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Abstract
Background: MicroRNAs	(miRNAs)	participate	in	the	reactivation	of	γ- globin expres-
sion in β-	thalassemia.	 However,	 the	 miRNA	 transcriptional	 profiles	 of	 pediatric	 β- 
thalassemia	remain	unclear.	Accordingly,	in	this	study,	we	assessed	miRNA	expression	
in pediatric patients with β- thalassemia.
Methods: Differentially	expressed	miRNAs	 in	pediatric	patients	with	β- thalassemia 
were	determined	using	microRNA	sequencing.
Results: Hsa- miR- 483- 3p,	hsa- let- 7f- 1- 3p,	hsa- let- 7a- 3p,	hsa- miR- 543,	hsa- miR- 433- 3p,	
hsa- miR- 4435,	hsa- miR- 329- 3p,	hsa- miR- 92b- 5p,	hsa- miR- 6747- 3p and hsa- miR- 495- 3p 
were	significantly	upregulated,	whereas	hsa- miR- 4508,	hsa- miR- 20a- 5p,	hsa- let- 7b- 5p,	
hsa- miR- 93- 5p,	hsa- let- 7i- 5p,	hsa- miR- 6501- 5p,	hsa- miR- 221- 3p,	hsa- let- 7g- 5p,	hsa- miR- 
106a- 5p,	 and hsa- miR- 17- 5p were significantly downregulated in pediatric patients 
with β-	thalassemia.	After	 integrating	our	 data	with	 a	 previously	 published	dataset,	
we found that hsa- let- 7b- 5p and hsa- let- 7i- 5p expression levels were also lower in 
adolescent or adult patients with β- thalassemia. The predicted target genes of hsa- 
let- 7b- 5p and hsa- let- 7i- 5p were associated with the transforming growth factor β 
receptor,	 phosphatidylinositol	 3-	kinase/AKT,	 FoxO,	 Hippo,	 and	 mitogen-	activated	
protein kinase signaling pathways. We also identified 12 target genes of hsa- let- 7a- 3p 
and hsa- let- 7f- 1- 3p and 21 target genes of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p,	which	were	
differentially expressed in patients with β-	thalassemia.	Finally,	we	found	that	hsa- miR- 
190- 5p and hsa- miR- 1278- 5p may regulate hemoglobin switching by modulation of the 
B-	cell	lymphoma/leukemia	11A	gene.
Conclusion: The	results	of	the	study	show	that	several	microRNAs	are	dysregulated	
in pediatric β-	thalassemia.	Further,	the	results	also	 indicate	toward	a	critical	role	of	
let7	miRNAs	in	the	pathogenesis	of	pediatric	β-	thalassemia,	which	needs	to	be	inves-
tigated further.
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1  |  INTRODUC TION

β- Thalassemia is one of the most common genetic disorders of 
blood.1,2 There are three subtypes of β-	thalassemia,	 that	 is,	 β- 
thalassemia	minor,	 intermedia,	 and	major.3 β- Thalassemia minor is 
caused by a deficiency in one β-	globin	 gene,	 and	 patients	 usually	
have	 no	 symptoms	 or	 suffer	 from	 mild	 anemia.	 By	 contrast,	 β- 
thalassemia intermedia or β- thalassemia major is caused by double 
heterozygotes	or	homozygotes	of	the	β- globin gene.4,5 Patients with 
β- thalassemia have major fetal health issues at birth and require life-
long blood transfusions and iron chelation treatments.6-	8	However,	
current treatments for β- thalassemia major are associated with se-
vere	side	effects,9,10 and alternative therapeutic approaches are still 
being developed.11- 13	Therefore,	strategies	for	the	prenatal	diagno-
sis of β-	thalassemia	are	urgently	needed,	particularly	in	regions	with	
a high prevalence of β- thalassemia.

In	 human	 developmental	 processes,	 β- like hemoglobin is 
switched from fetal γ- globin to adult β- globin at the time of birth.14,15 
The absence of or reduction in β- globin in β- thalassemia may reacti-
vate γ-	globin	expression	and	fetal	hemoglobin	(HbF)	synthesis.16,17 
Understanding the molecular mechanisms of the reactivation of fetal 
γ- globin expression in adult erythroid cells will provide novel ther-
apies for patients with β- thalassemia.18 B- cell lymphoma/leukemia 
11A	(BCL11A)	is	a	major	suppressor	of	γ- globin19- 21 and a therapeu-
tic target of β- thalassemia.22	BCL11A	can	bind	to	the	distal	promoter	
regions	of	HbF	and	represses	its	expression.23,24	Moreover,	BCL11A	
is	a	target	of	Krueppel-	like	factor	1	(KLF1),	and	inhibiting	KLF1	ex-
pression is associated with repression of γ- globin.25,26 In erythroid 
cells,	 zinc	 finger	 and	BTB	domain-	containing	protein	7A	 (ZBTB7A)	
also	block	the	expression	of	HbF,27	and	KLF1	directly	drives	ZBTB7A	
expression by binding to its promoter regions.28,29	HBS1-	like	trans-
lational GTPase- MYB proto- oncogene (MYB) also plays a critical role 
in	regulating	HbF	expression.30- 33

MicroRNAs	 (miRNAs)	 regulate	 globin	 gene	 switching	 through	
post- transcriptional mechanisms.34,35	 For	 example,	 hsa- miR- 15a 
and hsa- miR- 16 target the MYB transcription factor to elevate γ- 
globin expression.36,37	 Moreover,	 hsa- miR- 210,	 hsa- miR- 30a,	 and	
hsa- miR- 486- 3p regulate γ- globin gene expression through the post- 
transcriptional	 regulation	 of	 BCL11A	 expression.38-	40	 Importantly,	
let7	miRNAs	have	also	been	 implicated	 in	 the	developmental	pro-
gression of fetal and adult human erythroblasts.41	 In	 K-	562	 cells,	
hsa- miR- 26b	 specifically	 activates	 the	 transcription	 factor	 GATA1	
to increase the expression of γ- globin.42 With the development of 
sequencing	 technology,	 more	 differentially	 expressed	 genes,	 long	
noncoding	RNAs,	and	miRNAs	have	been	identified	in	patients	with	
β- thalassemia.43,44

Because of the different expression profiles of pediatric and 
adult	 blood	 cells,45	 we	 hypothesized	 that	 pediatric	 and	 adult	
β- thalassemia may have different molecular characteristics. 
Differentially	expressed	miRNAs	in	adolescent	or	adult	patients	with	
β- thalassemia had been reported in a previous study.46	However,	the	
miRNA	expression	profiles	in	pediatric	β- thalassemia were unclear. 
Accordingly,	 in	 this	 study,	 we	 determined	 the	 miRNA	 expression	

profiles modulated in pediatric patients with β- thalassemia. Our 
analysis suggested that abnormal regulation of transcriptional net-
works mediated by let7	miRNAs	was	critical	for	the	pathogenesis	of	
pediatric β- thalassemia.

2  |  MATERIAL S AND METHODS

2.1  |  Study participants

This study was approved by the institutional ethics committee of our 
hospital	(approval	no.	201,	2018).	5	ml	peripheral	blood	was	collected	
from five pediatric patients with β- thalassemia and five healthy con-
trols	in	Fujian	Maternity	and	Child	Health	Hospital,	Fujian,	China.	The	
red	cells	were	 lysed	using	PAXgene	Blood	RNA	Kit.	The	 remaining	
mononuclear	cells	were	used	for	further	RNA	isolation.	The	informa-
tion and clinical conditions of the participants were also collected.

2.2  |  Total RNA isolation

Total	RNA	 from	mononuclear	cells	was	 isolated	using	a	miRNeasy	
Mini	Kit	(Qiagen)	according	to	the	manufacturer's	protocol.	Briefly,	
mononuclear	cells	were	 lysed	using	 lysis	reagent,	and	140	μl chlo-
roform was added. The upper aqueous phase was then mixed with 
100%	 ethanol,	 and	 the	 mixture	 was	 transferred	 to	 the	 column,	
washed,	and	eluted	with	RNase-	free	water.

2.3  |  MicroRNA library 
construction and sequencing

Total	RNA	was	used	to	prepare	the	miRNA	sequencing	library.	After	
linker	ligation,	cDNA	synthesis,	and	polymerase	chain	reaction	(PCR)	
amplification,	 135–	155-	bp	 PCR	 amplification	 fragments	 were	 se-
lected.	 The	 library	was	denatured	 into	 single-	stranded	DNA,	 cap-
tured	on	an	Illumina	flow	cell,	amplified	into	clusters,	and	sequenced	
for	51	cycles	using	an	Illumina	NextSeq	500	sequencer	(Illumina).

2.4  |  Data processing

After	 sequencing,	 Solexa	 Chastity	 software	 was	 used	 for	 quality	
control.	 The	 linkers	 were	 removed	 using	 Cutadapt,47 leaving tags 
with lengths greater than or equal to 15 as the trimmed reads. We 
used	miRDeep2	software	to	quantify	known	miRNAs.48 Counts per 
million reads (CPM) were used to represent the expression levels of 
miRNAs.	 The	 differentially	 expressed	 miRNAs	 between	 pediatric	
patients with β- thalassemia and healthy controls were determined 
using	 edgeR	 (version	 3.32.1,	 http://bioco	nduct	or.org/packa	ges/
relea	se/bioc/html/edgeR.html)	 in	R	statistics	software,49 based on 
an	absolute	fold	change	greater	than	1.5,	p	value	less	than	0.05,	and	
CPM greater than or equal to 1.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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2.5  |  Volcano plot and Venn diagram plot

Volcano	 plots	 and	 Venn	 diagrams	 were	 generated	 using	 Fancy	
Volcano Plot and Wonderful Venn in TBtools software (version 
x32_1_064,	https://github.com/CJ-	Chen/TBtools),	respectively.50

2.6  |  Heatmap presentation

Unsupervised heatmaps were generated using “pheatmap” pack-
age	 (version	1.0.12,	https://cran.r-	proje	ct.org/web/packa	ges/pheat	
map/) in R statistics software.

2.7  |  Prediction of the target genes of miRNAs

The	targets	of	miRNAs	were	predicted	using	miRDB	(http://mirdb.
org/)51	 and	 TargetScan	 Human	 7.2	 (http://www.targe	tscan.org/
vert_72/)52 online tools. Target genes were predicted in both miRDB 
and	TargetScan	and	were	selected	for	further	analyses.

2.8  |  Biological process annotations and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signaling 
pathway analysis

The	 enriched	 biological	 processes	 and	 KEGG	 signaling	 pathways	
were	determined	using	the	Database	for	Annotation,	Visualization,	
and	Integrated	Discovery	Web	site	(version	6.8;	https://david.ncifc	
rf.gov).53,54	Statistical	significance	was	set	at	p < 0.05.

2.9  |  Gene Expression Omnibus (GEO) 
data collection

The gene expression matrix from patients with β- thalassemia and 
normal	controls	was	deposited	 in	 the	GSE56088	dataset	 from	the	
GEO Web site (www.ncbi.nlm.nih.gov/geo). Microarray expression 
was	analyzed	using	R	software	 (version	3.5.0;	https://www.r-	proje	
ct.org/).

2.10  |  Analysis of the let7 miRNA- associated 
transcriptional network

A	network	of	 let7	miRNAs	and	predicted	target	genes	was	created	
using Cytoscape (http://www.cytos cape.org/).

2.11  |  Statistical analysis

Box	plots	were	generated	using	GraphPad	Prism	software.	Statistical	
analysis	 was	 performed	 using	 Student's	 t	 tests.	 Statistical	 signifi-
cance was set at p < 0.05.

3  |  RESULTS

3.1  |  MiRNA expression profiling of pediatric β- 
thalassemia

Peripheral blood samples from five children diagnosed with β- 
thalassemia in our hospital and five healthy children were collected 
to	identify	differentially	expressed	miRNAs.	The	clinical	characteris-
tics of β- thalassemia and normal individuals are shown in Table 1. The 
mean age of the β- thalassemia and normal individuals was 3 years and 
two-	six	 years,	 respectively.	Compared	with	 normal	 individuals,	 the	
mean	hemoglobin,	red	blood	cell,	and	hematocrit	in	the	β- thalassemia 
patients	 were	 significantly	 lower.	 Moreover,	 the	 mean	 corpuscu-
lar hemoglobin level was also decreased in β- thalassemia patients. 
However,	the	mean	corpuscular	volume	and	platelet	count	were	not	
significantly different between the β- thalassemia and normal cohorts.

Next,	we	performed	miRNA	sequencing	to	 identify	the	miRNA	
expression profile of pediatric β-	thalassemia.	 In	 total,	 530	 miR-
NAs	were	identified;	among	these,	111	miRNAs	were	upregulated,	
whereas	 85	 miRNAs	 were	 downregulated	 in	 patients	 with	 β- 
thalassemia.	Three	hundred	and	330	miRNAs	showed	no	differential	
expression in pediatric β-	thalassemia	 and	 normal	 cohorts,	 respec-
tively	(Figure	1A).	All	differentially	expressed	miRNAs	were	further	
illustrated	using	a	heatmap.	The	results	showed	that	these	miRNAs	
could clearly distinguish normal individuals from patients with β- 
thalassemia	(Figure	1B).

Control β- thalassemia p Value

Sex	(male/female) 3/2 3/2

Age	(years) 3.00 ± 1.22 2.6 ±	1.18 0.67

Hemoglobin	(g/L) 124.6 ±	8.56 59 ± 5.34 <0.001

Red blood cell (1012/L) 4.47	±	0.18 2.86	± 0.49 <0.001

Hematocrit (%) 36.24 ± 1.54 21.1 ±	4.68 <0.001

Mean corpuscular volume (fl) 80.44	± 3.05 73.92	±	8.22 0.14

Mean corpuscular hemoglobin (pg) 27.88	± 1.52 23.8	±	2.87 0.02

Mean corpuscular hemoglobin 
concentration	(g/L)

346.6 ±	18.09 302.4 ±	47.37 0.09

Platelet count (109/L) 258.4	±	84.24 275.2	± 141.33 0.82

TA B L E  1 Clinical	characteristics	of	
patients with β- thalassemia and normal 
individuals

https://github.com/CJ-Chen/TBtools
https://cran.r-project.org/web/packages/pheatmap/
https://cran.r-project.org/web/packages/pheatmap/
http://mirdb.org/
http://mirdb.org/
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org/
https://www.r-project.org/
http://www.cytoscape.org/
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Some	miRNAs	have	been	reported	to	be	abnormally	regulated	in	
β-	thalassemia.	For	example,	hsa- miR- 210 regulates γ- globin expression 
through	the	transcription	factor	BCL11A,38 and miR- 15a and miR- 16- 1 
elevate γ- globin expression through the transcription factor MYB.36,37 
Additionally,	hsa- miR- 503 has been shown to be downregulated in pa-
tients with β- thalassemia.55	Consistent	with	these	results,	we	found	
that hsa- miR- 2100- 3p,	 hsa- miR- 15a- 5p,	 hsa- miR- 16- 5p,	 and	 hsa- miR- 
503- 5p were all downregulated in pediatric patients with β- thalassemia 
compared	with	 that	 in	normal	 individuals	 (Figure	1C).	These	 results	
suggested	that	our	miRNA	sequencing	data	were	accurate.

3.2  |  Top 10 miRNAs up-  or downregulated in 
pediatric β- thalassemia

Based	 on	 fold	 changes,	we	 further	 evaluated	 the	 top	 10	miRNAs	
up-  or downregulated in pediatric patients with β- thalassemia. 
Interestingly,	let7	microRNAs	were	particularly	altered	in	these	pa-
tients. We found that hsa- let- 7f- 1- 3p and hsa- let- 7a- 3p were signifi-
cantly upregulated in pediatric patients with β- thalassemia (Table 2). 
By	 contrast,	hsa- let- 7b- 5p,	hsa- let- 7i- 5p,	 and	hsa- let- 7g- 5p were sig-
nificantly downregulated in these patients (Table 3). These results 
highlighted the abnormal regulation of let7	microRNAs	in	pediatric	
β- thalassemia.

Notably,	 hsa- miR- 483- 3p,	 hsa- miR- 543,	 hsa- miR- 433- 3p,	 hsa- 
miR- 4435,	hsa- miR- 329- 3p,	hsa- miR- 92b- 5p,	hsa- miR- 6747- 3p,	 and	

hsa- miR- 495- 3p	were	upregulated	(Table	2),	whereas	hsa- miR- 4508,	
hsa- miR- 20a- 5p,	 hsa- miR- 93- 5p,	 hsa- miR- 6501- 5p,	 hsa- miR- 221- 3p,	
hsa- miR- 106a- 5p,	 and	 hsa- miR- 17- 5p were downregulated in pe-
diatric β-	thalassemia	 (Table	 3).	 Most	 of	 these	 miRNAs	 had	 not	
previously been reported to be involved in the pathology of 
β- thalassemia.

3.3  |  Downregulation of let7 miRNAs in 
pediatric and adult patients with β- thalassemia

Differentially	 expressed	 miRNAs	 in	 adolescent	 or	 adult	 patients	
with β- thalassemia have been reported in a previous study.46 By 
integrating	these	datasets	with	our	current	results,	we	determined	
the	 unique	 and	 common	 miRNAs	 associated	 with	 pediatric	 and	
adult β-	thalassemia.	Four	miRNAs,	that	is,	hsa- miR- 29b- 3p,	hsa- miR- 
192- 5p,	hsa- miR- 215- 5p,	 and	hsa- miR- 150- 5p,	were	 upregulated	 in	
pediatric and adult patients with β-	thalassemia	 (Figure	 2A).	 Five	
let7	 microRNAs,	 that	 is,	 hsa- let- 7b- 5p,	 hsa- let- 7i- 5p,	 hsa- let- 7f- 5p,	
hsa- let- 7e- 5p,	 and	 hsa- let- 7d- 5p,	 were	 downregulated	 in	 pediatric	
and adult patients with β-	thalassemia	(Figure	2B).	Moreover,	three	
miRNAs,	 that	 is,	 hsa- miR- 125b- 5p,	 hsa- miR- 130a- 3p,	 and	 hsa- miR- 
130b- 3p,	 were	 both	 altered	 in	 pediatric	 and	 adult	 patients	 with	
β-	thalassemia	 (Figure	 2B).	 These	 results	 partially	 validated	 our	
analysis and again suggested that let7	microRNAs	were	critical	to	
the pathology of β- thalassemia.

F I G U R E  1 miRNA	expression	profiling	
of pediatric patients with β- thalassemia. 
(A)	Volcano	plot	showed	the	expression	
of	miRNAs	in	pediatric	patients	with	
β- thalassemia and normal individuals. 
The green dots represent downregulated 
miRNAs,	whereas	the	red	dots	represent	
upregulated	miRNAs	in	pediatric	
patients with β- thalassemia. (B) The 
unsupervised clustering heatmap shows 
differentially	expressed	miRNAs	between	
pediatric patients with β- thalassemia 
and normal controls. Upregulated (red) 
and	downregulated	(blue)	miRNAs	in	
β- thalassemia are showed. (C) Box plots 
show hsa- miR- 210- 3p,	hsa- miR- 15a- 5p,	
hsa- miR- 16- 5p,	and	hsa- miR- 503- 5p 
expression levels in pediatric patients with 
β- thalassemia and normal individuals. P 
values were generated using two- tailed 
paired	Student's	t tests
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3.4  |  Transcriptional networks mediated by 
let7 microRNAs

MiRNAs	 may	 regulate	 the	 expression	 of	 γ- globin through post- 
transcriptional silencing of target genes.34,35	 Therefore,	 using	
miRDB	and	TargetScan	online	 tools,	we	next	 identified	 the	 target	
genes of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p,	which	were	 upregulated	
in pediatric patients with β-	thalassemia.	 Interestingly,	 we	 found	
that hsa- let- 7a- 3p target genes were also predicted to be the target 
genes of hsa- let- 7f- 1- 3p.	Using	miRDB,	1092	genes	were	predicted	
to be targets of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p.	In	total,	238	genes	
were predicted to be targets of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p. 

Overlapping	 the	 results	 from	 miRDB	 and	 TargetScan,	 we	 identi-
fied 142 genes that were targets of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p 
(Figure	3A).	The	connections	of	hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p with 
their	target	genes	are	shown	in	Figure	3B.

Similarly,	 the	 target	 genes	 of	 hsa- let- 7b- 5p and hsa- let- 7i- 5p,	
which were downregulated in pediatric and adult patients with β- 
thalassemia,	were	 identified	 using	 the	miRDB	and	TargetScan	on-
line tools. The target genes of hsa- let- 7b- 5p and hsa- let- 7i- 5p were 
quite similar. We identified 326 genes as targets of hsa- let- 7a- 3p and 
hsa- let- 7f- 1- 3p	 (Figure	 4A).	 The	 connections	 between	hsa- let- 7b- 5p 
and hsa- let- 7i- 5p and their target genes were also demonstrated 
(Figure	4B).

Mature ID Fold change p Value Q value

hsa- miR- 483- 3p 9.62893197 0.00012347 0.0013254

hsa- let- 7f- 1- 3p 9.567670194 1.73077E-	06 4.508E-	05

hsa- let- 7a- 3p 7.268324435 6.36E- 05 0.0007823

hsa- miR- 543 6.532258748 2.63949E-	07 1.157E-	05

hsa- miR- 433- 3p 5.450896085 0.000651725 0.0050217

hsa- miR- 4435 4.868506895 6.24003E- 06 0.0001059

hsa- miR- 329- 3p 4.798724188 4.72461E-	05 0.0006213

hsa- miR- 92b- 5p 4.795958936 0.001835974 0.0106814

hsa- miR- 6747- 3p 4.762721817 0.001442795 0.0091435

hsa- miR- 495- 3p 4.695605525 0.000547849 0.0043662

TA B L E  2 Top	10	miRNAs	upregulated	
in pediatric β- thalassemia

Mature ID Fold change p Value Q value

hsa- miR- 4508 0.072355279 6.38518E-	07 2.099E- 05

hsa- miR- 20a- 5p 0.169841036 3.00687E-	07 1.217E-	05

hsa- let- 7b- 5p 0.174221614 2.17096E-	09 2.855E-	07

hsa- miR- 93- 5p 0.197344161 7.88045E-	09 5.922E-	07

hsa- let- 7i- 5p 0.201976493 9.45983E-	13 4.976E-	10

hsa- miR- 6501- 5p 0.203672013 8.51904E-	08 4.074E-	06

hsa- miR- 221- 3p 0.224135802 1.11212E- 10 1.95E-	08

hsa- let- 7g- 5p 0.226226447 1.79675E-	11 4.725E-	09

hsa- miR- 106a- 5p 0.236545656 4.97221E-	06 0.0001018

hsa- miR- 17- 5p 0.262349916 4.10249E- 06 8.991E-	05

TA B L E  3 Top	10	miRNAs	
downregulated in pediatric β- thalassemia

F I G U R E  2 Overlapped	differentially	
expressed	miRNAs	in	pediatric	and	adult	
β-	thalassemia.	(A)	Venn	diagram	showing	
common	upregulated	miRNAs	in	pediatric	
and adult patients with β- thalassemia. 
(B) Venn diagram showing common 
downregulated	miRNAs	in	pediatric	and	
adult patients with β- thalassemia
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F I G U R E  3 Transcriptional	network	mediated	by	hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p.	(A)	Venn	diagram	showing	common	targets	of	hsa- let- 7a- 
3p and hsa- let- 7f- 1- 3p,	predicated	by	miRDB	and	TargetScan.	(B)	Transcriptional	networks	of	hsa- let- 7a- 3p,	hsa- let- 7f- 1- 3p,	and	their	target	genes
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F I G U R E  4 Transcriptional	network	mediated	by	hsa- let- 7b- 5p and hsa- let- 7i- 5p.	(A)	Venn	diagram	showing	common	targets	of	hsa- let- 7b- 5p 
and hsa- let- 7i- 5p,	predicated	by	miRDB	and	TargetScan.	(B)	Transcriptional	networks	of	hsa- let- 7b- 5p,	hsa- let- 7i- 5p,	and	their	target	genes

hsa−let−7b−5p

hsa−let−7i−5p

ABCB9

ABHD17C

ABL2

ACER2

ACSL6

ACVR1C

ADAMTS15
ADAMTS8

ADRB1

ADRB2

ADRB3

AEN

AGO4

AHCTF1

AKAP6
AMER3 AMOT

AMT

AP1S1

APBB3

ARG2

ARHGAP28

ARHGEF38

ARID3A

ARID3B

ARRDC4

ASAP1

ATP2A2

ATP8B4

B3GNT7

BACH1

BCAT1

BEGAIN

BEND4

BIN3

BZW1

C15orf39

C19orf47

C20orf194

C5orf51

C8orf58

CADM2

CANT1

CASP3

CBX2

CCDC71L

CCL7

CCND2

CCNJ

CCR7

CD200R1

CDC25A

CDC34

CDKN1A

CDV3

CEP135

CERCAM
CLCN5

CLDN12

CLP1

CNTRL

COIL

COL1A2

COL27A1

COL4A2

COL4A3BP

COL4A6

CPA4

CPEB1

CPEB2

CPEB3

CRCT1

DCAF15

DCUN1D2

DDI2

DDX19A

DDX19B

DHX57

DLST

DMP1

DPH3

DPP3

DTX2

DUSP1DUSP22

E2F2

E2F5

E2F6

EDN1

EEF2K

EFHD2EIF4G2

ELF4

EOGT

FAM135A

FAM214B

FASLG

FIGN

FNDC3A

FNIP1

FOXP2

FRMD4B

FZD3

GALC

GALE

GALNT1

GAN

GAS7

GATM

GCNT4

GDPD1

GNG5

GNPTAB

GPCPD1

GPR26

GRID2IP

GRPEL2

GXYLT1

GYG2

HAND1

HAS2

HDX

HIC2

HIF3A

HMGA1

HMGA2

HOOK1

HOXA1

HOXA9

HOXD1

HTR1E

IGDCC3

IGF1R

IGF2BP1

IGF2BP2

IGF2BP3

IKZF2

IL10

IL13

IMPG2

IQCB1

IRS2

ITGB3

KCNC2

KCNJ11

KCNQ4

KCTD17

KCTD21

KDM3A
KIAA1958

KLHDC8B

KLHL23

KLHL31

LBR

LIMD1

LIMD2

LIN28A

LIN28B

LIPH

LIPT2

LPGAT1

LRIG2

LRIG3

MAP3K1

MAP4K3

MAPK6

MARS2

MDM4

MED8

MIB1

MIEF1

MOB4

MTUS1

MXD1

MYCN

NAT8L

NDST2

NEK3

NGF

NHLRC3

NIPAL4

NKD1

NME4

NME6

NPEPL1

NR6A1

NRAS

NYNRIN

ONECUT2

OSBPL3

OSMR

P4HA2

PALD1
PALM3

PAPPA

PARD6B

PBX1

PBX2

PBX3

PCGF3
PDE12

PDGFB

PDPR

PEG10

PEX11B

PGRMC1 PIGA

PITPNM3

PLA2G3

PLD3

PLEKHA8

PLEKHO1

PLXNC1

PLXND1

POLR2D

POLR3D

PPARGC1B

PPP1R15B
PPP2R2A

PQLC2

PRDM5

PRKAR2A
PRLR

PRPF38B

PRRX1

PRSS22

PTAFR

PTPRD
PXDN

PXT1

RAB11FIP4

RAB15

RALB

RASGRP1

RBFOX2

RBMS1

RCN1

RDX

RFX6

RGS16

RICTOR
RNF165

RNF20

RPUSD2

RSPO2

RUFY3

SALL4

SCD

SCN4B

SECISBP2L

SEMA4C

SENP2

SKIL

SLC12A9

SLC16A9

SLC1A4

SLC20A1

SLC25A18

SLC25A24
SLC25A27

SLC35D2

SLC5A6

SLC5A9

SLK

SMARCAD1

SMC1A

SMIM3

SMUG1

SNX30

SOCS4

SPRYD4

STARD13

STARD3NL

STARD9

STK40

STOX2

STRBP

STX3

SYNCRIP

TBKBP1
TECPR2

TET3

TGFBR1

TGFBR3

THRSP

TMC7

TMEM234
TMEM65

TMPPE

TMPRSS2

TNFSF9TRANK1

TRIM41

TRIM71

TSC1

TSC22D2

TSPAN18

TSPEAR

TTLL4

UGCG

UHRF2

USP38

USP44

UTRN

VAV3

VSNL1

WNT9B

XK

XKR8

XRN1

YOD1

YPEL2
ZBTB8B

ZC3H3

ZFYVE26

ZNF10

ZNF200

ZNF275

ZNF280B

ZNF341

ZNF512B

ZNF583

ZNF689

ZNF697

ZNF710

ZNF784

DUSP16

1

2 0

0

275

0

0

0

00

326

0

0

1

211

Predicted target genes of
hsa-let-7i-5p using miRDB

Predicted target genes of 
hsa-let-7b-5p using TargetScan

predicted target genes of
hsa-let-7b-5p using miRDB

Predicted target genes of
hsa-let-7i-5p using TargetScan

(A)

(B)



8 of 13  |     WANG et Al.

3.5  |  Biological processes and signaling pathways 
associated with the target genes of let7 miRNAs

Next,	 the	 biological	 processes	 and	 signaling	 pathways	 associated	
with the target genes of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p were de-
termined. We found that targets of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p 
were	involved	in	the	cellular	response	to	interleukin-	1,	protein	K11-	
linked	ubiquitination,	mesoderm	development	biological	processes	
(Figure	 5A),	 pancreatic	 secretion,	 and	 tuberculosis	 signaling	 path-
ways	 (Figure	 5B).	 However,	 how	 these	 biological	 processes	 and	
signaling pathways are involved in the pathology of β- thalassemia 
is not clear.

The targets of hsa- let- 7b- 5p and hsa- let- 7i- 5p were involved in the 
negative	regulation	of	translation,	positive	regulation	of	cell	migra-
tion,	regulation	of	cytokine	biosynthesis,	transforming	growth	factor	
(TGF)	β	receptor	signaling	pathway,	and	somatic	stem	cell	population	
maintenance	(Figure	5C).	TGFβ is an important cytokine involved in 
cell migration56,57 and negatively regulates erythrocyte differenti-
ation and maturation in the early stages of erythropoiesis.58 In ad-
dition,	somatic	stem	cell	population	maintenance	is	associated	with	
changes in genes in adult β- thalassemia.46

The targets of hsa- let- 7b- 5p and hsa- let- 7i- 5p were associated 
with	 the	 phosphatidylinositol	 3-	kinase	 (PI3K)/AKT,	 FoxO,	 Hippo,	
and	 mitogen-	activated	 protein	 kinase	 (MAPK)	 signaling	 pathways	

F I G U R E  5 Biological	processes	and	signaling	pathways	associated	with	target	genes	of	let7	miRNAs.	(A)	Biological	processes	associated	
with common targets of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p.	(B)	Functional	pathway	enrichment	analysis	of	common	targets	of	hsa- let- 7a- 3p and 
hsa- let- 7f- 1- 3p. (C) Biological processes associated with common targets of hsa- let- 7b- 5p and hsa- let- 7i- 5p.	(D)	Functional	pathway	enrichment	
analysis of common targets of hsa- let- 7b- 5p and hsa- let- 7i- 5p
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(Figure	5D).	FOXO3	is	a	downstream	transcription	factor	of	the	PI3K/
AKT	 signaling	 pathway	 and	 is	 also	 involved	 in	 the	 FoxO	 signaling	
pathway.59	Previous	results	have	shown	that	the	PI3K/AKT	signal-
ing pathway60	and	FOXO361,62 are important regulators of erythroid 
maturation	during	erythropoiesis.	The	MAPK	signaling	pathway	also	
participates in the development of erythropoiesis.63	KEGG	pathway	
enrichment analysis identified several other pathways involved in 
the regulation of γ- globin expression and the development of eryth-
ropoiesis,	including	the	Hippo	signaling	pathway,	RAS	signaling	path-
way,	and	transcriptional	dysregulation	(Figure	5D).

3.6  |  Differentially expressed target genes of 
let7 miRNAs in β- thalassemia

In	 a	 previous	 study,	 differentially	 expressed	 genes	 between	 pa-
tients with β- thalassemia and healthy controls were studied; the 
data	 were	 deposited	 in	 the	 GSE56088	 dataset.	 Using	 this	 data-
set,	we	determined	 the	expression	of	 the	 targets	of	 let7	miRNAs.	
BLC11A	is	a	critical	 transcription	factor	that	regulates	hemoglobin	
switching and is a target of let7	miRNAs.64	First,	we	showed	that	the	
expression of BLC11A was significantly downregulated in patients 
with β- thalassemia compared with that in normal individuals in the 
GSE56088	dataset	(Figure	6A).

We also identified 12 target genes of hsa- let- 7a- 3p and hsa- 
let- 7f- 1- 3p,	 which	 were	 differentially	 expressed	 in	 patients	 with	

β-	thalassemia	 (Figure	 6B).	 GP1BA and ST8SIA4 were downregu-
lated,	whereas	FOXN2,	PLAG1,	LEMD3,	LRRC34,	AP1S3,	RAB11FIP2,	
NRBF2,	RAB2A,	PUM2,	and	TAOK1 were upregulated in patients with 
β-	thalassemia.	Additionally,	21	target	genes	of	hsa- let- 7b- 5p and hsa- 
let- 7i- 5p were differentially expressed in patients with β- thalassemia 
(Figure	6C).	STOX2,	LIMD1,	RBMS1,	KCNQ4,	GNPTAB,	HMGA1,	SCD,	
IGF2BP2,	STK40,	FOXP2,	 and	UTRN	were	downregulated,	whereas	
FIGN,	 FRMD4B,	 PRPF38B,	 IGF2BP3,	 STARD3NL,	 SOCS4,	 C5orf51,	
TMPPE,	 E2F6,	 and	 FNDC3A	 were	 upregulated	 in	 patients	 with	
β- thalassemia.

3.7  |  Hsa- miR- 190- 5p and hsa- miR- 1278- 
5p may regulate hemoglobin switching by 
modulation of BCL11A

BLC11A	is	a	critical	 transcription	factor	that	regulates	hemoglobin	
switching.19- 21	 Finally,	 we	 attempted	 to	 identify	 novel	microRNAs	
regulating hemoglobin switching via modulation of BCL11A ex-
pression.	 Using	 miRDB,	 we	 found	 that	 two	miRNAs,	 that	 is,	 hsa- 
miR- 190- 5p and hsa- miR- 1278- 5p,	 targeted	 BCL11A.	 In	 particular,	
hsa- miR- 190- 5p	was	perfectly	matched	to	the	two	3′	untranslated	re-
gions (UTRs) of BCL11A	(Figure	7A).	In	addition,	hsa- miR- 1278- 5p tar-
geted	the	3′	UTRs	of	BCL11A	(Figure	7A).	Moreover,	hsa- miR- 190- 5p 
and hsa- miR- 1278- 5p were both downregulated in patients with β- 
thalassemia	compared	with	those	in	normal	controls	(Figure	7B).

F I G U R E  6 Expression	levels	of	target	
genes of let7	miRNAs	in	β-	thalassemia.	(A)	
Box plots showing the expression levels 
of BCL11A in patients with β- thalassemia 
and	normal	individuals	in	the	GSE56088	
dataset. (B) Unsupervised clustering 
heatmap showing the expression levels of 
common targets of hsa- let- 7a- 3p and hsa- 
let- 7f- 1- 3p in patients with β- thalassemia 
and	normal	individuals	in	the	GSE56088	
dataset. (C) Expression levels of common 
targets of hsa- let- 7b- 5p and hsa- let- 7i- 5p 
in patients with β- thalassemia and normal 
individuals
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We further identified the target genes of hsa- miR- 190- 5p and 
hsa- miR- 1278- 5p. In addition to BCL11A,	 hsa- miR- 190- 5p also tar-
geted ZNF99,	 FNDC3A,	 ORC4,	 PFDN4,	 ZNF382,	 EPC2,	 PHF20L1,	
ASAP2,	WDR44,	 ZNF529,	NHLRC2,	 ZFC3H1,	CHMP7,	 YTHDF3,	 and	
TAPBP	 genes	 (Figure	 7B).	 Furthermore,	 hsa- miR- 190- 5p also tar-
geted NRBF2,	ZRANB2,	PAX8,	DNAJB14,	TIPARP,	LHX6,	IGF2BP2,	and	
STK40	(Figure	7C).	Interestingly,	IGF2BP2 and STK40 were also tar-
get genes of hsa- let- 7a- 3p and hsa- let- 7f- 1- 3p	 (Figure	6B).	However,	
the functions of hsa- miR- 190- 5p and hsa- miR- 1278- 5p in hemoglobin 
switching and β- thalassemia need to be studied in greater detail.

4  |  DISCUSSION

β-	Thalassemia	is	a	heterogeneous	disease,	and	the	clinical	manifes-
tations of β- thalassemia in pediatric and adult patients may be differ-
ent.65,66 Because of the high hematopoietic stem cell repopulating 

capacity in children and the impaired functions of the bone marrow 
niche	during	aging,	pediatric	patients	with	β- thalassemia have a su-
perior therapeutic response to hematopoietic stem cell gene therapy 
than adult patients with β- thalassemia.67	 Therefore,	 pediatric	 and	
adult β- thalassemia may have different molecular characteristics. 
In	 this	study,	we	showed	that	 the	miRNAs	associated	with	pediat-
ric and adult β-	thalassemia	were	quite	different.	Only	four	miRNAs	
were	upregulated,	 and	eight	miRNAs	were	downregulated	 in	both	
pediatric and adult patients with β- thalassemia. These differences 
were partially due to the different cohorts and approaches; how-
ever,	we	also	revealed	that	 five	 let7	miRNAs,	 that	 is,	hsa- let- 7b- 5p,	
hsa- let- 7i- 5p,	hsa- let- 7f- 5p,	hsa- let- 7e- 5p,	and	hsa- let- 7d- 5p,	may	be	in-
volved in the reactivation of γ-	globin	expression	and	HbF	synthesis	
in pediatric and adult patients with β- thalassemia.

Consistent	 with	 these	 observations,	 reports	 have	 shown	 that	
the LIN28B/let7	 axis	directly	 regulates	BCL11A	expression	 to	pro-
mote hemoglobin switching.68,69 Targeted inhibition of hsa- let- 7a 

F I G U R E  7 Regulatory	effects	of	hsa- miR- 190- 5p and hsa- miR- 1278- 5p on hemoglobin switching via modulation of BCL11A.	(A)	Sequences	
of hsa- miR- 190- 5p,	hsa- miR- 1278- 5p,	and	their	binding	sites	on	BCL11A. (B) Box plots showing hsa- miR- 190- 5p and hsa- miR- 1278- 5p 
expression levels in patients with β- thalassemia and normal individuals. (C) Unsupervised clustering heatmap showing the expression levels 
of targets of hsa- miR- 190- 5p in patients with β- thalassemia and normal individuals. (D) Expression levels of targets of hsa- miR- 1278- 5p in 
patients with β- thalassemia and normal individuals
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and hsa- let- 7b	reactivated	the	expression	of	HbF	in	erythroid	cells.41 
However,	we	showed	that	hsa- let- 7a was upregulated in pediatric β- 
thalassemia,	whereas	hsa- let- 7b was downregulated in pediatric β- 
thalassemia. The functions of hsa- let- 7i- 5p,	hsa- let- 7f- 5p,	hsa- let- 7e- 5p,	
and hsa- let- 7d- 5p in the regulation of γ-	globin	expression	or	HbF	syn-
thesis	 in	erythroid	cells	have	not	been	 reported.	Furthermore,	we	
identified 21 target genes of hsa- let- 7b- 5p and hsa- let- 7i- 5p,	which	
were differentially expressed in patients with β- thalassemia. We 
also found that the target genes of hsa- let- 7b- 5p and hsa- let- 7i- 5p 
were	associated	with	 the	PI3K/AKT,	FoxO,	Hippo,	and	MAPK	sig-
naling pathways. How those pathways involved in the pathology of 
β- thalassemia should be further studied.

BCL11A,19- 21	 KLF1,29 and MYB31,32 are transcription factors 
that play important roles in hemoglobin switching. Hsa- miR- 210 
and hsa- let- 7b- 5p regulate γ-	globin	 expression	 through	 BCL11A.38 
Additionally,	 miR- 15a and miR- 16- 1 elevate γ- globin expression 
through the transcription factor MYB.36,37 Our results showed that 
hsa- miR- 210,	 hsa- let- 7b- 5p,	 miR- 15a,	 and	 miR- 16- 1 were all down-
regulated in β- thalassemia. We believe that our data could help to 
identify	 more	 miRNAs	 associated	 with	 the	 BCL11A	 transcription	
factor.	 Indeed,	our	findings	showed	that	two	miRNAs,	that	 is,	hsa- 
miR- 190- 5p and hsa- miR- 1278- 5p,	may	regulate	hemoglobin	switch-
ing by targeting BCL11A.	However,	the	functions	of	these	miRNAs	
should be studied further.

To	the	best	of	our	knowledge,	this	is	the	first	study	to	identify	dif-
ferentially	expressed	miRNAs,	particularly	in	pediatric	β- thalassemia. 
Our results suggest that let7	miRNAs	and	their	target	genes	are	ab-
normally dysregulated in pediatric β-	thalassemia.	 However,	 there	
were some limitations to the integrated analysis of the different data-
sets.	Because	of	differences	in	cohorts	and	approaches,	our	analysis	
could	not	fully	reveal	the	miRNA	profiles	associated	with	pediatric	
and adult β-	thalassemia.	 In	addition,	 identification	of	differentially	
expressed	miRNA	target	genes	in	patients	with	β- thalassemia using 
the	GSE56088	dataset	may	also	have	some	bias.	In	our	subsequent	
studies,	we	will	collect	a	 large	cohort	of	β- thalassemia cases com-
prising	 patients	 of	 different	 ages	 and	 perform	miRNA	 sequencing	
and	mRNA	sequencing	simultaneously.	Additionally,	the	functions	of	
hsa- let- 7i- 5p,	hsa- let- 7f- 5p,	hsa- let- 7e- 5p,	and	hsa- let- 7d- 5p in the regu-
lation of γ- globin expression will be studied in greater detail.
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