. 6B; F 4,120 = 18.3, P,0.001, ANOVA

of time averages). Networks that evolved under red noise, white

noise and directional selection were on average less robust

compared to initial levels (P,0.047, Tukey’s HSD test); stabilizing

selection did not differ from initial levels (P.0.99, Tukey’s HSD

test).

The patterns revealed in Figures 5 and 6 suggest that epistatic

effects (b) covary negatively with average effects of mutations (a). A

Figure 3. Log fitness over time. Shown are means across
populations (+/2SE) over 36000 generations of selection in the four
selection regimes. Results for the fluctuating environments are for red
noise with a 50 generation period length and its corresponding white
noise control.
doi:10.1371/journal.pone.0052204.g003

Figure 4. Effects of selection on evolvability over time.
Evolvability was measured as the rate of adaptation and the production
of phenotypic variation assessed under selection in novel environ-
ments. Measures were determined using 100 networks randomly
selected from each population every 2000 generations. (A) Mean
evolvability (+/2 SE) over time. (B) Mean production of phenotypic
variation (+/2 SE) over time. Results for the fluctuating environments
are for red noise with a 50 generation period length and its
corresponding white noise control.
doi:10.1371/journal.pone.0052204.g004
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nonlinear, concave relationship between time-averaged values of b
and a was evident for both phenotypic distance and viability (Fig.

S4). Mean fitness profiles based on b and a for networks that

evolved under the four primary selection regimes and for the

initial, pre-selection networks are displayed in Figure S5. A

potential concern is that the range of mutations used to estimate b
and a may have been inadequate to capture true patterns of

robustness and epistasis. As described in the Methods, the small

range of mutations employed was done to avoid masking

relationships at the low end of the mutation gradient with

relationships that may become asymptotic at high levels of

mutation load. However, further analyses using up to 50 mutations

showed that relationships, while quantitatively different, were

qualitatively indistinguishable from the above results at generation

36000 (Fig. S6).

Partial least squares regression of mean population evolvability,

measured as the rate of adaptation, versus potential predictors

generated a first component axis that accounted for 40.3% of

variation in evolvability and 43.6% of variation in the predictor

variables (Fig. 7). Note that the dependent variable has been

rescaled by subtracting values from the grand mean and dividing

by its standard deviation – a standard procedure in this statistical

test. Both viability robustness and epistatic effects on viability

loaded strongly and positively with the first component axis

followed by decreasing phenotypic robustness (Table 1). Hence,

increasing evolvability across all populations and source environ-

ments increased with increasing population-level viability robust-

ness and viability epistasis and decreasing phenotypic robustness.

Phenotypic robustness and epistatic effects on phenotypic distance

loaded most strongly and negatively on the second component

axis, accounting for an additional 43.4% variation in the predictor

Figure 5. Epistatic effects of mutations on viability and
viability robustness over time. Shown are mean responses (+/
2SE) under the four selection regimes. (A) Epistatic effects of mutations
(b) over time, measured as effects on the percentage of post-mutation
phenotypes that were viable. (B) Viability robustness (W1) over time
measured as the percentage of networks that were viable under one
mutation, W1 = exp[ln(100)-a]. Results for the fluctuating environments
are for red noise with a 50 generation period length and its
corresponding white noise control.
doi:10.1371/journal.pone.0052204.g005

Figure 6. Epistatic effects of mutations on phenotypic distance
and phenotypic robustness over time. Shown are mean responses
(+/2SE) under the four selection regimes. (A) Epistatic effects on
phenotypic distance (b) over time, measured as the Euclidean distance
between post- and pre-mutation phenotypes. (B) Phenotypic robust-
ness (1/W1) over time measured as the inverse of phenotypic distance
under a single mutation, 1/W1 = 1/exp(a). Results for the fluctuating
environments are for red noise with a 50 generation period length and
its corresponding white noise control.
doi:10.1371/journal.pone.0052204.g006
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variables. However, the second component had very little

explanatory power, only accounting for an additional 0.6%

variation in evolvability. The coupling of viability robustness and

evolvability was also evident in the time series; oscillations in

evolvability over time in the red and white noise environments

were paralleled by oscillations in viability robustness (Fig. 4 versus

Fig. 5B). Cross-correlation analysis revealed a positive correlation

between the two measures in both the white noise (R = 0.49,

P,0.0001, time lag = 0) and red noise environments (R = 0.45,

P,0.0001, time lag = 0).

The dominant period length of red noise had no effects on

genetic diversity in either red or white noise environments (Fig.

S7). However, period length influenced phenotypic diversity. In

the white noise environments, no effects were detected; in the red

noise environments, phenotypic diversity increased with period

length, peaking at the 50 generation period (Fig. S7). In both red

and white noise environments, there were no effects of dominant

period length of red noise on evolvability measured as the capacity

to produce phenotypic variation (Fig. S8). However, a significant

effect of period length was detected when measuring evolvability

as the rate of adaptation (Fig. S8); evolvability under the 70

generation period length was significantly lower compared to the

50 generation period length. Significant effects of period length

were also observed for both viability robustness and epistatic

effects on viability (Fig. S9). For both measures, no effects of period

length were observed under white noise (P.0.90, Tukey’s HSD

test). However, under red noise, levels of robustness and epistasis

were higher in the 50 generation period environment compared to

all other period lengths (P,0.001, Tukey’s HSD test; P.0.10 all

other comparisons, Tukey’s HSD test). As with measures of

mutation effects on viability, effects on phenotypic distance (both

robustness and epistasis) were not affected by period length in the

white noise environments (Fig. S10). In contrast, both measures

were affected by red noise, increasing in magnitude with period

length.

Reproductive mode significantly altered the effects of selection

on key response variables; responses were weaker under asexual

reproduction compared to sexual reproduction (Fig. S11). I used

two-way ANOVA to examine the effects of reproductive mode

and source environment (stabilizing, red noise, and white noise

selection and initial networks) on responses averaged over the last

20000 generations of selection. When analyzing evolvability

measured as the rate of adaptation, responses were clearly weaker

in fluctuating environments with asexual reproduction. A weak

interaction between reproductive mode and environment was

detected (Fig. S11; F3,192 = 2.6, P = 0.06, ANOVA). While a trend

for enhanced evolvability in the asexual red noise environment

was present, pairwise comparisons among asexual populations

revealed no differences between selection regimes and initial levels

(P.0.50, Tukey’s HSD test). Viability robustness was also lower in

asexual populations compared to sexual populations that experi-

enced fluctuating selection (Fig. S11). Reproductive mode

interacted with source environment when analyzing viability

robustness (F3,192 = 2.8, P = 0.04, ANOVA); among asexual

populations, no effects of selection were detected (P.0.50, Tukey’s

HSD test). Similarly, reproductive mode and selection interac-

tively affected geometric mean fitness (time-averaged log fitness);

fitness was lower in the fluctuating environments with asexual

reproduction compared to sexual populations (Fig. S11). Among

the asexual populations, fitness in the red and white noise

environments was lower than initial levels (P,0.001, Tukey’s HSD

test) but was significantly higher under red noise compared to

white noise environments (P,0.001, Tukey’s HSD test).

Discussion

My results show that evolvability and the capacity to generate

phenotypic variation can emerge when selective forces fluctuate

and that such effects are stronger when fluctuations are temporally

autocorrelated. A key characteristic of reddened noise is that

autocorrelated low frequency fluctuations have larger amplitudes

and thus a potentially stronger influence on evolutionary

dynamics. Reddened noise whose large amplitude oscillations

Figure 7. Results of partial least squares regression examining
the relationship between evolvability (the rate of adaptation)
and measures of epistasis and robustness. Shown are results for
the first component axis of the regression which accounted for 40.3% of
variation in evolvability. With the exception of the initial pre-selection
networks, data were based on time averages over the last 20000
generations. Loadings of explanatory variables on the component axis
can be found in Table 1. Results for the fluctuating environments are for
red noise with a 50 generation period length and its corresponding
white noise control.
doi:10.1371/journal.pone.0052204.g007

Table 1. Loadings of predictor variables on the first two
components produced by the partial least squares regression
analysis of evolvability.

Predictor Component 1 Component 2

Phenotypic epistasis 20.074 20.698*

Viability epistasis 0.659* 20.309

Phenotypic robustness 20.347* 20.703*

Viability robustness 0.673* 20.31*

Predictors with squared weighted loadings .0.05 were treated as statistically
significant (indicated by *).
doi:10.1371/journal.pone.0052204.t001
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occur at a high frequency (i.e. small period length) may provide

little opportunity for populations to evolutionarily track changing

environmental conditions, reducing the potential for the accumu-

lation of genetic diversity and the evolution of emergent network

properties such as enhanced evolvability and robustness. Con-

versely, extremely long period lengths whose rate of major

environmental change is slow should reduce the selective

advantages of rapid adaptive capacity and robustness. Hence,

population genetic and network properties may be expected to

show a unimodal relationship with period length in reddened

environments. My results provided some support for this general

prediction. Phenotypic diversity and mutational effects on viability

and phenotypic distance increased with increasing period length

and tended to peak at the intermediate 50 generation period

length. Despite this, effects on measures of evolvability were weak;

while evolvability displayed a trend for greater values in the 50

generation period length environment, effects were not statistically

strong.

Clearly the ability of a genetic system to generate heritable

phenotypic variation and adapt to a changing environment will be

intimately related to the manner in which mutations affect gene

expression. However, such responses are multi-faceted, being a

function of the system’s inherent robustness to mutations as well as

the manner in which effects of accumulating mutations are

dependent on the genetic background. The emergence of greater

evolvability under red noise was paralleled by an increase in

viability robustness. When examining potential drivers of evolva-

bility across all environments, populations that on average

exhibited greater viability robustness and epistatic responses in

viability to mutations exhibited greater evolvability. This coupling

was also apparent in the dynamics of evolvability under fluctuating

selection. Evolvability in the red and white noise environments

oscillated over time and was mirrored by oscillations in viability

robustness. The manner by which enhanced robustness to lethal

mutations can increase evolvability is fairly intuitive. Enhancing a

network’s capacity to maintain developmental stability in the face

of accumulating mutations ensures that a greater proportion of

mutant phenotypes will be viable and present in the next

generation’s offspring pool. Thus, there is a greater probability

that mutations will result in phenotypic variation in subsequent

generations. This may permit genomes to incrementally explore

genotype/phenotype space [4,29] - a characteristic that should

enhance adaptive responses to changing environmental conditions

especially under red shifted noise where fluctuations are auto-

correlated and phenotypic optima are more similar for points

closer in time.

An interesting outcome was that directional selection resulted in

a decrease in viability robustness and evolvability over time. This is

clearer when examining more detailed evolutionary dynamics near

the beginning of the simulations (Fig. S12). This shows clearly an

initial increase in population genetic diversity under directional

selection which was mirrored by an initial increase in viability

robustness and evolvability. However, as populations began to

approach their optimal phenotypes (as shown by increasing

fitness), genetic diversity declined as did viability robustness and

evolvability. One possible explanation is that reduced viability

robustness allows populations to more efficiently purge deleterious

mutations via purifying selection and reduce the prevalence of

non-optimal phenotypes - a feature that should be favored when

populations are at or nearing their optimal phenotypes and under

increasing stabilizing selection. This general mechanism has been

invoked to explain the evolution of directional epistasis in sexual

populations and has been shown to operate in prior analyses of this

model system [10,37].

In addition to mutation effects on viability, I also examined

effects on phenotypic distance. It is an intuitively appealing idea

that genotypes that produce offspring that differ greatly from

parent phenotypes could adapt more rapidly to changing

environments. Thus, an increase in mutation effects on phenotypic

distance (reduced phenotypic robustness and increased epistatic

effects) was predicted to lead to greater evolvability. Partial least

squares regressions provided some support for this prediction:

evolvability showed a positive relationship with the first compo-

nent axis which was negatively associated with phenotypic

robustness. Phenotypic robustness also responded negatively to

selection in the red and white noise environments while epistatic

effects on phenotypes increased under white noise. Despite this,

phenotypic robustness did not appear to be a primary driver of

evolvability. For instance, in the partial least squares regression

analysis, phenotypic robustness loaded weakly on the first

predictor axis when compared to measures of viability robustness

and epistasis. Instead, mutation effects on phenotypic distance

loaded most strongly on the second predictor axis which explained

a minor proportion of variation in evolvability among populations.

Furthermore, when compared to responses under white noise,

phenotypic robustness responded weakly in the red noise

environment, where evolvability responded the most strongly. A

potential explanation is apparent when comparing patterns of

viability robustness versus phenotypic robustness - the two

appeared to covary positively. A significant correlation between

time averages of the two measures was present when analyzing

across all populations and environments (R = 0.34, P,0.0001,

Pearson correlation). Time series analysis also revealed significant,

positive cross correlations between phenotypic robustness and

viability robustness for the red noise (R = 0.28, P,0.001, time

lag = 0) and white noise environments (R = 0.29, P,0.001, time

lag = 0). Thus, the capacity to generate highly variant offspring

phenotypes (low phenotypic robustness) may be evolutionarily

constrained by increases in the lethal effects of mutations and

reduced offspring viability (low viability robustness). This may also

explain why epistatic effects on phenotypic distance increased

under directional selection, where such effects would appear to be

non-adaptive once optimal phenotypes have been attained.

Selection for reduced viability robustness under directional

selection, as a means to enhance purifying selection, may have

resulted in correlated selection for increased mutation effects on

phenotypic distance.

Whereas increases in viability robustness and, to a lesser extent,

decreases in phenotypic robustness accounted for differences in

evolvability, partial least squares regression revealed that evolva-

bility was also associated with increasing epistatic costs of

mutations on viability. Similarly, epistatic effects on phenotypic

distance declined in white noise environments where phenotypic

robustness was lowest. These seemingly paradoxical results can be

reconciled by considering the nonlinear trade-off between b and a
(Fig. S4). For example, in the case of mutation effects on viability,

costs due to increasing epistasis (increasing b) are small relative to

fitness gains due to increasing robustness and decreasing a across a

broad range of a values. The consequences of this becomes

apparent when examining mean fitness profiles for networks that

evolved in red noise environments (where selection for increased

viability epistasis was highest) versus white noise, stabilizing and

initial networks (Fig. S5). Even though the effects of deleterious

mutations in red noise networks become more harmful as they

accumulate, the overall fitness costs of mutations are much smaller

compared to white noise and stabilizing networks over a range of

mutation accumulation. As an example, red noise networks with

four mutations maintain 76% viability on average. In contrast,
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viability drops to 49% for stabilizing selection networks with the

same mutation load. Prior models of genetic interactions have

predicted that robustness and the strength of epistatic effects

should covary negatively [8]. My results support this contention

but also highlight the importance of knowing the shape of the

trade-off for comprehending the fitness costs and benefits of

changes in a and b.

That epistasis and viability robustness can evolve is consistent

with prior examinations that have utilized this model framework

[10,12,13]. One study using this model system has also demon-

strated that evolvability can emerge under fluctuating selection

[23], though the autocorrelational structure of the temporal

variation was not described. This study also showed that increases

in the capacity to evolve were correlated with an increase in the

capacity of networks to generate phenotypic change under

mutation, interpreted as a decrease in robustness. This is similar

to my finding that robustness in phenotypic expression levels

decreased under fluctuating selection and was associated with

increases in evolvability. As effects on network viability were not

addressed in [23], it is not known if decreases in phenotypic

robustness were accompanied by increases in viability robustness

or if such effects were correlated with changes in the strength and

direction of epistasis. A number of studies using this model system

have also shown that selection for stable gene expression patterns

(viability selection) can impose selection for genetic robustness in

the presence of stabilizing selection or even in the absence of

external selective forces [10,12,13]. It is interesting then that

viability robustness did not increase significantly under stabilizing

selection in my analysis. A possible explanation is that prior studies

have used arbitrary fitness cutoffs to determine inclusion of

offspring in subsequent generations as offspring were produced via

random reproduction. This may increase variation in offspring

fitness and genetic composition which could drive selection for

viability robustness. In my study, a large offspring pool was first

generated and only the most fit networks were then allowed to

populate the next generation, reducing the possibility that

suboptimal phenotypes and genetic variation were introduced

into the subsequent generation. Because populations started with

all individuals at their optimal phenotypes under stabilizing

selection, little room was available for the introduction of genetic

diversity. It is important to note that, despite this, gene networks

did evolve over time under stabilizing selection. Figure S13

displays time series of the proportion of network regulatory

elements (aij elements of the A matrix) that changed relative to

their initial values for the different selection regimes. As expected,

the majority of regulatory elements rapidly changed under

directional and fluctuating selection. However, networks under

stabilizing selection also exhibited a smaller but significant degree

of change, indicative of a slow accumulation of neutral or near-

neutral mutations over time.

Discussion of the effects of population genetic variation and

viability selection as evolutionary drivers of robustness naturally

leads to the question of whether evolvability was under direct

selection in fluctuating environments or simply a correlated

response to selection for robustness under enhanced genetic

diversity. The importance of temporal heterogeneity in the

maintenance of genetic variation remains controversial [38,39];

my study supports previous findings that temporally varying

selection can, in theory, promote genetic and phenotypic diversity

within populations [15,16,38,40]. High standing genetic/pheno-

typic variation can promote rapid responses to changing

environmental conditions and confer high population-level evol-

vability. Thus, higher fitness observed in the red noise environ-

ments relative to white noise could be partially due to differences

in genetic variation in addition to differences in individual,

network-level evolvability and robustness. Additionally, high levels

of genetic diversity could have imposed a recombination load on

populations as reproduction reshuffled genotypes and produced

unfavorable genetic combinations. This, in turn, may have

selected for increased robustness and indirect selection for

evolvability. As described above, prior studies have found that

selection for stable gene expression patterns in the absence of

external selection can itself select for robustness as populations

accumulate genetic variation via mutation [10,12,13]. This

mechanism was apparent in the early stages of directional

selection where an initial increase in genetic diversity was

correlated with an increase in viability robustness and evolvability

that diminished over time as populations approached their

evolutionary optima (Fig. S11). While this effect was minimized

by the stabilizing selection regime I implemented (see above),

fluctuating selection (both red and white noise) allowed the

introduction and maintenance of genetic diversity, which may

have contributed to selection for robustness via selection for

developmental stability. To examine this further, I performed a

supplemental numerical analysis to assess the effects of recombi-

nation load, in which populations reproduced asexually. While

asexual populations in reddened environments maintained signif-

icantly higher fitness relative to the white noise environment,

effects of red noise on robustness and evolvability in the asexual

populations were weaker compared to sexual populations (Fig.

S10). Although, asexual populations showed a trend for higher

evolvability in the red noise environments, effects on both viability

robustness and evolvability were not statistically significant.

Hence, this cursory analysis indicates that genetic variation and

recombination load may have combined to select for robustness

and evolvability.

The appearance of an adaptive response in robustness and

evolvability naturally leads to the question of an underlying

mechanism. In my analysis, patterns of regulatory connections

were held constant so evolutionary changes in topology cannot

account for my findings [30]; only the strength and direction of

genetic interactions could respond to selection. To analyze

changes in the strength and sign of interactions at the end of the

simulations, inter-gene regulatory interactions (off-diagonal aij

elements of the A matrix) were first multiplied by expression levels

to determine the sign of the interaction. This was necessary since

the sign of the effect of a gene on another gene was dependent not

only on A matrix elements but on expression levels which

themselves varied between 21 and 1, affecting the direction of

regulatory interactions. Absolute values were used as measures of

interaction strength. This analysis revealed a significant increase in

interaction strength under directional selection relative to initial

levels. Also evident was a significant shift to a greater proportion of

positive regulatory interactions in the red noise environments (Fig.

S14). When analyzing across all environments, pairwise correla-

tions of time averages revealed a significant positive relationship

between the proportion of positive regulatory interactions and

both evolvability (Fig. S15; R = 0.42, P,0.001) and viability

robustness (Fig. S15; R = 0.28, P = 0.016). A greater number of

positive interactions should enhance robustness of genes that are at

or near full expression. This is clearer when referring back to

equations 1 and 2 which govern gene expression. For each gene,

expression is a nonlinear, sigmoidal function of regulatory inputs

from other genes in the network. A greater number of positive

interactions increases the likelihood that expression levels are in

the saturating range of the expression function where changes in

regulatory inputs via mutations will have relatively small effects on

realized expression. Since changes in expression levels cascade to
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other genes via regulatory interactions, any mechanism that

maintains expression under mutation should dampen such

cascading effects and help maintain developmental stability.

While my results provide evidence that greater robustness and

evolvability can emerge under autocorrelated environmental

fluctuations, some caveats are warranted. First, for such emergent

properties to evolve through direct selection, polymorphism for the

property must be present within populations, the likelihood of

which is greater with higher mutation rates and larger population

sizes [7,41]. The probability of polymorphism increases and

selection for robustness becomes more effective when Nmn.1/n,

where N is the effective population size, mn is the mutation rate per

gene and n is the number of genes in the network [7]. For my

model, I employed a relatively high mutation rate of

mn = 0.0013 per gene per generation. Thus,

Nmn = (250)(0.0013) = 0.325, which was greater than 1/n = 0.013,

increasing the potential for strong selection for robustness.

Supplemental simulations using a mutation rate of mn = 0.000013

(Nmn = 0.00325) confirmed that robustness and evolvability failed

to evolve in red noise environments at these lower mutation rates

(data not shown). While reported mutation rates are much lower in

nature compared to those used here - on the order of 10210 per

gene per replication [42] - larger population sizes could

compensate for lower mutation rates and allow for polymorphism

and selection for robustness in natural systems. This would be

especially true for microbial organisms which can attain extremely

large population sizes.

Conclusions
As with any model, the system presented here is a highly

simplistic abstraction of exceedingly complex phenomena. Com-

putational resources place limitations on the scope of numerical

models, limiting in the present case the size of populations, the

number of replicates and the size of the regulatory networks

analyzed. Whether my results scale up to much more complex,

natural settings is an open question. For instance, it was assumed

that all genes had the potential to interact, increasing the

possibility of epistatic interactions. Employing a model framework

in which some genes act as modifiers (mediating regulatory

interactions) and others act independently to influence phenotypes

could produce divergent results. I also did not allow network

connectance to respond to selection, setting the number of

regulatory connections at a constant value, comparable to previous

studies that used this model system [10,12]. Allowing the number

of connections to evolve was outside the scope of the present study

but could provide valuable insight into how networks respond to

fluctuating environmental conditions. My work also only consid-

ered mutational robustness and not the capacity of networks to

buffer the impacts of environmental noise on development and

gene expression (an important facet of canalization in natural

systems). Missing too is phenotypic plasticity - a potentially

important mediator of responses to fluctuating environmental

conditions. Mutational robustness in living systems can also

involve several mechanisms not encompassed in the present model

such as proofreading during replication. Moreover, the mapping

of the genotype to phenotype is especially multi-layered for

metazoans in which epigenetic phenomena and development offer

a hierarchy of processes that determines phenotypic expression

and mediates robustness [43,44]. Applicability and empirical tests

of the model presented here may be more appropriate for simpler

unicellular taxa, especially haploid organisms such as bacteria.

These taxa can attain the large population sizes and high mutation

rates required to generate polymorphism and effective selection for

robustness and evolvability. Moreover, evidence of evolutionary

changes in metabolic network structure in response to variable

environments is known for a variety of bacteria species [45].

Recent debate has arisen concerning the role of adaptation

versus neutral processes in the generation of complexity and

emergent properties of genetic systems [46,47]. My results support

the view that robustness and evolvability are traits that can emerge

under fluctuating selection. This finding consolidates several

recent model investigations that show that changing phenotypic

optima can lead to the emergence of robustness and/or enhanced

adaptability in evolving gene regulatory networks or protein

networks [4,23,48–50]. My results add to this foundation by

highlighting several important features that are likely to be of great

importance in natural systems. First, the degree of autocorrelation

in the environmental noise that populations experience can be a

vital determinant of whether robustness and evolvability emerge as

adaptations to variable conditions. Secondly, reddened noise may

select for evolvability indirectly by maintaining genetic variation

which in turn selects for robustness to reduce recombination load

and maintain developmental stability. This effect may combine

with selection for evolvability in a positive feedback loop that

catalyzes the evolution of these emergent properties. In short, red

noise selects for robust genotypes that promote population-level

genetic variation which in turn selects for enhanced robustness to

minimize recombination load and maximize developmental

stability which further enhances evolvability. Finally, my model

demonstrates that organisms may face trade-offs during selection

for reduction in the negative impacts of mutations as optimization

of either genetic robustness or epistatic effects comes at the cost of

the other. At present, little empirical evidence exists to assess

whether robustness and epistatic effects covary negatively and if so,

what the shape of the trade-off curve is. Predicting which traits will

be at a greater selective advantage in natural systems and in

response to fluctuating environments may depend vitally on

exposing such relationships.

Supporting Information

Figure S1 Effects of selection on evolvability (the rate of
adaptation) for networks with 0.20 and 0.80 connectance
(c). Results were measured after 2000 generations of selection on

25 randomly generated initial networks. Results for the fluctuating

environments are for red noise with a 50 generation period length

and its corresponding white noise control. Shown are means +/

2S.E.

(TIF)

Figure S2 An example of a red noise time series. Results

were generated using equation 4, with a period length of the

largest amplitude fluctuation equal to 20 generations, a time step

of one generation, and g = 1.

(TIF)

Figure S3 The relationship between the initial distance
to evolvability target phenotypes and evolvability mea-
sured as the rate of adaptation. Results are population

means (+/2 S.E.). Shown is the linear regression fit.

(TIF)

Figure S4 The relationship between epistatic effects (b)
and the normalization constant (a). (A) Results based on

mutation effects on log percent viability. (B) Results based on

mutation effects on phenotypic distance. Shown is the fit for the

power relationship b = 2aaz+s. Data are from the initial networks

and time-averages over the last 20000 generations of selection for

four selection regimes. Results for the fluctuating environments are
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for red noise with a 50 generation period length and its

corresponding white noise control. Symbols as in Fig. S3.

(TIF)

Figure S5 Mutation effects on components of fitness.
Separate relationships are shown for the initial (pre-selection)

networks and networks that experienced selection under stabiliz-

ing, directional, red noise (period = 50 generations) and white

noise (period = 50 generations) selection. (A) The relationship

between the number of mutations (m) and the natural log of the

percentage of networks that are viable (Wm). Curves were

generated using the relationship ln(Wm) = 2amb+ ln(100). (B)
The relationship between the number of mutations (m) and the

phenotypic distance between mutant and pre-mutation pheno-

types (Wm). Curves were generated using the relationship

Wm = amb. In the case of networks under selection, a and b were

first estimated as time-averages from model results over the last

20000 generations then averaged across populations.

(TIF)

Figure S6 Effects of selection on epistasis and robust-
ness measured using an expanded range of mutations
(1–50). Shown are results for the initial (pre-selection) networks

and networks after 36000 generations under stabilizing, direction-

al, red noise (period = 50 generations) and white noise (period = 50

generations) selection (means, +/2S.E.). (A) Effects on viability

robustness (W1). A significant effect of environment was detected

(F3,96 = 8.4, P,0.001, ANOVA); robustness of red and white noise

networks was significantly greater than initial levels (P,0.001,

Tukey’s HSD test). (B) Effects on epistatic effects on viability (b). A

significant effect of environment was detected (F3,96 = 7.1,

P,0.001, ANOVA); b of red noise networks was significantly

greater than initial levels (P,0.001, Tukey’s HSD test; P = 0.84 for

white noise versus initial). (C) Effects on phenotypic robustness (1/

W1). A significant effect of environment was detected (F3,96 = 6.6,

P,0.001, ANOVA); robustness of red and white noise networks

was significantly lower than initial levels (P,0.02, Tukey’s HSD

test). (D) Effects on epistatic effects on phenotypic distance (b). A

significant effect of environment was detected (F3,96 = 21.3,

P,0.001, ANOVA); b in red and white noise networks was

significantly lower than initial levels (P,0.01, Tukey’s HSD test).

(TIF)

Figure S7 Effect of the dominant period length of red
noise on genetic diversity and phenotypic diversity.
Shown are results for networks that evolved in red noise

environments and their corresponding white noise controls

averaged over the last 20000 generations of selection (means, +/

2 S.E.). Upper case letters denote pairwise comparisons among

white noise treatments that were significantly different (P,0.05,

Tukey’s HSD test). Lower case letters denote pairwise comparisons

among red noise treatments that were significantly different

(P,0.05, Tukey’s HSD test). (A) Effects on genetic diversity (the

mean number of alleles per locus). No effects of period length were

detected (main effect, P = 0.84; interaction, P = 0.29, ANOVA).

(B) Effects on phenotypic diversity. Period length interacted with

noise type (F3,192 = 7.62, P,0.0001, ANOVA).

(TIF)

Figure S8 Effect of the dominant period length of red
noise on evolvability. Shown are results for networks that

evolved in red noise environments and their corresponding white

noise controls averaged over the last 20000 generations of selection

(means, +/2 S.E.). (A) Effects on evolvability measured as the rate

of adaptation. A significant main effect of evolvability was detected

(F3,192 = 2.8, P = 0.044, ANOVA; interaction P = 0.68); the rate of

adaptation for period = 70 was significantly lower than period = 50

(P = 0.025, Tukey’s HSD test; P.0.23 all other comparisons). (B)
Effects on evolvability measured as production of phenotypic

variation. No effects of period length were detected (main effect,

P = 0.19; interaction, P = 0.88, ANOVA

(TIF)

Figure S9 Effects of the dominant period length of red
noise on viability epistasis and robustness. Shown are

results for networks that evolved in red noise environments and

their corresponding white noise controls averaged over the last

20000 generations of selection (means, +/2 S.E.). Upper case

letters denote pairwise comparisons among white noise treatments

that are significantly different (P,0.05, Tukey’s HSD test). Lower

case letters denote pairwise comparisons among red noise

treatments that are significantly different (P,0.05, Tukey’s HSD

test). (A) Epistatic effects (b) of mutations on the percentage of

post-mutation phenotypes that were viable. Period length

interacted with noise type (F3,192 = 9.8, P,0.0001, ANOVA).

(B) Viability robustness (W1) measured as the percentage of

networks that were viable under one mutation. Period length

interacted with noise type (F3,192 = 7.6, P,0.0001, ANOVA).

(TIF)

Figure S10 Effects of the dominant period length of red
noise on phenotypic epistasis and robustness. Shown are

results for networks that evolved in red noise environments and

their corresponding white noise controls averaged over the last

20000 generations of selection (means, +/2 S.E.). Upper case

letters denote pairwise comparisons among white noise treatments

that are significantly different (P,0.05, Tukey’s HSD test). Lower

case letters denote pairwise comparisons among red noise

treatments that are significantly different (P,0.05, Tukey’s HSD

test). (A) Epistatic effects on phenotypic distance (b), measured as

the Euclidean distance between post- and pre-mutation pheno-

types. Period length interacted with noise type (F3,192 = 14.2,

P,0.0001, ANOVA). (B) Phenotypic robustness (1/W1) measured

as the inverse of phenotypic distance under a single mutation.

Period length interacted with noise type (F3,192 = 25.3, P,0.0001,

ANOVA).

(TIF)

Figure S11 Effects of selection regime and reproductive
mode (sexual versus asexual) on evolvability, viability
robustness and mean log fitness. Shown are time averages

over generations 16000 to 36000 which were then averaged across

populations (+/2S.E.). Results for the fluctuating environments

are for red noise with a 50 generation period length and its

corresponding white noise control. (A) Effects on evolvability

measured as the rate of adaptation. (B) Effects on viability

robustness. (C) Effects on geometric mean fitness (time-averaged

log fitness).

(TIF)

Figure S12 High resolution time series of dynamics
between generations 0 to 500. Shown are results for networks

that evolved in the directional, red noise (period = 50 generations),

and white noise (period = 50 generations) environments (means,

+/2S.E.). (A) Genetic diversity (the mean number of alleles per

locus) over time. (B) Viability robustness (W1) over time measured

as the percentage of networks that were viable under one

mutation. (C) Log fitness over time.

(TIF)

Figure S13 Proportion of matrix elements that have
changed over time. Shown are means across populations (+/

2SE) over 36000 generations of selection in the four selection
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regimes. Results for the fluctuating environments are for red noise

with a 50 generation period length and its corresponding white

noise control. When analyzing time averages over the last 20000

generations of selection, significant variation among selection

regimes was present (F4,120 = 324.8, P,0.0001, ANOVA). Mean

matrix change was significantly higher than initial levels for all

four selection regimes (P,0.001, Tukey’s HSD test).

(TIF)

Figure S14 Effects of selection regime on the strength
and direction of regulatory interactions over time.
Shown are means across populations (+/2SE) over 36000

generations of selection in the four selection regimes. Results

for the fluctuating environments are for red noise with a 50

generation period length and its corresponding white noise

control. (A) Effects on the strength of regulatory interactions.

When analyzing time averages over the last 20000 generations

of selection, significant variation among selection regimes was

present (F4,120 = 52.5, P,0.0001, ANOVA). Interaction

strength differed from initial levels only under directional

selection (P,0.001, Tukey’s HSD test; P.0.56, other com-

parisons). (B) Effects on the proportion of positive regulatory

interactions. When analyzing time averages over the last 20000

generations of selection, significant variation among selection

regimes was present (F4,120 = 22.6, P,0.0001, ANOVA).;

values were significantly greater than initial levels only under

red noise (P,0.0001, Tukey’s HSD test; P.0.98, other

comparisons).

(TIF)

Figure S15 The relationship between evolvability and
viability robustness and the proportion of positive
regulatory interactions. Shown are population-level means

across selection regimes and initial networks. (A) Evolvability

measured as the rate of adaptation versus the proportion of

positive interaction. Shown is the linear regression fit (R = 0.42,

P,0.001, Pearson correlation). (B) Viability robustness versus the

proportion of positive interaction. Shown is the linear regression fit

(R = 0.28, P = 0.016, Pearson correlation). Symbols as in Fig. S3.

(TIF)
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