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Abstract: While training and competing as a runner, athletes often sense an unsteady feeling during
the first meters on the road. This sensation, termed as transient effect, disappears after a short period
as the runners approach their individual running rhythm. The foundation of this work focuses on the
detection and quantification of this phenomenon. Thirty athletes ran two sessions over 60 min on
a treadmill at moderate speed. Three-dimensional acceleration data were collected using two MEMS
sensors attached to the lower limbs. By using the attractor method and Fourier transforms, the transient
effect was isolated from noise and further components of human cyclic motion. A substantial transient
effect was detected in 81% of all measured runs. On average, the transient effect lasted 5.25 min
with a range of less than one minute to a maximum of 31 min. A link to performance data such
as running level, experience and weekly training hours could not be found. The presented work
provides the methodological basis to detect and quantify the transient effect at moderate running
speeds. The acquisition of further physical or metabolic performance data could provide more
detailed information about the impact of the transient effect on athletic performance.

Keywords: attractor method; kinematics of human cyclic motion; motion analysis; transient
effect; accelerometer

1. Introduction

In general, human motion, even the movements which are repeated many thousand times,
e.g., by athletes, cannot be called absolutely consistent and stable [1,2]. No single movement is like any
other and they are always characterized by a high degree of individuality [3,4]. Beyond the actual
movement, it is also apparent that changes in movement patterns have an influence on the subsequent
motion kinematics and thus must be highly controlled and regulated by the body and the brain,
respectively. Most obvious is the change from a resting situation like sitting to physical activity [5,6]
or the change between two forms of movement, like from walking to running and back [7,8] or
cycling to running in triathlon [9–11]. Weich et al. [5] showed in a triathlon study, not only that the
transition run after cycling showed deviating behavior over the first minutes of the session, but also
from the control condition, an isolated 5000 m run. Either way, athletes often sense an irregular or
uneven way of running at the onset of their exercise or in these post cycling performances in triathlons
and report that this phenomenon commonly subsides within a few minutes [9,12]. This phase of
finding-a-rhythm might be related to the well-known transient oscillations described in dynamical
systems [13]. Respecting scale invariance, numerous examples, such as analytical equations [14], human
neurology [15], as well as biomechanics [16], are characterized by this behavior. If any dynamical
system is initiated or affected by an internal or external perturbation, it takes some time to even
out to a balanced condition. The asymptotical equilibrium reached after these perturbations can be
called an attractor [17,18]. The crossed trajectories, i.e., the paths of the systems’ states over time,
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are called transients. Once initialized, these transients show rapidly changing and mostly irregular
behavior over a short-lived period until settling down to the attractor [18]. Based on these observations,
human cyclic motions, such as walking or running, can be described as limit-cycle attractors [19–21].
An approach to analyze attractors, the attractor method, derived from human cyclic motion was
introduced by Vieten et al. [21]. The latter yields very sensitive results allowing the analysis of subtle
changes of movement patterns and their variations. The application and further studies assessing
athletes while undisturbed running and cycling indicated the existence of a transient effect at the
onset of physical activities [9]. Recently Vieten and Weich [12] extended these earlier findings by
demonstrating a mathematical model of the kinematics of human cyclic motion when considering
transient oscillations a crucial component of locomotion. The starting value of the deflection is very
subject-specific and influenced by randomness. Nevertheless, progress from the beginning of the run
until finally levelling off can be modelled as the solution of a damped harmonic oscillator decreasing
with a negative exponent as a function of time. Once a runner has reached this point, the transient effect
remains, but its extent is reduced to a level that is subjectively no longer perceptible to the athlete [12].

Based on the mathematical model, the aims of the present study were to determine the existence
of the transient effect and to quantify it in athletes running at moderate speed. The analysis focused
on the magnitude and duration of the movement’s transient fluctuations and their subject-specific
characteristics. It was also considered whether training level, athletic experience, or anthropometric
preconditions were related to this phenomenon. Insights emerging from this research may provide
new aspects concerning the nature of running, opening new possibilities for race pacing and
overall performance.

2. Materials and Methods

A total of 30 athletes (Table 1), 10 female and 20 males, were tested from October 2019 until June
2020 in Kreuzlingen, Switzerland (Elitesportschule Thurgau). All participants were regularly physically
active, and none were suffering any current injury, which would have impeded their performance.
The only prerequisites were to be able to run for 60 min without reducing their expected performance
which had been determined in advance. Furthermore, training level and experience, using the training
hours per week and the number of years the athletes had been running, were obtained. The study was
approved by the local Ethical Committee of the University of Konstanz, Germany, under the Ref. No:
IRB20KN08-001. All participants were requested to fill out and sign an informed consent.

Table 1. Subject overview.

N Age (y) Height (cm) Weight (kg) Test Speed (km/h) Training (h/Week) Running Experience (year)

Female 10 29 ± 11.5 166 ± 5.5 55.7 ± 4.0 9.6 ± 1.4 3.6 ± 1.8 10.9 ± 8.3
Male 20 29 ± 11.1 180 ± 5.6 70.1 ± 6.7 11.5 ± 1.5 4.6 ± 2.2 10.7 ± 10.9

Overall 30 29 ± 11.3 175 ± 8.9 64.9 ± 9.1 10.8 ± 1.4 4.2 ± 2.1 10.8 ± 9.8

To collect the necessary raw accelerometer data, two inertial sensors were used (RehaWatch
by Hasomed, Magdeburg, Germany). The sensors have a size of 60 × 35 × 15 mm and weigh
35 g each. They function as a triaxial accelerometer with up to 16 G, a triaxial gyroscope with
up to 2000◦/s and a magnetometer measuring with 1.3 Gauss. The device is constructed as
a micro-electro-mechanical-system (MEMS). For the current study, the MEMS measured the acceleration
of the feet in three dimensions (x, y, z) with data saved to a smartphone (J5 by Samsung, Seoul, Korea).
To collect the running motion, the sensors were attached to both ankles above each lateral malleolus
by a hook-and-loop fastener. The runs were performed on a treadmill (9500HR by Life Fitness,
Unterschleißheim, Germany).

Each runner had to run two sessions at a constant speed over 60 min. Before they started the
first test session, they were asked to self-select their running pace, defined by a subjective feeling
associated with a BORG CR-10 scale value of 3 to 4, i.e., moderate to somewhat severe [22]. Afterwards
they were equipped with the two activated MEMS sensors attached to the ankles as described above.
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The treadmill was set at 1% inclination, to simulate air resistance, and the individual running speed.
Once the speed was reached the data collection was started right before the runner jumped smoothly
from the lateral standing area of the treadmill to the actual moving belt (the jump was subsequently
removed by cutting out the first 1.5 s of the data set). During the sessions the smartphone was placed
beside the treadmill. The measurements were received at a sampling frequency of 500 Hz assembled
over a period of 60 min without interruption.

Recently, Vieten and Weich [12] introduced a model to mathematically describe the kinematics of
human cyclic motion. Based on their model, six elements contribute to overall human cyclic motion.

Here, the subject’s individual attractor
→

A(t), a limit cycle in acceleration space, which is repeated
in each cycle, is by far the biggest contributor. In addition, short-term fluctuations (random walk)
around the morphed attractor, a control mechanism that regulates the latter if the current movement
accelerations deviate too much from the attractor and technical (white) noise from the MEMS sensors
contribute to the overall movement. These three components have an average contribution of zero due
to cancellation processes and thus can be neglected in the context of this publication. Furthermore,

the kinematics are markedly more affected by so-called attractor morphing
→

M(t), a process which

slowly changes the actual attractor and transient oscillations
→

T(t). To reveal the morphing process
→

M(t)

and the transient oscillations
→

T(t), the attractor must be subtracted from the measured signal
→

K(t).

→

K(t) −
→

A(t) =
→

M(t) +
→

T(t) (1)

These two terms, morphing and transient effect, are retained, when the reduced attractor is
developed. So, the transient effect’s contribution can be written as

→

T(t) =
→

K(t) −
→

A(t) −
→

M(t) (2)

Morphing
→

M(t) contributes minor changes to the attractor over the time of the activity. Thus,
the effect is generally bigger between different runs as compared to changes within a run. Because the

transient effect decreases asymptotically within the first minutes, a super attractor
→

S is created as the
mean of all one-minute attractors of a single running session. This results in the closest approximation
to the second and third terms of the right-hand side of Equation (2)

→

S = 〈
→

A(t) −
→

M(t)〉 (3)

and following the transient effect can be approximated by

→

T(t) =
→

K(t) −
→

S (4)

which allows the calculation of the transient time from

T(ttrans)

T(t = 0)
= e−1 (5)

Since further analysis was required, the collected 60-min data block was divided into 60 s intervals
using a file splitter to produce 60 single datasets. Afterwards the MATLAB app Attractor was used
to calculate the attractor data of each one-minute data set. The functionality of the Attractor app
is based on the Attractor Method developed by Vieten and colleagues [21] and is available online

via http://www.uni-konstanz.de/FuF/SportWiss/vieten/CyclicMove/. Further, a super attractor
→

S of
each run was calculated to represent each participant’s individual gait-print as a mean attractor of all
single minutes of each session [3]. To detect, quantify, and validate the transient effect of a running
performance, three mathematical procedures were considered (Figure 1):

http://www.uni-konstanz.de/FuF/SportWiss/vieten/CyclicMove/
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Figure 1. Outcome (subject 26, session 1) for the transient values from all three calculation methods: 𝛿M in red, FFT in blue and FFTmod in green. The transient effect can clearly be seen at the onset of 
the run. The data from FFT and FFTmod were normalized to the data from 𝛿M to improve the 
visualization of the comparison. This had no influence on the result. 
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with a total duration of one minute. For this data set, which is designated as a super minute, the 
original cycle is repeated according to the average cycle length. The starting value of the oscillation 
is highly dependent on the individual and is further affected by random processes. The average 
distance between two attractors, defined as 𝛿𝑀, for the same subject, is small, compared to attractor 
differences between different subjects [3]. 

Accordingly, the result of this analysis provides a 𝛿𝑀 value for each comparison between one 
of the single minutes and the super minute, so that a list of sixty 𝛿𝑀 values in temporal sequence 
describes the transient process over the entire session (Figure 1, red curve). A smaller 𝛿𝑀 number 
means a higher similarity of the compared attractor pairs. The latter procedure is executed using the 
Attractor app comparing the super attractor 𝑆 (in the super minute version) with the measured 
acceleration data leading to the transient time 𝑇ሺ𝑡ሻ when further processed with the curve fitting 
software (CurveExpert Professional 2.6.5 (version 2.6.5, Hyams Development)). 

2.2. Fast Fourier Analysis (FFT, Method II) 

The Fast Fourier Analysis (FFT) [23] was used as a second possibility to quantify the transient 
effect (Figure 1, blue curve). This enables the recorded data to be viewed in the frequency domain to 
allow the possibility of filtering to maintain only the essential data choosing a suitable cutoff of 10 
Hz. In both, frequency and time space, the L2 norm is used. Based on the Plancherel theorem [24], 

Figure 1. Outcome (subject 26, session 1) for the transient values from all three calculation methods:
δM in red, FFT in blue and FFTmod in green. The transient effect can clearly be seen at the onset of the
run. The data from FFT and FFTmod were normalized to the data from δM to improve the visualization
of the comparison. This had no influence on the result.

2.1. Delta M (δM, Method I)

The parameter δM represents the velocity (v) normalized average distance between two attractors
and can be described as follows [12]

δM =
1
v
·

〈
T‖·

[
e
−t
tT − e

−tE
tT

]
+ a0·


√

(tE − t)
tE

+ a1·sin
(
a2·2π

(tE − t)
tE

)〉 (6)

where the given constants T‖, tT, a0, a1, a2 are derived from a curve fitting application of all
measurements (CurveExpert Professional 2.6.5 (version 2.6.5, Hyams Development), using the
Levenberg−Marquardt algorithm.

The constants a0, a1, a2 represent the morphing process whereas T‖ and tT are based on the
transient oscillations at the onset of a movement [12]. tT quantifies the time until the oscillation

decreases to e−1 of its original starting value T. The super attractor
→

S of each running session was taken
as a stable condition to be compared to each single minute from the start of the exercise bout until the
end of minute 60. Since the super attractor, by definition, represents only one cycle and the Attractor
app can only compute multiple cycles in one data set, each one was extended to a data set with a total
duration of one minute. For this data set, which is designated as a super minute, the original cycle is
repeated according to the average cycle length. The starting value of the oscillation is highly dependent
on the individual and is further affected by random processes. The average distance between two
attractors, defined as δM, for the same subject, is small, compared to attractor differences between
different subjects [3].

Accordingly, the result of this analysis provides a δM value for each comparison between one
of the single minutes and the super minute, so that a list of sixty δM values in temporal sequence
describes the transient process over the entire session (Figure 1, red curve). A smaller δM number
means a higher similarity of the compared attractor pairs. The latter procedure is executed using

the Attractor app comparing the super attractor
→

S (in the super minute version) with the measured
acceleration data leading to the transient time T(t) when further processed with the curve fitting
software (CurveExpert Professional 2.6.5 (version 2.6.5, Hyams Development)).

2.2. Fast Fourier Analysis (FFT, Method II)

The Fast Fourier Analysis (FFT) [23] was used as a second possibility to quantify the transient
effect (Figure 1, blue curve). This enables the recorded data to be viewed in the frequency domain
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to allow the possibility of filtering to maintain only the essential data choosing a suitable cutoff of
10 Hz. In both, frequency and time space, the L2 norm is used. Based on the Plancherel theorem [24],
which states that for L2 functions the norm of the time domain is retained in the FFT (frequency
domain), the transient time can be described as below:

+∞∫
−∞

∣∣∣g(t)∣∣∣2dt =

+∞∫
−∞

∣∣∣F( f )
∣∣∣2d f (7)

This allows the calculation of the transient effect using the Fourier transform of the reduced signal

as a measure of the discrepancy of the measured running minutes
→

K(t) from the super attractor
→

S ,
which represents the athlete’s average running behavior. The calculation of a scalar is independent of
the used coordinate system. It follows:

T(t) =

√√√√√√ te∫
0

(
→

K(t) −
→

S
)2

dt =

√√√√√√√√ fc∫
− fc

F2( f )d f (8)

where fc is the cut off frequency (here 10 Hz), because the information content of a filtered signal is
considered and te representing the final minute of a running session. The transient effect is treated as
a damped harmonic oscillator [12]. As a temporary oscillation around the attractor, these oscillations
have contributions corresponding to the harmonics up to the cut off frequency only. All other
contributions mentioned above, those of the frequencies different from the harmonics, naturally
cancel out due to destructive interference. Thus, the numerical calculation of the right-hand side of
Equation (7), is executed as adding up all amplitudes of the harmonics up to the cut off frequency
which was set at 10 Hz.

T(t) ∼

√√√√n( fc)∑
i=1

F2( fi) = CoH(t) (9)

The expression (CoH(t): collection of harmonic amplitudes) is proportional to the transient
contribution and is impacted very little by other contributions to movement. The attractor and
morphing, which change rather slowly (�1 Hz ), were subtracted before the Fourier transform.
Furthermore, the residuals do not contribute very much because their contribution is almost always
different from the harmonics. The contributions of the other movement parts (noise, short-term
fluctuations and the control mechanism) have contributions that differ from the harmonics and thus
are not subtracted. As a consequence, the Fourier transformed expression allows for a more accurate
calculation of the transient time, ttrans, using curve fitting software (CurveExpertPro, version 2.6.5,
Hyams Development).

CoH(ttrans)

CoH(t = 0)
= e−1 (10)

2.3. Modified Fast Fourier Analysis (FFTmod, Method III)

Another, third, way of calculating T(t) can be carried out as follows:

T(t) =

√
te∫

0
(
→

K(t) −
→

S)
2

dt =

√
te∫

0
(K2 − 2

→

K·
→

S + S2) dt

=

√√√ fc∫
− fc

FK2( f ) d f − 2
fc∫
− fc

FKS( f ) d f +
fc∫
− fc

FS2( f ) d f

(11)
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where the FFT is executed first for all components, before the results were combined (Figure 1,
green curve). This calculation differs from the FFT method (Equation (8)) such that by applying the
Fourier transform before the subtraction, the other unwanted components of cyclic human motion

in
→

K(t) and
→

S [12] are separated from the actual transient effect. This is valid because the contributions
of the transient effect are only present in the harmonics, which remain after the Fourier transform.

T(t) ∼

√√√√n( fc)∑
i=1

FK2( fi) − 2
n( fc)∑
i=1

FKS( fi) +
n( fc)∑
i=1

FS2( fi) = CoHmod(t) (12)

where CoHmod(t) (collection of harmonic amplitudes from the FFTmod method) is proportional to
the transient contribution and is not impacted by the other contributions of the movement. Again,
the Fourier transformed expression allows for a more accurate calculation of the transient time, ttrans,
using curve fitting software. Therefore equation 10 can be used applying harmonic amplitudes resulting
from the FFTmod calculations.

It was still expected that the transient times of both FFT methods would be very close together.
For this reason, a correlation was also calculated for this relationship.

When calculating the transient time T(t) using method I, the transient effect and the residuals
of the described components of human cyclic motion (morphing, short-time fluctuations, control
mechanism, noise) [12] are included. The Fourier transform, on the other hand, allows the two other
applications (II and III) to isolate the transient effect, because the latter is found mainly in the harmonics.
Thus, an intraclass correlation (executed with SPSS version 26.0) was used to calculate the strength
between method I and II/III. This statistical method provides a measure of the proportion of variance
that is attributable to the objects being measured. Consequently, to be able to make a decision about
the presence of the transient effect, method one (I) and at least one of the two FFT methods (II or III)
must be computed. A high ICC implies that most of the variance is among group/method. If the test
reveals a high intraclass coefficient (ICC), r means that the checked running data show a substantial
transient effect (Figure 2, black data). A low ICC (Figure 2, red data) would rather reflect the absence of
initial oscillations. In order to be able to determine the strength of the resulting ICC, the categorization
according to Hopkins [25] was used. Hopkins expands on the original work of Cohen (1988) by further
classifying coefficients greater than 0.5 (strong) into very high (r = 0.7−0.9) and almost perfect or
indistinguishable (r > 0.9). For the present work, an r > 0.7 is regarded as a suitable magnitude to
assume the existence of a substantial transient effect. Furthermore, this corresponds to a coefficient of
determination (R2) above 0.49, which explains at least 49% of the variance.
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Figure 2. Examples of two different subjects, one with a high correlation (subject 29, session 1, r = 0.99,
black triangles) showing a transient effect and one with a low correlation (subject 21, session 2, r = 0.60,
red squares) without a distinct transient phase at the beginning.
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In a final step the collected anthropometric and performance data were statistically analyzed via
correlation (executed with SPSS version 26.0) to determine whether running experience is related to
the observed transient times.

3. Results

Of the 60 sessions (two for each subject), 48 (for FFT) and 49 (for the FFTmod) cases showed
a transient behavior at the onset of the running session (Figure 3). This corresponds to 80 and 81%
of the cases considered, respectively. It can be observed that for FFT in two and for FFTmod in one
case, both runs of a person showed no transient effect (subject 27 for both methods, and also 13 for
FFT). Another eight participants (2, 3, 6, 9, 16, 21, 25, 28) had a mixed result (for FFT and FFTmod) and
showed one run with and one without a transient effect. Only one person (13) offered a mixed result
for FFTmod but displayed no transient effect for both runs using the FFT. In general, the correlation
(ICC) between the FFT methods was calculated with a mean r = 0.99, indicating a high accordance of
both approaches.
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as: 1 = subject 1 session 1; while 1_2 = subject 1 session 2. White bars with a frame represent the ICC
of the FFT method and the filled black bars the FFTmod method. The white horizontal line displays
the critical r of 0.7. Correlations reaching above the white horizontal bar were considered to have
a detectable transient effect.

Furthermore, the extent or duration of the transient effect was calculated for those runs that
displayed a transient effect (48 cases for FFT and 49 for FFTmod). On average, the initial transient
oscillations, i.e., the time it takes athletes to find their rhythm, took 4.99 (±3.35) minutes when the
data were evaluated with the FFT method, and slightly longer, 5.50 (±4.72) minutes using the FFTmod
method (Figure 4). The transient effect ranged from 31 min (subject 8) on the higher end to less than
one minute (subject 17, run 1; subject 20, run 2) for the shortest.

To determine whether anthropometric or performance characteristics were related to the transient
time, only runs that showed a transient effect (according to the above explained analysis methods)
were considered. As Table 2 shows, none of the recorded anthropometric or performance measures
were significantly correlated to transient time (p > 0.05).
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Table 2. Correlations transient time and performance/anthropometric data.

r p

Transient time [min] - Age [year] −0.010 0.958

Transient time [min] - Weight [kg] −0.303 0.104

Transient time [min] - Height [m] −0.015 0.937

Transient time [min] - Running experience [year] 0.086 0.653

Transient time [min] - Weekly training [h] −0.045 0.815

Transient time [min] - Test running velocity [km/h] −0.093 0.626

4. Discussion

The main objective of the present study was the detection and quantification of the transient
effect in human running. It was shown, that depending on the analysis method, this effect occurred
in 80−81% of the running sessions in the participating subjects. The average time until an athlete found
a running rhythm was 4.99 (FFT) to 5.50 (FFTmod) minutes, with the longest adaptation time being
31 min. Furthermore, the results of the FFTmod (Equation (12)) can be classified as clearer, since the
Fourier Transform separates the morphing and other components of cyclic human motion from the
transient effect before combining the parts of the mathematical equation. Both the occurrence and the
duration of the transient effect were independent of body characteristics and performance measures
such as running level, weekly training hours, and training age (all p > 0.05).

The high appearance of the transient effect in more than 80% of the recorded runs suggests
that the transient effect is a quite common phenomenon within the context of the participating
group, the performance level, and a moderate running pace. The current participants may be
expected to be representative of the general running community, as they represent a high range of age
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(18 year–55 year), training experience (1 year–40 year), running performance expressed as the pace for
a moderate endurance run (8 km/h–15 km/h) and weekly training hours (0.75 h–10.5 h). This is further
supported by the fact that none of the mentioned specific performance or body data are significantly
related to the occurrence of the transient effect.

The duration of the transient effect is defined as the time required to reduce the magnitude of the
initial state of the transient value (Figure 1, first data point of the curves) to e−1. The average time
derived from the data of this study was 5.25 min, which is consistent with reported observations of
experienced runners. In addition to these observations, there is also a scientific data base that describes
a similar time frame for changes in running rhythm in related contexts like the transitioning from
cycling to running in triathlon [26,27] or from walking to running and back [7,8]. As an example,
Gohlitz et al. [26] reported differences in adaption time of the prior working muscular conditions in
cycling and running. Their main finding was that immediately after the transition the athlete’s body
takes a while to adapt to the varying motion. During this phase, lasting around 1200 m, the stride
frequency decreased, and the stride length increased until the participants regained their personal
optimum (measured earlier in another 5000 m run). This adjustment was also consistent with their
subjective feeling during the run. Witt [27] confirmed these results and tried to interpret them with
physiological and biomechanical explanations after testing triathletes during a run-cycle-run condition.
The author claimed that cycling destroyed the activity pattern of a subsequent run due to extremely
different working conditions of the muscles between both disciplines. Later, Weich et al. [9] published
a cross-over study with triathletes based on this idea and compared isolated running over 5 km
with a run of the same length after prior cycling. In this context, they noted that there was not only,
as expected, a transition phase when running after preload, but also during the solo run. The average
duration mentioned in this paper was 7 min for both types of running. Here, too, the authors proposed
predominantly neuromuscular reasons for the initial transient effect. It should certainly remain a major
objective in future studies to show the exact origin of these phenomenon.

Even though the vast majority of the runs in the current study showed a transient effect, there are
also participants who either had no initial oscillations or a mixed outcome with one run showing an
effect whereas the other had none. This has also been shown in previous studies [3,12]. Vieten and
Weich reported, that the starting value of the deflection is very subject-specific and influenced by
randomness. It can therefore be assumed that, especially in the case of a mixed result for one person,
the athlete found his or her rhythm by chance and was close to his or her individual attractor right from
the beginning. Thus, the athlete did not undergo a prominent transient effect, which, as a consequence,
was not visible. Further a subject-inherent property in the motor control system could be responsible.
Systematic (or nonsystematic) fluctuations over the entire run have the same magnitude as the transient
effect, so that it does not appear prominently (see Figure 5 for subject 9, session 1). In this case,
it could be because the subject has, with only 1.5 years and 2.5 weekly training hours relatively little
running experience. In simple terms, this athlete repeatedly experiences deviations from his/her
running rhythm, which he/she has to gain back over and over again. One could almost say that these
fluctuations are multiple small transient effects, which the subject has to overcome. The cause for
these fluctuations may also lie in other components of cyclic human motion, e.g., morphing as well as
the residuals of short-time fluctuations, control mechanism and noise. They can be so pronounced
that they obscure the transient process. A further scenario can be seen in athlete 13, who is almost
a professional runner experiencing no transient effect in any of the runs. Here the assumption is
quite reasonable that he/she is able to find the running rhythm very rapidly due to the high level
of performance and many thousands of kilometers of yearly running (more than 100 km per week).
However, to confirm this assumption, a separate study with multiple professional runners at the same
or even better level is needed. In general, if the initial numerical value of a session is already very low
(as in Figure 5, only 1.5), this means that the data is very similar to the general trend (represented by
the super attractor). Thus, it is very likely that the transient effect will not be visible.
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Figure 5. Outcome (subject 9, session 1) for the transient values calculated by δM in red, FFT in blue
and FFTmod in green. In this example, there is no transient effect, since it is probably overlaid by
strong fluctuations of the same magnitude over the entire run (r = 0.6). The y-axis scale was adapted to
Figure 1 to highlight the difference between the starting values. The low numerical transient value
of 1.5 here indicates that most probably no transient effect will be detected. The data from FFT and
FFTmod was normalized to the data from δM to clarify the visualization of the comparison. This had
no influence on the result.

On the other hand, it sometimes happened that there were slight disturbances (e.g., a short
stumble) during a session, but these were smaller than the transient effect and so short that the running
behavior was not affected. If the athlete is impaired by minor, short-term disturbances (Figure 6,
for example minute 17, marked with the black arrow), the presented analysis method seems to be
robust to the extent that the system balances out again within a short time period.
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Figure 6. Outcome (subject 22, session 1) for the transient values calculated by FFT in blue and
FFTmod in green. In this example, the data show a transient effect (transient time = 4.23 min (FFT)
and 4.3 (FFTmod); r > 0.9), although the course of the session shows minor disturbances (like minute
17 (black arrow), which were controlled within a short time period. The y-axis scale was adapted from
Figure 1 to highlight the difference between the starting values. The data from FFT and FFTmod was
normalized to the data from δM (not shown) to improve the visualization of the comparison but had no
influence on the result.

In a practical sense, the question arises as to what influence the transient effect at the beginning
of a training session or competition has on running performance. To be able to clarify this question with
certainty, it is necessary to examine metabolic or physiological data, such as oxygen uptake, heart rate,
electromyography etc., which would provide further insights into the course of events happening during the
initial phase of the exercise. From this study, anecdotal evidence suggests that running (without warm-up)
was perceived as more comfortable after a few minutes into the run. If the transient effect should have



Biosensors 2020, 10, 117 11 of 12

a negative impact on running performance, this could be another powerful argument for an extended
warm-up before each training session or running competition [28,29]. This would allow the athlete to
be in his or her individual running rhythm at the start of the race or the main part of the training.

In order to strengthen the general validity of this phenomenon, future studies should validate the
outcome of the test procedure in an outdoor setting and at varying or self-selected running speeds.
Furthermore, the analysis in this study was carried out only with experienced nonprofessional runners.
It remains open how the transient effect behaves in novice or professional runners. It could also be
interesting to include other cyclic sports such as swimming, cycling, walking or rowing.

5. Conclusions

In summary, it can be concluded that by applying the attractor method and the described analysis
process of the data in frequency space, a transient effect can be detected in over 80% of the recorded
running sessions. On average, the initial oscillations lasted 5.25 min, which correspond to about
500−1000 m, depending on running ability. This also corresponds to the subjective feeling that athletes
report empirically. For the runners who did not experience a transient effect, other components
of their running kinematics, such as morphing, might have hidden the phenomenon. Because the
FFTmod method contains predominantly fractions of the transient effect, it produces the most precise
outcome and is therefore the recommended method. Taking into consideration further physiological
and metabolic data in future works will offer the chance to determine the influence of this phenomenon
on athletic performance in training and competition.
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