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Abstract
Background: MicroRNAs (miRNAs) participate in the reactivation of γ-globin expres-
sion in β-thalassemia. However, the miRNA transcriptional profiles of pediatric β-
thalassemia remain unclear. Accordingly, in this study, we assessed miRNA expression 
in pediatric patients with β-thalassemia.
Methods: Differentially expressed miRNAs in pediatric patients with β-thalassemia 
were determined using microRNA sequencing.
Results: Hsa-miR-483-3p, hsa-let-7f-1-3p, hsa-let-7a-3p, hsa-miR-543, hsa-miR-433-3p, 
hsa-miR-4435, hsa-miR-329-3p, hsa-miR-92b-5p, hsa-miR-6747-3p and hsa-miR-495-3p 
were significantly upregulated, whereas hsa-miR-4508, hsa-miR-20a-5p, hsa-let-7b-5p, 
hsa-miR-93-5p, hsa-let-7i-5p, hsa-miR-6501-5p, hsa-miR-221-3p, hsa-let-7g-5p, hsa-miR-
106a-5p, and hsa-miR-17-5p were significantly downregulated in pediatric patients 
with β-thalassemia. After integrating our data with a previously published dataset, 
we found that hsa-let-7b-5p and hsa-let-7i-5p expression levels were also lower in 
adolescent or adult patients with β-thalassemia. The predicted target genes of hsa-
let-7b-5p and hsa-let-7i-5p were associated with the transforming growth factor β 
receptor, phosphatidylinositol 3-kinase/AKT, FoxO, Hippo, and mitogen-activated 
protein kinase signaling pathways. We also identified 12 target genes of hsa-let-7a-3p 
and hsa-let-7f-1-3p and 21 target genes of hsa-let-7a-3p and hsa-let-7f-1-3p, which were 
differentially expressed in patients with β-thalassemia. Finally, we found that hsa-miR-
190-5p and hsa-miR-1278-5p may regulate hemoglobin switching by modulation of the 
B-cell lymphoma/leukemia 11A gene.
Conclusion: The results of the study show that several microRNAs are dysregulated 
in pediatric β-thalassemia. Further, the results also indicate toward a critical role of 
let7 miRNAs in the pathogenesis of pediatric β-thalassemia, which needs to be inves-
tigated further.
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1  |  INTRODUC TION

β-Thalassemia is one of the most common genetic disorders of 
blood.1,2 There are three subtypes of β-thalassemia, that is, β-
thalassemia minor, intermedia, and major.3 β-Thalassemia minor is 
caused by a deficiency in one β-globin gene, and patients usually 
have no symptoms or suffer from mild anemia. By contrast, β-
thalassemia intermedia or β-thalassemia major is caused by double 
heterozygotes or homozygotes of the β-globin gene.4,5 Patients with 
β-thalassemia have major fetal health issues at birth and require life-
long blood transfusions and iron chelation treatments.6-8 However, 
current treatments for β-thalassemia major are associated with se-
vere side effects,9,10 and alternative therapeutic approaches are still 
being developed.11-13 Therefore, strategies for the prenatal diagno-
sis of β-thalassemia are urgently needed, particularly in regions with 
a high prevalence of β-thalassemia.

In human developmental processes, β-like hemoglobin is 
switched from fetal γ-globin to adult β-globin at the time of birth.14,15 
The absence of or reduction in β-globin in β-thalassemia may reacti-
vate γ-globin expression and fetal hemoglobin (HbF) synthesis.16,17 
Understanding the molecular mechanisms of the reactivation of fetal 
γ-globin expression in adult erythroid cells will provide novel ther-
apies for patients with β-thalassemia.18 B-cell lymphoma/leukemia 
11A (BCL11A) is a major suppressor of γ-globin19-21 and a therapeu-
tic target of β-thalassemia.22 BCL11A can bind to the distal promoter 
regions of HbF and represses its expression.23,24 Moreover, BCL11A 
is a target of Krueppel-like factor 1 (KLF1), and inhibiting KLF1 ex-
pression is associated with repression of γ-globin.25,26 In erythroid 
cells, zinc finger and BTB domain-containing protein 7A (ZBTB7A) 
also block the expression of HbF,27 and KLF1 directly drives ZBTB7A 
expression by binding to its promoter regions.28,29 HBS1-like trans-
lational GTPase-MYB proto-oncogene (MYB) also plays a critical role 
in regulating HbF expression.30-33

MicroRNAs (miRNAs) regulate globin gene switching through 
post-transcriptional mechanisms.34,35 For example, hsa-miR-15a 
and hsa-miR-16 target the MYB transcription factor to elevate γ-
globin expression.36,37 Moreover, hsa-miR-210, hsa-miR-30a, and 
hsa-miR-486-3p regulate γ-globin gene expression through the post-
transcriptional regulation of BCL11A expression.38-40 Importantly, 
let7 miRNAs have also been implicated in the developmental pro-
gression of fetal and adult human erythroblasts.41 In K-562 cells, 
hsa-miR-26b specifically activates the transcription factor GATA1 
to increase the expression of γ-globin.42 With the development of 
sequencing technology, more differentially expressed genes, long 
noncoding RNAs, and miRNAs have been identified in patients with 
β-thalassemia.43,44

Because of the different expression profiles of pediatric and 
adult blood cells,45 we hypothesized that pediatric and adult 
β-thalassemia may have different molecular characteristics. 
Differentially expressed miRNAs in adolescent or adult patients with 
β-thalassemia had been reported in a previous study.46 However, the 
miRNA expression profiles in pediatric β-thalassemia were unclear. 
Accordingly, in this study, we determined the miRNA expression 

profiles modulated in pediatric patients with β-thalassemia. Our 
analysis suggested that abnormal regulation of transcriptional net-
works mediated by let7 miRNAs was critical for the pathogenesis of 
pediatric β-thalassemia.

2  |  MATERIAL S AND METHODS

2.1  |  Study participants

This study was approved by the institutional ethics committee of our 
hospital (approval no. 201, 2018). 5 ml peripheral blood was collected 
from five pediatric patients with β-thalassemia and five healthy con-
trols in Fujian Maternity and Child Health Hospital, Fujian, China. The 
red cells were lysed using PAXgene Blood RNA Kit. The remaining 
mononuclear cells were used for further RNA isolation. The informa-
tion and clinical conditions of the participants were also collected.

2.2  |  Total RNA isolation

Total RNA from mononuclear cells was isolated using a miRNeasy 
Mini Kit (Qiagen) according to the manufacturer's protocol. Briefly, 
mononuclear cells were lysed using lysis reagent, and 140 μl chlo-
roform was added. The upper aqueous phase was then mixed with 
100% ethanol, and the mixture was transferred to the column, 
washed, and eluted with RNase-free water.

2.3  |  MicroRNA library 
construction and sequencing

Total RNA was used to prepare the miRNA sequencing library. After 
linker ligation, cDNA synthesis, and polymerase chain reaction (PCR) 
amplification, 135–155-bp PCR amplification fragments were se-
lected. The library was denatured into single-stranded DNA, cap-
tured on an Illumina flow cell, amplified into clusters, and sequenced 
for 51 cycles using an Illumina NextSeq 500 sequencer (Illumina).

2.4  |  Data processing

After sequencing, Solexa Chastity software was used for quality 
control. The linkers were removed using Cutadapt,47 leaving tags 
with lengths greater than or equal to 15 as the trimmed reads. We 
used miRDeep2 software to quantify known miRNAs.48 Counts per 
million reads (CPM) were used to represent the expression levels of 
miRNAs. The differentially expressed miRNAs between pediatric 
patients with β-thalassemia and healthy controls were determined 
using edgeR (version 3.32.1, http://bioco​nduct​or.org/packa​ges/
relea​se/bioc/html/edgeR.html) in R statistics software,49 based on 
an absolute fold change greater than 1.5, p value less than 0.05, and 
CPM greater than or equal to 1.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html


    |  3 of 13WANG et al.

2.5  |  Volcano plot and Venn diagram plot

Volcano plots and Venn diagrams were generated using Fancy 
Volcano Plot and Wonderful Venn in TBtools software (version 
x32_1_064, https://github.com/CJ-Chen/TBtools), respectively.50

2.6  |  Heatmap presentation

Unsupervised heatmaps were generated using “pheatmap” pack-
age (version 1.0.12, https://cran.r-proje​ct.org/web/packa​ges/pheat​
map/) in R statistics software.

2.7  |  Prediction of the target genes of miRNAs

The targets of miRNAs were predicted using miRDB (http://mirdb.
org/)51 and TargetScan Human 7.2 (http://www.targe​tscan.org/
vert_72/)52 online tools. Target genes were predicted in both miRDB 
and TargetScan and were selected for further analyses.

2.8  |  Biological process annotations and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signaling 
pathway analysis

The enriched biological processes and KEGG signaling pathways 
were determined using the Database for Annotation, Visualization, 
and Integrated Discovery Web site (version 6.8; https://david.ncifc​
rf.gov).53,54 Statistical significance was set at p < 0.05.

2.9  |  Gene Expression Omnibus (GEO) 
data collection

The gene expression matrix from patients with β-thalassemia and 
normal controls was deposited in the GSE56088 dataset from the 
GEO Web site (www.ncbi.nlm.nih.gov/geo). Microarray expression 
was analyzed using R software (version 3.5.0; https://www.r-proje​
ct.org/).

2.10  |  Analysis of the let7 miRNA-associated 
transcriptional network

A network of let7 miRNAs and predicted target genes was created 
using Cytoscape (http://www.cytos​cape.org/).

2.11  |  Statistical analysis

Box plots were generated using GraphPad Prism software. Statistical 
analysis was performed using Student's t tests. Statistical signifi-
cance was set at p < 0.05.

3  |  RESULTS

3.1  |  MiRNA expression profiling of pediatric β-
thalassemia

Peripheral blood samples from five children diagnosed with β-
thalassemia in our hospital and five healthy children were collected 
to identify differentially expressed miRNAs. The clinical characteris-
tics of β-thalassemia and normal individuals are shown in Table 1. The 
mean age of the β-thalassemia and normal individuals was 3 years and 
two-six years, respectively. Compared with normal individuals, the 
mean hemoglobin, red blood cell, and hematocrit in the β-thalassemia 
patients were significantly lower. Moreover, the mean corpuscu-
lar hemoglobin level was also decreased in β-thalassemia patients. 
However, the mean corpuscular volume and platelet count were not 
significantly different between the β-thalassemia and normal cohorts.

Next, we performed miRNA sequencing to identify the miRNA 
expression profile of pediatric β-thalassemia. In total, 530  miR-
NAs were identified; among these, 111 miRNAs were upregulated, 
whereas 85  miRNAs were downregulated in patients with β-
thalassemia. Three hundred and 330 miRNAs showed no differential 
expression in pediatric β-thalassemia and normal cohorts, respec-
tively (Figure 1A). All differentially expressed miRNAs were further 
illustrated using a heatmap. The results showed that these miRNAs 
could clearly distinguish normal individuals from patients with β-
thalassemia (Figure 1B).

Control β-thalassemia p Value

Sex (male/female) 3/2 3/2

Age (years) 3.00 ± 1.22 2.6 ± 1.18 0.67

Hemoglobin (g/L) 124.6 ± 8.56 59 ± 5.34 <0.001

Red blood cell (1012/L) 4.47 ± 0.18 2.86 ± 0.49 <0.001

Hematocrit (%) 36.24 ± 1.54 21.1 ± 4.68 <0.001

Mean corpuscular volume (fl) 80.44 ± 3.05 73.92 ± 8.22 0.14

Mean corpuscular hemoglobin (pg) 27.88 ± 1.52 23.8 ± 2.87 0.02

Mean corpuscular hemoglobin 
concentration (g/L)

346.6 ± 18.09 302.4 ± 47.37 0.09

Platelet count (109/L) 258.4 ± 84.24 275.2 ± 141.33 0.82

TA B L E  1 Clinical characteristics of 
patients with β-thalassemia and normal 
individuals

https://github.com/CJ-Chen/TBtools
https://cran.r-project.org/web/packages/pheatmap/
https://cran.r-project.org/web/packages/pheatmap/
http://mirdb.org/
http://mirdb.org/
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org/
https://www.r-project.org/
http://www.cytoscape.org/
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Some miRNAs have been reported to be abnormally regulated in 
β-thalassemia. For example, hsa-miR-210 regulates γ-globin expression 
through the transcription factor BCL11A,38 and miR-15a and miR-16-1 
elevate γ-globin expression through the transcription factor MYB.36,37 
Additionally, hsa-miR-503 has been shown to be downregulated in pa-
tients with β-thalassemia.55 Consistent with these results, we found 
that hsa-miR-2100-3p, hsa-miR-15a-5p, hsa-miR-16-5p, and hsa-miR-
503-5p were all downregulated in pediatric patients with β-thalassemia 
compared with that in normal individuals (Figure 1C). These results 
suggested that our miRNA sequencing data were accurate.

3.2  |  Top 10 miRNAs up- or downregulated in 
pediatric β-thalassemia

Based on fold changes, we further evaluated the top 10 miRNAs 
up- or downregulated in pediatric patients with β-thalassemia. 
Interestingly, let7 microRNAs were particularly altered in these pa-
tients. We found that hsa-let-7f-1-3p and hsa-let-7a-3p were signifi-
cantly upregulated in pediatric patients with β-thalassemia (Table 2). 
By contrast, hsa-let-7b-5p, hsa-let-7i-5p, and hsa-let-7g-5p were sig-
nificantly downregulated in these patients (Table 3). These results 
highlighted the abnormal regulation of let7 microRNAs in pediatric 
β-thalassemia.

Notably, hsa-miR-483-3p, hsa-miR-543, hsa-miR-433-3p, hsa-
miR-4435, hsa-miR-329-3p, hsa-miR-92b-5p, hsa-miR-6747-3p, and 

hsa-miR-495-3p were upregulated (Table 2), whereas hsa-miR-4508, 
hsa-miR-20a-5p, hsa-miR-93-5p, hsa-miR-6501-5p, hsa-miR-221-3p, 
hsa-miR-106a-5p, and hsa-miR-17-5p were downregulated in pe-
diatric β-thalassemia (Table  3). Most of these miRNAs had not 
previously been reported to be involved in the pathology of 
β-thalassemia.

3.3  |  Downregulation of let7 miRNAs in 
pediatric and adult patients with β-thalassemia

Differentially expressed miRNAs in adolescent or adult patients 
with β-thalassemia have been reported in a previous study.46 By 
integrating these datasets with our current results, we determined 
the unique and common miRNAs associated with pediatric and 
adult β-thalassemia. Four miRNAs, that is, hsa-miR-29b-3p, hsa-miR-
192-5p, hsa-miR-215-5p, and hsa-miR-150-5p, were upregulated in 
pediatric and adult patients with β-thalassemia (Figure  2A). Five 
let7  microRNAs, that is, hsa-let-7b-5p, hsa-let-7i-5p, hsa-let-7f-5p, 
hsa-let-7e-5p, and hsa-let-7d-5p, were downregulated in pediatric 
and adult patients with β-thalassemia (Figure 2B). Moreover, three 
miRNAs, that is, hsa-miR-125b-5p, hsa-miR-130a-3p, and hsa-miR-
130b-3p, were both altered in pediatric and adult patients with 
β-thalassemia (Figure  2B). These results partially validated our 
analysis and again suggested that let7 microRNAs were critical to 
the pathology of β-thalassemia.

F I G U R E  1 miRNA expression profiling 
of pediatric patients with β-thalassemia. 
(A) Volcano plot showed the expression 
of miRNAs in pediatric patients with 
β-thalassemia and normal individuals. 
The green dots represent downregulated 
miRNAs, whereas the red dots represent 
upregulated miRNAs in pediatric 
patients with β-thalassemia. (B) The 
unsupervised clustering heatmap shows 
differentially expressed miRNAs between 
pediatric patients with β-thalassemia 
and normal controls. Upregulated (red) 
and downregulated (blue) miRNAs in 
β-thalassemia are showed. (C) Box plots 
show hsa-miR-210-3p, hsa-miR-15a-5p, 
hsa-miR-16-5p, and hsa-miR-503-5p 
expression levels in pediatric patients with 
β-thalassemia and normal individuals. P 
values were generated using two-tailed 
paired Student's t tests
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3.4  |  Transcriptional networks mediated by 
let7 microRNAs

MiRNAs may regulate the expression of γ-globin through post-
transcriptional silencing of target genes.34,35 Therefore, using 
miRDB and TargetScan online tools, we next identified the target 
genes of hsa-let-7a-3p and hsa-let-7f-1-3p, which were upregulated 
in pediatric patients with β-thalassemia. Interestingly, we found 
that hsa-let-7a-3p target genes were also predicted to be the target 
genes of hsa-let-7f-1-3p. Using miRDB, 1092 genes were predicted 
to be targets of hsa-let-7a-3p and hsa-let-7f-1-3p. In total, 238 genes 
were predicted to be targets of hsa-let-7a-3p and hsa-let-7f-1-3p. 

Overlapping the results from miRDB and TargetScan, we identi-
fied 142 genes that were targets of hsa-let-7a-3p and hsa-let-7f-1-3p 
(Figure 3A). The connections of hsa-let-7a-3p and hsa-let-7f-1-3p with 
their target genes are shown in Figure 3B.

Similarly, the target genes of hsa-let-7b-5p and hsa-let-7i-5p, 
which were downregulated in pediatric and adult patients with β-
thalassemia, were identified using the miRDB and TargetScan on-
line tools. The target genes of hsa-let-7b-5p and hsa-let-7i-5p were 
quite similar. We identified 326 genes as targets of hsa-let-7a-3p and 
hsa-let-7f-1-3p (Figure  4A). The connections between hsa-let-7b-5p 
and hsa-let-7i-5p and their target genes were also demonstrated 
(Figure 4B).

Mature ID Fold change p Value Q value

hsa-miR-483-3p 9.62893197 0.00012347 0.0013254

hsa-let-7f-1-3p 9.567670194 1.73077E-06 4.508E-05

hsa-let-7a-3p 7.268324435 6.36E-05 0.0007823

hsa-miR-543 6.532258748 2.63949E-07 1.157E-05

hsa-miR-433-3p 5.450896085 0.000651725 0.0050217

hsa-miR-4435 4.868506895 6.24003E-06 0.0001059

hsa-miR-329-3p 4.798724188 4.72461E-05 0.0006213

hsa-miR-92b-5p 4.795958936 0.001835974 0.0106814

hsa-miR-6747-3p 4.762721817 0.001442795 0.0091435

hsa-miR-495-3p 4.695605525 0.000547849 0.0043662

TA B L E  2 Top 10 miRNAs upregulated 
in pediatric β-thalassemia

Mature ID Fold change p Value Q value

hsa-miR-4508 0.072355279 6.38518E-07 2.099E-05

hsa-miR-20a-5p 0.169841036 3.00687E-07 1.217E-05

hsa-let-7b-5p 0.174221614 2.17096E-09 2.855E-07

hsa-miR-93-5p 0.197344161 7.88045E-09 5.922E-07

hsa-let-7i-5p 0.201976493 9.45983E-13 4.976E-10

hsa-miR-6501-5p 0.203672013 8.51904E-08 4.074E-06

hsa-miR-221-3p 0.224135802 1.11212E-10 1.95E-08

hsa-let-7g-5p 0.226226447 1.79675E-11 4.725E-09

hsa-miR-106a-5p 0.236545656 4.97221E-06 0.0001018

hsa-miR-17-5p 0.262349916 4.10249E-06 8.991E-05

TA B L E  3 Top 10 miRNAs 
downregulated in pediatric β-thalassemia
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adult patients with β-thalassemia
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F I G U R E  3 Transcriptional network mediated by hsa-let-7a-3p and hsa-let-7f-1-3p. (A) Venn diagram showing common targets of hsa-let-7a-
3p and hsa-let-7f-1-3p, predicated by miRDB and TargetScan. (B) Transcriptional networks of hsa-let-7a-3p, hsa-let-7f-1-3p, and their target genes
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F I G U R E  4 Transcriptional network mediated by hsa-let-7b-5p and hsa-let-7i-5p. (A) Venn diagram showing common targets of hsa-let-7b-5p 
and hsa-let-7i-5p, predicated by miRDB and TargetScan. (B) Transcriptional networks of hsa-let-7b-5p, hsa-let-7i-5p, and their target genes
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3.5  |  Biological processes and signaling pathways 
associated with the target genes of let7 miRNAs

Next, the biological processes and signaling pathways associated 
with the target genes of hsa-let-7a-3p and hsa-let-7f-1-3p were de-
termined. We found that targets of hsa-let-7a-3p and hsa-let-7f-1-3p 
were involved in the cellular response to interleukin-1, protein K11-
linked ubiquitination, mesoderm development biological processes 
(Figure  5A), pancreatic secretion, and tuberculosis signaling path-
ways (Figure  5B). However, how these biological processes and 
signaling pathways are involved in the pathology of β-thalassemia 
is not clear.

The targets of hsa-let-7b-5p and hsa-let-7i-5p were involved in the 
negative regulation of translation, positive regulation of cell migra-
tion, regulation of cytokine biosynthesis, transforming growth factor 
(TGF) β receptor signaling pathway, and somatic stem cell population 
maintenance (Figure 5C). TGFβ is an important cytokine involved in 
cell migration56,57 and negatively regulates erythrocyte differenti-
ation and maturation in the early stages of erythropoiesis.58 In ad-
dition, somatic stem cell population maintenance is associated with 
changes in genes in adult β-thalassemia.46

The targets of hsa-let-7b-5p and hsa-let-7i-5p were associated 
with the phosphatidylinositol 3-kinase (PI3K)/AKT, FoxO, Hippo, 
and mitogen-activated protein kinase (MAPK) signaling pathways 

F I G U R E  5 Biological processes and signaling pathways associated with target genes of let7 miRNAs. (A) Biological processes associated 
with common targets of hsa-let-7a-3p and hsa-let-7f-1-3p. (B) Functional pathway enrichment analysis of common targets of hsa-let-7a-3p and 
hsa-let-7f-1-3p. (C) Biological processes associated with common targets of hsa-let-7b-5p and hsa-let-7i-5p. (D) Functional pathway enrichment 
analysis of common targets of hsa-let-7b-5p and hsa-let-7i-5p
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(Figure 5D). FOXO3 is a downstream transcription factor of the PI3K/
AKT signaling pathway and is also involved in the FoxO signaling 
pathway.59 Previous results have shown that the PI3K/AKT signal-
ing pathway60 and FOXO361,62 are important regulators of erythroid 
maturation during erythropoiesis. The MAPK signaling pathway also 
participates in the development of erythropoiesis.63 KEGG pathway 
enrichment analysis identified several other pathways involved in 
the regulation of γ-globin expression and the development of eryth-
ropoiesis, including the Hippo signaling pathway, RAS signaling path-
way, and transcriptional dysregulation (Figure 5D).

3.6  |  Differentially expressed target genes of 
let7 miRNAs in β-thalassemia

In a previous study, differentially expressed genes between pa-
tients with β-thalassemia and healthy controls were studied; the 
data were deposited in the GSE56088 dataset. Using this data-
set, we determined the expression of the targets of let7 miRNAs. 
BLC11A is a critical transcription factor that regulates hemoglobin 
switching and is a target of let7 miRNAs.64 First, we showed that the 
expression of BLC11A was significantly downregulated in patients 
with β-thalassemia compared with that in normal individuals in the 
GSE56088 dataset (Figure 6A).

We also identified 12 target genes of hsa-let-7a-3p and hsa-
let-7f-1-3p, which were differentially expressed in patients with 

β-thalassemia (Figure  6B). GP1BA and ST8SIA4 were downregu-
lated, whereas FOXN2, PLAG1, LEMD3, LRRC34, AP1S3, RAB11FIP2, 
NRBF2, RAB2A, PUM2, and TAOK1 were upregulated in patients with 
β-thalassemia. Additionally, 21 target genes of hsa-let-7b-5p and hsa-
let-7i-5p were differentially expressed in patients with β-thalassemia 
(Figure 6C). STOX2, LIMD1, RBMS1, KCNQ4, GNPTAB, HMGA1, SCD, 
IGF2BP2, STK40, FOXP2, and UTRN were downregulated, whereas 
FIGN, FRMD4B, PRPF38B, IGF2BP3, STARD3NL, SOCS4, C5orf51, 
TMPPE, E2F6, and FNDC3A were upregulated in patients with 
β-thalassemia.

3.7  |  Hsa-miR-190-5p and hsa-miR-1278-
5p may regulate hemoglobin switching by 
modulation of BCL11A

BLC11A is a critical transcription factor that regulates hemoglobin 
switching.19-21 Finally, we attempted to identify novel microRNAs 
regulating hemoglobin switching via modulation of BCL11A ex-
pression. Using miRDB, we found that two miRNAs, that is, hsa-
miR-190-5p and hsa-miR-1278-5p, targeted BCL11A. In particular, 
hsa-miR-190-5p was perfectly matched to the two 3′ untranslated re-
gions (UTRs) of BCL11A (Figure 7A). In addition, hsa-miR-1278-5p tar-
geted the 3′ UTRs of BCL11A (Figure 7A). Moreover, hsa-miR-190-5p 
and hsa-miR-1278-5p were both downregulated in patients with β-
thalassemia compared with those in normal controls (Figure 7B).

F I G U R E  6 Expression levels of target 
genes of let7 miRNAs in β-thalassemia. (A) 
Box plots showing the expression levels 
of BCL11A in patients with β-thalassemia 
and normal individuals in the GSE56088 
dataset. (B) Unsupervised clustering 
heatmap showing the expression levels of 
common targets of hsa-let-7a-3p and hsa-
let-7f-1-3p in patients with β-thalassemia 
and normal individuals in the GSE56088 
dataset. (C) Expression levels of common 
targets of hsa-let-7b-5p and hsa-let-7i-5p 
in patients with β-thalassemia and normal 
individuals
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We further identified the target genes of hsa-miR-190-5p and 
hsa-miR-1278-5p. In addition to BCL11A, hsa-miR-190-5p also tar-
geted ZNF99, FNDC3A, ORC4, PFDN4, ZNF382, EPC2, PHF20L1, 
ASAP2, WDR44, ZNF529, NHLRC2, ZFC3H1, CHMP7, YTHDF3, and 
TAPBP genes (Figure  7B). Furthermore, hsa-miR-190-5p also tar-
geted NRBF2, ZRANB2, PAX8, DNAJB14, TIPARP, LHX6, IGF2BP2, and 
STK40 (Figure 7C). Interestingly, IGF2BP2 and STK40 were also tar-
get genes of hsa-let-7a-3p and hsa-let-7f-1-3p (Figure 6B). However, 
the functions of hsa-miR-190-5p and hsa-miR-1278-5p in hemoglobin 
switching and β-thalassemia need to be studied in greater detail.

4  |  DISCUSSION

β-Thalassemia is a heterogeneous disease, and the clinical manifes-
tations of β-thalassemia in pediatric and adult patients may be differ-
ent.65,66 Because of the high hematopoietic stem cell repopulating 

capacity in children and the impaired functions of the bone marrow 
niche during aging, pediatric patients with β-thalassemia have a su-
perior therapeutic response to hematopoietic stem cell gene therapy 
than adult patients with β-thalassemia.67 Therefore, pediatric and 
adult β-thalassemia may have different molecular characteristics. 
In this study, we showed that the miRNAs associated with pediat-
ric and adult β-thalassemia were quite different. Only four miRNAs 
were upregulated, and eight miRNAs were downregulated in both 
pediatric and adult patients with β-thalassemia. These differences 
were partially due to the different cohorts and approaches; how-
ever, we also revealed that five let7 miRNAs, that is, hsa-let-7b-5p, 
hsa-let-7i-5p, hsa-let-7f-5p, hsa-let-7e-5p, and hsa-let-7d-5p, may be in-
volved in the reactivation of γ-globin expression and HbF synthesis 
in pediatric and adult patients with β-thalassemia.

Consistent with these observations, reports have shown that 
the LIN28B/let7 axis directly regulates BCL11A expression to pro-
mote hemoglobin switching.68,69 Targeted inhibition of hsa-let-7a 

F I G U R E  7 Regulatory effects of hsa-miR-190-5p and hsa-miR-1278-5p on hemoglobin switching via modulation of BCL11A. (A) Sequences 
of hsa-miR-190-5p, hsa-miR-1278-5p, and their binding sites on BCL11A. (B) Box plots showing hsa-miR-190-5p and hsa-miR-1278-5p 
expression levels in patients with β-thalassemia and normal individuals. (C) Unsupervised clustering heatmap showing the expression levels 
of targets of hsa-miR-190-5p in patients with β-thalassemia and normal individuals. (D) Expression levels of targets of hsa-miR-1278-5p in 
patients with β-thalassemia and normal individuals

P=0.0001

P=0.0007

hsa-mir-190-5p hsa-mir-1278-5p

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

4

5

C
P

M

C
P

M

β-t
ha

las
se

mia

Con
tro

l

β-t
ha

las
se

mia

Con
tro

l

(B)

5'-GUUGGGUUAUAGUUUGUAUAGU-3' hsa-miR-190b-5p
BCL11A 3'UTR 499-506

BCL11A 3'UTR 2553-22593'-ACATATC-5'

3'-ACATATCA-5'

5'-UGCUGGAUCAGUGGUUCGAGUC-3'

BCL11A 3'UTR 2669-26753'-TCCAGCA-5'

hsa-miR-1278-5p

(A)

ZNF99
FNDC3A
ORC4
PFDN4
ZNF382
EPC2
PHF20L1
ASAP2
WDR44
ZNF529
NHLRC2
ZFC3H1
CHMP7
YTHDF3
BCL11A
TAPBP

β-thalassemiaControl

−3−2−10123

NRBF2

ZRANB2

PAX8

DNAJB14

TIPARP

BCL11A

LHX6

IGF2BP2

STK40

hsa-mir-190-5p target genes hsa-mir-1278-5p target genes

β-thalassemiaControl

−3−2−10123

(C) (D)



    |  11 of 13WANG et al.

and hsa-let-7b reactivated the expression of HbF in erythroid cells.41 
However, we showed that hsa-let-7a was upregulated in pediatric β-
thalassemia, whereas hsa-let-7b was downregulated in pediatric β-
thalassemia. The functions of hsa-let-7i-5p, hsa-let-7f-5p, hsa-let-7e-5p, 
and hsa-let-7d-5p in the regulation of γ-globin expression or HbF syn-
thesis in erythroid cells have not been reported. Furthermore, we 
identified 21 target genes of hsa-let-7b-5p and hsa-let-7i-5p, which 
were differentially expressed in patients with β-thalassemia. We 
also found that the target genes of hsa-let-7b-5p and hsa-let-7i-5p 
were associated with the PI3K/AKT, FoxO, Hippo, and MAPK sig-
naling pathways. How those pathways involved in the pathology of 
β-thalassemia should be further studied.

BCL11A,19-21 KLF1,29 and MYB31,32 are transcription factors 
that play important roles in hemoglobin switching. Hsa-miR-210 
and hsa-let-7b-5p regulate γ-globin expression through BCL11A.38 
Additionally, miR-15a and miR-16-1 elevate γ-globin expression 
through the transcription factor MYB.36,37 Our results showed that 
hsa-miR-210, hsa-let-7b-5p, miR-15a, and miR-16-1 were all down-
regulated in β-thalassemia. We believe that our data could help to 
identify more miRNAs associated with the BCL11A transcription 
factor. Indeed, our findings showed that two miRNAs, that is, hsa-
miR-190-5p and hsa-miR-1278-5p, may regulate hemoglobin switch-
ing by targeting BCL11A. However, the functions of these miRNAs 
should be studied further.

To the best of our knowledge, this is the first study to identify dif-
ferentially expressed miRNAs, particularly in pediatric β-thalassemia. 
Our results suggest that let7 miRNAs and their target genes are ab-
normally dysregulated in pediatric β-thalassemia. However, there 
were some limitations to the integrated analysis of the different data-
sets. Because of differences in cohorts and approaches, our analysis 
could not fully reveal the miRNA profiles associated with pediatric 
and adult β-thalassemia. In addition, identification of differentially 
expressed miRNA target genes in patients with β-thalassemia using 
the GSE56088 dataset may also have some bias. In our subsequent 
studies, we will collect a large cohort of β-thalassemia cases com-
prising patients of different ages and perform miRNA sequencing 
and mRNA sequencing simultaneously. Additionally, the functions of 
hsa-let-7i-5p, hsa-let-7f-5p, hsa-let-7e-5p, and hsa-let-7d-5p in the regu-
lation of γ-globin expression will be studied in greater detail.
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