
1

Briefings in Bioinformatics, 23(1), 2022, 1–13

https://doi.org/10.1093/bib/bbab354
Review

Benchmark of filter methods for feature selection
in high-dimensional gene expression survival data
Andrea Bommert, Thomas Welchowski, Matthias Schmid and
Jörg Rahnenführer
Corresponding author: Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany. Fax: +49 231 755 5303;
E-mail: bommert@statistik.tu-dortmund.de

Abstract

Feature selection is crucial for the analysis of high-dimensional data, but benchmark studies for data with a survival
outcome are rare. We compare 14 filter methods for feature selection based on 11 high-dimensional gene expression
survival data sets. The aim is to provide guidance on the choice of filter methods for other researchers and practitioners. We
analyze the accuracy of predictive models that employ the features selected by the filter methods. Also, we consider the run
time, the number of selected features for fitting models with high predictive accuracy as well as the feature selection
stability. We conclude that the simple variance filter outperforms all other considered filter methods. This filter selects the
features with the largest variance and does not take into account the survival outcome. Also, we identify the
correlation-adjusted regression scores filter as a more elaborate alternative that allows fitting models with similar predictive
accuracy. Additionally, we investigate the filter methods based on feature rankings, finding groups of similar filters.

Key words: benchmark; feature selection; filter methods; high-dimensional data; survival analysis

Introduction
Feature selection is one of the most fundamental problems
in the analysis of high-dimensional data. Especially for high-
dimensional data sets, it is often advantageous with respect to
predictive performance, run time and interpretability to disre-
gard the irrelevant and redundant features. This can be achieved
by choosing a suitable subset of features that are relevant for tar-
get prediction. In bioinformatics, feature selection often allows
identifying the features that are important for biological pro-
cesses of interest. Due to the enormous amount of existing fea-
ture selection methods, benchmark studies are of great impor-
tance for identifying the best methods to use in data analyses.

In the past decades, many feature selection methods have
been proposed. The methods can be categorized into three
classes: filter methods, wrapper methods and embedded
methods [1]. Filter methods rank features by calculating a score

Andrea Bommert is a postdoctoral fellow at the Department of Statistics, TU Dortmund University, Germany.
Thomas Welchowski is a postdoctoral fellow at the Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), Medical Faculty, University of
Bonn, Germany.
Matthias Schmid is a full professor at the Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), Medical Faculty, University of Bonn, Germany.
Jörg Rahnenführer is a full professor at the Department of Statistics, TU Dortmund University, Germany.
Submitted: 18 June 2021; Received (in revised form): 5 August 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

for each feature independent of a model. Either the l features
with the highest scores or all features whose scores exceed a
threshold τ are selected (with l ∈ N or τ ∈ R being pre-specified).
For many filter methods, the score calculation can be done in
parallel, thus resulting in increased computational efficiency.
An extensive overview of existing filter methods is given in [2].
Wrapper methods [3] consider subsets of the set of all features.
For each of the subsets, a predictive model is fitted and the
subsets are evaluated by a performance measure calculated
from the resulting model. Wrapper methods include not only
simple approaches like greedy sequential searches [4], but also
more elaborate algorithms like recursive feature elimination [5]
as well as evolutionary and swarm intelligence algorithms for
feature selection [6–8]. Embedded methods include the feature
selection in the model fitting process. Examples of predictive
methods that perform embedded feature selection are lasso

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab354
https://creativecommons.org/licenses/by/4.0/

2 Bommert et al.

regression [9] and tree-based methods like random forests [10]
or gradient boosting [11, 12]. There are many overview papers
that describe in detail, categorize and suggest how to evaluate
existing feature selection methods, for example [1, 13–21].

Regarding the comparison of different methods, benchmark
studies have gained increasing attention. The majority of these
studies are based on classification data. For these, the feature
selection methods are combined with classification methods
in order to assess the predictive performance of the selected
features. In [22], filter methods are compared based on two
gene expression data sets, counting the number of misclassified
samples. In [23], the classification accuracy of different filter,
wrapper, and embedded methods on several artificial data sets
is analyzed. In [24, 25], filter methods are compared with respect
to classification accuracy based on microarray data sets. In [26,
27], extensive comparisons based on text classification data sets
are conducted. The authors analyze filter and wrapper methods,
respectively. In [28], filter methods are compared with respect
to classification accuracy on malware detection data. In [29,
30], filter methods are studied on large data sets, analyzing the
predictive accuracy with respect to the number of features to
select. In [31, 32], small artificial data sets are used to assess
whether the correct features are selected. In [31], different fea-
ture selection methods are compared while in [32], only filter
methods are considered. In [33], filter and wrapper methods
are compared on large simulated data sets with respect to the
correctness of the selected features. Additionally, the authors
conduct comparisons with respect to classification accuracy on
real data sets. In [34], filter and wrapper methods are compared
comprehensively with respect to classification accuracy and run
time, considering each of the two objectives separately. Most
of the data sets on which the comparison is based contain a
small or medium number of features. In [35, 36], several filter
methods that are based on mutual information are compared. In
[35], the accuracy and the run time of the methods are analyzed
separately. Additionally, the authors take into account theoret-
ical properties and look at the proportions of correctly identi-
fied features on artificial data. In [36], the authors analyze the
classification accuracy with respect to the number of selected
features and search for Pareto optimal methods considering the
accuracy and feature selection stability. In [37], an extensive
study of correlation-based feature selection is conducted. The
author analyzes the classification accuracy based on real data
sets as well as the choice of relevant or irrelevant features
based on artificial data sets. In [38], an extensive comparison of
22 filter methods on 16 large or high-dimensional data sets is
conducted with respect to both classification accuracy and run
time jointly. Also, the empirical similarity of the filter methods
based on the rankings of all features of all considered data sets
is analyzed. In [39], the authors perform hyper parameter tuning
of predictive models on survival data sets. They use combined
methods consisting of a filter and a survival prediction method
and consider the choice of filter method as a hyper parameter.
This way, they find out which filter methods yield good results
on many data sets.

In this article, we analyze feature selection methods on gene
expression survival data sets. The features of gene expression
data contain information about the activity of genes, for exam-
ple in cancerous tissues. Gene expression data are a typical
example of high-dimensional data used in bioinformatics. The
outcome of survival data consists of two variables: one variable
indicating the observed outcome time and one variable indicat-
ing if an event occurred or if the observation is censored. For

right-censored data, a censored observation means that no event
has occurred up to this point in time, but no information about
events occurring afterward is available. For survival data sets,
commonly used regression or classification techniques are not
suitable because they cannot take into account the censoring
information. Since censored survival data are frequently used
in bioinformatics and since feature selection methods for sur-
vival data have not been thoroughly benchmarked before, it is
necessary to conduct such a benchmark for survival data.

This article focuses on the comparison of filter methods for
feature selection. Our focus on filter methods is motivated by
the following considerations: Most wrapper methods are compu-
tationally infeasible for high-dimensional data sets. Embedded
methods require the use of a certain predictive model. Most
filter methods, however, are fast to calculate and can be com-
bined with any kind of predictive method, even methods with
embedded feature selection, see [40, 41]. Also, they can heavily
reduce the run time for fitting the subsequent model. So, for data
sets with really large numbers of features, it can be necessary
to pre-filter the data set in order to make further analyses
possible. To the best of our knowledge, a thorough and extensive
filter comparison study has not yet been conducted for survival
data.

In this article, 14 filter methods from different toolboxes
are benchmarked based on 11 gene expression survival data
sets. The filter methods considered here are representatives of
the most prominent general concepts for filter methods. These
classes of filter methods are univariate filters, feature impor-
tance filters based on multivariate models and information the-
oretic measures. Most of the compared filter methods have been
integrated into the machine learning R package mlr3 [42] and
are ready to use. mlr3 is a comprehensive package for machine
learning and a standard in the R community.

The aim of benchmarking the filter methods is to identify
the best filter methods, so that these methods can be employed
in future data analyses. The best filter methods are assessed
with respect to predictive performance when combined with a
predictive model and with respect to run time. Also, the num-
ber of selected features required for obtaining a model with
high predictive accuracy and the feature selection stability is
assessed. Feature selection stability is defined as the robust-
ness of the set of selected features with respect to different
data sets from the same data generating distribution and is
crucial for the reliability of the results [43]. Additionally, we
analyze the empirical similarity of the filter methods. For finding
groups of similar filter methods, we investigate which methods
select the top features in a similar order. Our analysis iden-
tifies three groups of filter methods with a similar behavior,
as well as several filter methods that are not very similar to
any other filter method. There is one simple filter method that
performs best with respect to predictive accuracy, run time and
feature selection stability. We also identify a more elaborate
filter method that allows fitting models with similar predictive
performance.

The remainder of this article is organized as follows: In the
Methods section, basic concepts of survival data are briefly
introduced, the filter methods considered in this article are
described and a feature selection stability measure is defined.
In the Experiments section, the considered data sets are given.
For both the similarity analysis and the comparison of the filters’
performances, the setup of the experiments is explained and the
results are analyzed in detail. The Conclusions section contains
a summary of the findings and concluding remarks.

Benchmark of filter methods 3

Methods
Survival data basics

Notation

A data set with n observations of the p features X1, . . . , Xp is con-
sidered. Furthermore, T denotes the observed outcome time and
is defined as T = Tobs = min{Ttrue, C} with Ttrue denoting the true
survival time and C denoting the censoring time. � = I(Ttrue ≤ C)
is the event indicator with ‘0’ corresponding to a right-censored
and ‘1’ corresponding to an uncensored observation.

Cox proportional hazards regression model

The Cox proportional hazards model is a regression technique
for modeling survival outcomes. It is defined as

h(t, x) = h0(t) · exp(xᵀβ) (1)

with h(t, x) denoting the hazard at time t for an individual
with covariate vector x representing the features. The term
h0(t) denotes the baseline hazard at time t and β is the vector
of regression parameters. When fitting a Cox proportional
hazards model to a data set, the baseline hazard and the
regression parameters are estimated by maximizing the partial
log-likelihood. For more details about Cox proportional hazards
models see [44].

A variant of the Cox proportional hazards model is the L2-
regularized Cox proportional hazards model [45]. For the param-
eter estimation of this model, the partial log-likelihood is mod-
ified with a L2-penalty. The L2-penalty shrinks all regression
coefficients toward zero. In contrast to an unregularized Cox
proportional hazards model, a L2-regularized Cox proportional
hazards model can be fitted on data sets that contain more
features than observations.

Integrated Brier score

The integrated Brier score [46] is a measure of prediction error
that reflects both discrimination and calibration aspects. It is
estimated using inverse probability weighting. The integrated
Brier score measures the quadratic difference between the indi-
vidual estimated survival function of each observation and its
observed indicator function of individual survival and then sums
these values for all observations. The range of the integrated
Brier score is [0, 1] with 0 being the best value.

Transforming survival data into regression data using martingale
residuals

Some of the filter methods described below require the trans-
formation of the survival outcome to an uncensored continuous
outcome. This can be accomplished by calculating martingale
residuals [47]. For a survival data set with right-censored data,
first, a Cox proportional hazards regression model is fitted with-
out covariates. This model incorporates the information given by
the observed outcome time T and the event indicator �. Then, for
each observation, the martingale residual is calculated based on
the Cox model. Martingale residuals are real-valued and can be
used as uncensored continuous outcomes. For more details see
[47]. In the following subsection, we will refer to the transformed
target variable containing the martingale residuals as Y(m).

Filter methods

In this subsection, the 14 filter methods analyzed in this article
are defined, using the notation of the previous subsection. All
filter methods in this subsection are described for survival data
sets with continuous features, because gene expression data
sets usually only contain continuous features. Two kinds of filter
methods are presented: Most filter methods calculate a score for
all features and then select the features with the highest scores.
Some filter methods, however, select features iteratively in a
greedy forward fashion. For these filters, in each iteration, the
feature with the maximal score is selected but the scores of dif-
ferent iterations are not comparable. We first describe univariate
filter methods, which do not consider interactions between the
p features. Subsequently, we discuss multivariate filter methods.
All filter methods are described in the way they are implemented
in the software used for the comparative experiments, which is
indicated at the end of this subsection.

Univariate filter methods

The variance filter uses the variance of a feature as its score

Svariance(Xk) = variance (Xk). (2)

The idea of this filter is to remove features that only consist
of noise and therefore have very little variation. This filter only
makes sense for data sets where the features are measured on
the same scale and have not been scaled to unit variance.

For the correlation filter, the survival targets are transformed
into the continuous target variable Y(m) as described above. Then,
for each feature, the absolute Pearson correlation between this
feature and Y(m) is computed and used as filter score

Scorrelation

(
Xk, Y(m)

)
=

∣∣∣Cor
(
Xk, Y(m)

)∣∣∣ . (3)

The idea of this filter is to keep features that have a strong linear
association with the target variable.

The cox.score filter assesses how well each feature can explain
the survival outcome univariately. For feature Xk, a Cox propor-
tional hazards regression model with only Xk as independent
variable is fitted. Then, a score test [44] is calculated for this
model. The test statistic of the score test is used as filter score

Scox.score(Xk, T, �) = test statistic of score test forXk. (4)

The idea of this filter is that, the more important a feature is for
explaining the survival outcome, the higher is the test statistic
of the respective score test.

The carss filter calculates absolute correlation-adjusted
regression survival scores Scarss(X, log(T), �), in which X ∈ R

n×p

is defined as the matrix containing all covariates and log(T)
corresponds to the logarithmic observed outcome time. To
estimate these scores, first, the correlation between log(T) and
each covariate Xk ∈ X is adjusted by inverse probability of
censoring weighting [48] in the formula

RX,log(T) =
⎛
⎜⎝ SXk ,log(T);w√

S2
Xk

√
S2

log(T);w

⎞
⎟⎠

k=1,...,p

. (5)

4 Bommert et al.

This equation yields the usual correlation definition with the
weighted covariance SXk ,log(T);w, weighted variance S2

log(T);w and
variance S2

Xk
. The weights w are calculated based on an estimate

of the Kaplan–Meier survival function of the logarithmic cen-
soring process. Then, the estimated correlations RX,log(T) ∈ R

p×1

are decorrelated with the estimated covariate correlation matrix
R ∈ R

p×p by

Scarss(X, log(T), �) =
∣∣∣R−1/2

shrink RX,log(T)

∣∣∣ . (6)

The matrix R−1/2
shrink is estimated by shrinkage toward the identity

matrix following the approach of [49, 50]. No additional tuning
parameter is necessary, because the amount of shrinkage can
be estimated directly from the data [51]. For a more detailed
description of this method, we refer to [52].

Filter methods based on feature importance measures

Three feature importance filters based on multivariate models
are considered: random forest permutation importance, random
forest impurity importance and gradient boosting importance.
Random survival forests are bagging ensembles with survival
trees as base learners [10]. To calculate the permutation impor-
tance, the out of bag (oob) observations for each tree, that is,
the observations that were not used for fitting this tree, are
considered. For the oob observations of each tree, feature Xk is
permuted. Then, for the permuted observations, the cumulative
hazards are predicted by the corresponding trees. The resulting
predictive accuracy is compared to the predictive accuracy with-
out permuting feature Xk. To measure the predictive accuracy,
the concordance index (C-index) by Harrell [53] is employed,
see [10] for details on computing the C-index based on cumu-
lative hazards. The score of the permutation importance filter is
the decrease in predictive accuracy of the random forest from
original oob observations to permuted observations. Features
that are important for survival prediction cause a large decrease
in accuracy because their relevant information is not available
when the feature is permuted.

Spermutation(Xk, T, �)

= random forest permutation importance of Xk. (7)

The impurity filter considers the node impurities of the trees.
Nodes containing observations with similar survival are called
pure, nodes with many dissimilar cases are called impure. When
constructing a survival tree, the split variables and split points
are chosen based on maximal difference in survival measured by
the statistic of the log-rank test. To assess the gains in purity due
to feature Xk, the sum of all log-rank test statistics for all splits
based on Xk is calculated and used as filter score. A feature that is
important for survival prediction causes on average a large gain
in purity.

Simpurity(Xk, T, �)

= random forest impurity importance of Xk. (8)

The boosting filter uses the gradient boosting feature impor-
tance as filter score. Gradient boosting is an ensemble method
that additively combines many weak learners into one strong
prediction method [11, 12]. Here, survival trees (actual trees, not
just stumps) are used as weak learners and the negative partial

log-likelihood is employed as loss function. To assess the impor-
tance of the features in the boosting model, first, for each split
in each tree, the improvement caused by this split is assessed.
Then, for each feature, the sum of the corresponding improve-
ment values is calculated [54]. A feature that is important for
survival prediction causes on average large improvements.

Sboosting(Xk, T, �) = gradient boosting importance of Xk. (9)

Mutual information-based filter methods

For applying the following mutual information-based filter
methods, a data set with categorical features and categorical
target variable is required. To transform a survival data set
accordingly, first, the continuous variable Y(m) is created as
described above. Then, Y(m) is transformed into the categorical
target variable Y(c) by cutting its range into q equally spaced
intervals and using these intervals as categories. The number
of intervals is determined as q = max

{
min

{
n
3 , 10

}
, 2

}
where n

is the number of observations in the data set [55]. Continuous
features are categorized analogously. The categorized version of
feature Xk is denoted as X(c)

k .
Let X and Y be two discrete variables with respective (empiri-

cal) probability mass function p. Then, the entropy of Y is defined
as

H(Y) = −
∑

y

p(y) log2

(
p(y)

)
(10)

and the conditional entropy of Y given X is given by

H(Y|X) =
∑

x

p(x)H(Y|X = x)

=
∑

x

p(x)

⎛
⎝−

∑
y

p(y|x) log2

(
p(y|x)

)
⎞
⎠ . (11)

The entropy measures the uncertainty of a variable. When all
possible values occur with roughly the same probability, the
entropy is high. If the probabilities of occurrence are very differ-
ent from each other, the entropy is low. The mutual information
of two variables is defined as

I(Y; X) = H(Y) − H(Y|X). (12)

It can be interpreted as the decrease in uncertainty about Y
conditional on knowing X. Considering the symmetry property
I(Y; X) = I(X; Y), it can also be seen as the amount of information
shared by X and Y.

The mim filter [36] ranks all features according to the infor-
mation they share with the target variable Y(c)

Smim

(
Y(c), X(c)

k

)
= I

(
Y(c); X(c)

k

)
. (13)

The following filter methods calculate the scores of all fea-
tures iteratively, implying that the features are selected in a
greedy forward manner. Let G denote the set of features that

are already selected. G is initialized as G =
{
X(c)

k

}
with k =

argmax
j∈{1,...,p}

I
(
Y(c); X(c)

j

)
. In each iteration, the feature that maximizes

the respective score is added to G.

Benchmark of filter methods 5

The mrmr filter [30] uses the score

Smrmr

(
Y(c), X(c)

k

)
= I

(
Y(c); X(c)

k

)
− 1

|G|
∑

X(c)
j ∈G

I
(
X(c)

k ; X(c)
j

)
. (14)

The term I
(
Y(c); X(c)

k

)
measures the relevance of the feature

based on the information this feature has about Y(c). The term
1

|G|
∑

X(c)
j ∈G

I
(
X(c)

k ; X(c)
j

)
judges the redundancy of X(c)

k by assessing

the mean information that the feature shares with the features
in G. The idea is to find maximally relevant and minimally
redundant (mrmr) features.

For the jmi filter [56], the score

Sjmi

(
Y(c), X(c)

k

)
=

∑

X(c)
j ∈G

I
(
Y(c); X(c)

k , X(c)
j

)
(15)

is employed. I
(
Y(c); X(c)

k , X(c)
j

)
is the amount of information about

Y(c) that X(c)
k and X(c)

j provide jointly. This quantity can be cal-

culated by using the variable X =
(
X(c)

k , X(c)
j

)�
and its multi-

variate probability mass function in the definition of mutual
information. The idea of this score is to include features that are
complementary to the already selected features.

The jmim filter [57] is a modification of the jmi filter. The score

Sjmim

(
Y(c), X(c)

k

)
= min

X(c)
j ∈G

{
I
(
Y(c); X(c)

k , X(c)
j

)}
(16)

considers the minimal joint information over all already selected
features instead of the sum.

For the disr filter [58], the score

Sdisr

(
Y(c), X(c)

k

)
=

∑

X(c)
j ∈G

I
(
Y(c); X(c)

k , X(c)
j

)

H
(
Y(c), X(c)

k , X(c)
j

) (17)

is used. Like the jmi filter, it uses the information about Y(c)

provided jointly by X(c)
k and X(c)

j . But additionally, this information

is divided by the joint entropy of Y(c), X(c)
k , and X(c)

j . To obtain this

entropy, consider the variable Y =
(
Y(c), X(c)

k , X(c)
j

)�
and plug it into

the above definition of the entropy.
The njmim filter [57] is a modification of the disr filter. Its score

Snjmim

(
Y(c), X(c)

k

)
= min

X(c)
j ∈G

⎧⎨
⎩

I
(
Y(c); X(c)

k , X(c)
j

)

H
(
Y(c), X(c)

k , X(c)
j

)
⎫⎬
⎭ (18)

considers the minimal relative joint information over all already
selected features instead of the sum.

The cmim filter [59] has the score

Scmim

(
Y(c), X(c)

k

)
= min

X(c)
j ∈G

{
I
(
Y(c); X(c)

k |X(c)
j

)}
. (19)

It uses the conditional mutual information

I
(
Y(c); X(c)

k |X(c)
j

)
= H

(
Y(c)|X(c)

j

)
− H

(
Y(c)|X(c)

k , X(c)
j

)
(20)

that can be interpreted as the difference in uncertainty about Y(c)

before and after X(c)
k is known, while X(c)

j is known anyway. The
idea is to select features that provide much information about
the class variable, given the information of the already selected
features.

Implementation of filter methods

Table 1 provides an overview of the filter methods and the
implementations used for the benchmark experiments in this
article.

Feature selection stability measure

Let V1, . . . , Vm denote m sets of selected features and |Vi| the car-
dinality of set Vi. Let E [·] denote the expected value for a random
selection of two feature sets that have the same cardinality as
Vi and Vj, respectively (with equal selection probabilities for all
sets that have the respective cardinality). Let sim(Xk, Xl) be the
similarity of two features Xk and Xl, assessed with a similarity
measure that attains values in the interval [0, 1], for example the
absolute Pearson correlation, and let θ ∈ [0, 1] be a threshold. The
stability measure SMA-Count [65] is defined as

SMA-Count = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

S(Vi, Vj) with (21)

S(Vi, Vj) =
∣∣Vi ∩ Vj

∣∣+Adj(Vi, Vj)−E
[∣∣Vi ∩ Vj

∣∣+Adj(Vi, Vj)
]

√
|Vi|·

∣∣Vj

∣∣−E
[∣∣Vi ∩ Vj

∣∣+Adj(Vi, Vj)
] ,

Adj(Vi, Vj) = min{A(Vi, Vj), A(Vj, Vi)},
A(Vi, Vj) = ∣∣{Xk ∈ (Vi\Vj) : ∃Xl ∈ (Vj\Vi) : sim(Xk, Xl)≥θ}∣∣ .

The term S(Vi, Vj) measures the similarity of the two sets
Vi and Vj. It takes into account features that are included in
both sets (

∣∣Vi ∩ Vj

∣∣) as well as features that are not included in
both sets but that are very similar to at least one feature in the
other set (Adj(Vi, Vj)). The maximum value of SMA-Count is 1
and indicates a perfectly stable feature selection. The stability
measure SMA-Count is suitable for data sets that contain highly
correlated features such as gene expression data [41].

Experiments
Data sets and software

For our benchmark experiments, we use 11 high-dimensional
survival data sets. All of them contain gene expression data from
cancer patients and right-censored survival outcomes. The data
sets are taken from [66]. We select data sets that have at least
50 events and we only use the features that provide RNA and
miRNA data. The data sets thus do not contain clinical features.
An overview of the considered data sets is displayed in Table 2.
The variance filter is applicable to all of these data sets because
the features are measured on the same scale and have not been
scaled to unit variance.

The benchmark is conducted using the software R [67]
and the machine learning packages mlr3 [42], mlr3filters [60],
mlr3proba [68], mlr3learners [69] and mlr3pipelines [70]. Moreover,
the filter implementations are based on the R packages carSurv
[62], ranger [63], xgboost [64] and praznik [55], see Table 1. The
R package survival [61] is employed for fitting unregularized
Cox regression models and computing martingale residuals
while glmnet [71] is used for fitting L2-regularized Cox regression

6 Bommert et al.

Table 1. Overview of the filter methods: Name of the filter method (filter), short description of filter (description), information if filter is
multivariate (multivariate), information if filter uses the survival outcome or a transformed target variable (target), information if filter requires
categorization of numeric features (features category), and information about R package from which the implementation is taken

Filter Description Multivariate Target Features
category

Implementation

variance Feature variance No T, � No mlr3filters [60]
correlation Pearson correlation No Y(m) No mlr3filters [60]
cox.score Score test No T, � No survival [61]
carss Correlation-adjusted

regression survival scores
No log(T), � No carSurv [62]

permutation Random forest permutation
importance

Yes T, � No ranger [63] with default
hyper parameter settings

impurity Random forest impurity
importance

Yes T, � No ranger [63] with default
hyper parameter settings

boosting Boosting importance Yes T, � No xgboost [64] with 2 000
boosting iterations, step size
0.05 and maximum tree
depth 10

mim Mutual information No Y(c) Yes praznik [55]
mrmr Mutual information Yes Y(c) Yes praznik [55]
jmi Mutual information Yes Y(c) Yes praznik [55]
jmim Mutual information Yes Y(c) Yes praznik [55]
disr Mutual information Yes Y(c) Yes praznik [55]
njmim Mutual information Yes Y(c) Yes praznik [55]
cmim Mutual information Yes Y(c) Yes praznik [55]

Table 2. Information about the data sets: number of observations (n), number of features (p), number of events (n.e), and relative number of
events (r.e)

Data set n p n.e r.e

BLCA 382 23 906 103 0.27
BRCA 735 23 531 72 0.10
HNSC 443 22 313 152 0.34
KIRC 249 23 697 62 0.25
LGG 419 22 942 77 0.18
LUAD 426 24 480 101 0.24
LUSC 418 24 419 132 0.32
OV 219 25 483 109 0.50
PAAD 124 22 960 52 0.42
SKCM 249 23 250 87 0.35
STAD 295 26 814 62 0.21

models. The experiments are rolled out on a high-performance
compute cluster using the R package batchtools [72]. The feature
selection stability is computed with the R package batchtools
[73]. For analyzing the results, the R package ggplot2 [74] is used.
The R source code for all analyses presented in this article is
publicly available at https://github.com/bommert/survival-filte
r-benchmark.

Similarity of feature rankings

In this first part of the analyses, the similarity of the filter
methods is assessed. The aim is to identify groups of filter
methods that rank the features in a similar way.

Experimental setup

The 14 filter methods described in the Methods section are
applied to the 11 data sets presented in the previous subsection.
Each filter is used to rank all features of each data set. Then, for
each data set, the rankings of all filter methods are compared.

This is done in the following way: Let Li and Lj denote the lists
of features ordered by the rankings of filters i and j, respectively.
That is, the first entry of list Li is the most important feature
according to filter method i and the last entry of Li is the least
important feature according to filter method i. Let Li[1, . . . , k]
denote the sublist that contains the first k entries of Li. Then,∣∣Li[1, . . . , k] ∩ Lj[1, . . . , k]

∣∣ is the number of features that are among
the first k features in both lists. Based on theses numbers, the
ordered list (OL) score is calculated [75]:

OLij =
r∑

k=1

wk · ∣∣Li[1, . . . , k] ∩ Lj[1, . . . , k]
∣∣ with (22)

wk = r + 1 − k∑r
i=1 i(r + 1 − i)

.

This score is a weighted sum of the numbers of features included
in both lists, giving more importance to features placed in the
first positions. The weights are linearly decreasing with the

https://github.com/bommert/survival-filter-benchmark
https://github.com/bommert/survival-filter-benchmark

Benchmark of filter methods 7

Figure 1. Mean OL scores between the filter methods averaged across data sets.

The filter methods are ordered based on single linkage clustering.

lengths of the considered sublists and scaled such that the
maximum value of the OL score is 1. The parameter r determines
the maximal lengths of the sublists. The OL score is taken from
[75], but we use linearly decreasing weights instead of exponen-
tially decreasing weights. The reason is that with exponentially
decreasing weights, the OL scores are mostly determined by the
first few positions of the sublists, giving almost no relevance to
the rest of the sublists.

Results

In order to assess the similarity of the filter methods, for each
data set, OL scores are computed for all pairs of filter meth-
ods. Then, the scores are aggregated across data sets with the
arithmetic mean. For the computation of the OL scores, only the
r = 100 top ranked features are considered. Figure 1 displays the
mean OL scores. Three groups of similar filter methods can be
identified. The first group consists of the mutual information
filters mim, cmim and mrmr. The second ground is formed by the
remaining mutual information filters njmim, jmim, jmi and disr.
The third group consists of the filters cox.score and correlation.
There exist weak similarities between the two groups of mutual
information filters as well as between the two random forest
feature importance filters permutation and impurity. The other
filter methods are not similar in the way they rank the top
features.

It is plausible that the mutual information filters yield similar
feature rankings because they use similar concepts for score
calculation and they categorize the features in the same way.
Especially for the second group of mutual information filters,
the high similarity values make sense because all of these fil-
ters rank the features iteratively with respect to joint mutual
information terms. Considering the filters mim and cmim, it is
rather surprising that they are so highly similar, because mim is
a univariate filter method and cmim iteratively assesses condi-
tional mutual information terms based on the already selected
features. A possible reason for this similarity could be that
the features do not provide much information about the target
variable, making the conditional mutual information term in
Scmim take on similar values as the mutual information term in
Smim. Regarding the filter methods cox.score and correlation, their

Figure 2. Visualization of nested cross-validation.

similarity can be explained by both filters being indicators of
univariate associations between the features and the target.

Comparison of the performance

Experimental setup

The aim of this analysis is to identify the best filter methods
with respect to predictive performance and to run time. To
assess the predictive performance of the filter method, each
filter method is combined with L2-regularized Cox regression
[45] such that the filter is applied first and the Cox model is
trained only on the features selected by the filter. We choose
L2-regularized Cox regression because it is a frequently used
regression technique that is known to perform well [76] and it
does not perform embedded feature selection. The latter aspect
is important for judging the predictive quality of the entire set
of selected features.

Each filter method has one hyper parameter, prop, indicating
the proportion of features to be selected by the filter. To tune
this hyper parameter, we perform a grid search. We consider
the 100 equidistant values {0.01, 0.02, . . . , 1} and transform them
with x �→ x2, focusing more on small proportions of selected
features. We conduct nested cross-validation [77] with 10 inner
and 10 outer iterations (see Figure 2 for a visualization). Both the
inner and the outer cross-validation splits are stratified based
on the event indicator �. For each filter method and data set, in
each outer iteration, we consider the best prop-value based on
the inner cross-validation. For choosing the best prop-value, the
filter method ranks the features on the inner training data sets.
For each of the 100 prop-values, the best prop·100% of the features
are used to train a L2-regularized Cox regression model on the
inner training data sets. Then, the 10 Cox models are evaluated
with respect to predictive performance on the respective test
data sets. Based on the mean predictive performance, the best
of the 100 prop-values is chosen. The next step is to evaluate
the performance of the filter method on the validation data
set. For this, the filter is applied on the outer training data
set, selecting prop · 100% of the features (with prop set to the
chosen value). Then, a L2-regularized Cox model is fitted on
the selected features of the outer training data set. The time
for filtering and model fitting on the outer training data set
as well as the time for predicting on the validation data set is
recorded. Also, the predictive performance on the validation data
set is assessed. This procedure is repeated for all 10 outer cross-
validation iterations, resulting in 10 values per filter method,
data set, and performance criterion.

In addition to the 14 filter methods, we also consider
the approach of not applying any filter before fitting the L2-
regularized Cox model, which serves as a baseline. For this
approach, there exists no hyper parameter prop that would
require tuning. Therefore the L2-regularized Cox model is
directly fitted on the outer training data sets, using all features,
and it is evaluated as described above. Moreover, we also include
the simple Kaplan–Meier estimator of the survival function [44]

8 Bommert et al.

Figure 3. Boxplots of the integrated Brier score of the best configurations of the 10 outer cross-validation iterations per data set. Each boxplot represents 10 performance

values. Small values indicate a good predictive performance.

as a baseline. The Kaplan–Meier estimator does not consider any
of the features.

The hyper parameter of L2-regularized Cox regression that
balances the goodness of the fit and the size of the regression
parameters is chosen automatically by [71] using 10-fold cross-
validation. The predictive performance is evaluated with the
integrated Brier score. To ensure a fair comparison of the filter
methods, the same inner and outer cross-validation splits are
used for all filter methods.

Results

First, the filter methods are compared with respect to predictive
performance. Figure 3 shows the integrated Brier score values of
the best configurations of the 10 outer cross-validation iterations
separately for each data set. It can be observed that for all data
sets, there are some filter methods that lead to considerably
better results than other filter methods. However, many of the
boxplots overlap. For most data sets, applying the filter methods
variance or carss before fitting the L2-regularized Cox model,
results in models with high predictive accuracy. Applying no
filter before fitting the L2-regularized Cox model leads to compa-
rably bad results on most data sets. The variation of the results

between the 10 outer cross-validation iterations is rather small
for the filter methods that achieve good results. In comparison
to the simple Kaplan–Meier estimator, no gain in predictive
performance is achieved with filtering and L2-regularized Cox
regression.

Figure 4 provides an aggregation of the predictive perfor-
mances of the filter methods over all data sets. In order to
obtain one performance value per filter method and data set,
the mean integrated Brier score of the 10 outer cross-validation
iterations is considered. Then, for each pair of filter methods, it
is investigated, on how many data sets one filter outperforms
the other. In Figure 4, the number displayed in the row of filter A
and in the column of filter B indicates the number of data sets on
which filter A achieves a lower mean integrated Brier score than
filter B. Filters carss and variance achieve lower mean integrated
Brier scores than most other filter methods on all data sets. They
perform better than boosting, cox.score, correlation, permutation,
mrmr and cmim as well as applying no filter on all of the 11
considered data sets. In comparison to the filters impurity, mim,
njmim, disr, jmim and jmi, the carss and variance filters resulted in
a better performance on at least 8 of the data sets. Filter carss
wins against filter variance on 5 data sets and loses on 6 data

Benchmark of filter methods 9

Figure 4. Number of data sets on which the filter method displayed in the

row achieves a lower mean integrated Brier score (corresponding to a better

performance) than the filter method displayed in the column. The filter methods

are ordered by the sums of the rows, that is, the total number of wins against any

of the other filter methods on any of the 11 data sets.

Figure 5. Relative mean integrated Brier score and relative logarithmic median

run time. A symbol indicates the median across the 11 data sets. The lines span

from the minimum to the maximum value observed for any of the data sets.

Small values are desirable for both criteria.

sets. The simple Kaplan–Meier estimator outperforms all other
approaches on at least 9 of the 11 data sets, however, compared
to the filters variance and carss, almost always only by a very
small margin.

In the next step, we jointly consider the run time and the
predictive performance of the filters when combined with a L2-
regularized Cox regression model. Ideally, a filter method that
provides low prediction errors and is fast to compute is desired.
Figure 5 presents an aggregation of both performance criteria
over the 11 data sets. The sizes of the considered data sets are
different (see Table 2) and also the difficulties of the survival
prediction tasks differ between the data sets (see Figure 3). This
makes it necessary to scale both performance criteria before
they can be aggregated across data sets. Regarding the prediction
error, for each data set, we subtract the best observed mean
integrated Brier score from all mean integrated Brier scores.
The best filter method per data set therefore has ‘relative mean

Figure 6. Boxplots of the proportion of selected features of the best configura-

tions of the 10 outer cross-validation iterations for all data sets. Each boxplot

represents 110 proportion values. The mean proportions of selected features are

indicated by numbers.

integrated Brier score’ 0. A relative mean integrated Brier score
of x means that the predictive performance of a filter method
is worse by the additive factor x compared to the best filter
method on the same data set. Regarding the run times, we
consider the (base 10) logarithmic median run time of the 10
outer cross-validation iterations for each filter and data set. We
subtract the fastest logarithmic median run time per data set
from all logarithmic median run times measured on the same
data set. A ‘relative logarithmic median run time’ of x means
that the median run time of a filter equals the median run
time for the fastest filter on the same data set multiplied with
10x. The scaled performance criteria are displayed in Figure 5
in the following way: The median of both criteria across the
11 data sets is displayed by a symbol. Horizontal and vertical
lines reaching from the minimum to the maximum value of the
respective performance criterion observed on any of the 11 data
sets are added. The symbol represents the central location of
the performance measures while the lines indicate the spread
across data sets. The Kaplan–Meier estimator requires the least
run time among all considered approaches as it does not take
into account the features. Also, it provides the highest predictive
accuracy on most of the data sets. Among the filter methods,
looking at the symbols, it can be seen that filter variance out-
performs all other filter methods as well as applying no filter.
It obtains a better median relative mean integrated Brier score
and a better median relative logarithmic median run time than
all other filter methods. Filter carss also provides a very small
median relative mean integrated Brier score but requires more
time for calculation. The filters jmim, njmim, mim, cmim and mrmr
are comparably fast to compute but achieve a noticeably lower
predictive performance.

In the next step, the feature selection of the filter methods
is analyzed in more detail. Figure 6 displays the proportion of
selected features per filter method for the best configurations.
Remember that for each filter method, the proportion of features
to select is optimized based on the predictive performance of the
subsequent L2-regularized Cox model. The boxplots in Figure 6
represent the proportions of selected features in the 10 outer
cross-validation iterations for each of the 11 data sets. The filter
methods are sorted by predictive performance. For the filter

10 Bommert et al.

Figure 7. Boxplots of the feature selection stability of the best configurations of

the 10 outer cross-validation iterations for all data sets. Each boxplot represents

110 stability values assessed with the stability measure SMA-Count. Large values

are desirable.

methods that lead to a good predictive performance, compa-
rably few features are selected for all data sets. This means
that it is sufficient to include only a small number of features
in the survival models for obtaining high predictive accuracy.
Fitting models based on only a small number of features has the
advantage of a faster run time and lower memory consumption
as well as an easier interpretation of the L2-regularized Cox
model. The comparably bad predictive performance of applying
no filter before fitting the L2-regularized Cox model shows that
it is not only sufficient but also necessary to filter out many of
the features in the considered data sets. The filter methods with
low predictive accuracy select comparably many features. This
means that they fail at selecting only the few important features
for target prediction.

In Figure 7, the feature selection stability of the filter methods
is assessed. For each filter method and each outer iteration of
each data set, the following is done: the 10 sets of features
that were selected by the filter method during the inner cross-
validation iterations with the best prop-value are considered. The
value of the stability measure SMA-Count (see Equation 21) is
calculated, using the absolute Pearson correlation between the
features as a measure of feature similarity and the similarity
threshold θ = 0.9, which implies a strong association. Large
stability values are desirable, as they indicate a consistent choice
of features irrespective of some variation in the data set. Figure 7
shows that the feature selection conducted by filter variance is
by far the most stable among all considered filter methods. The
other filter methods provide a much less stable feature selection.
Filter carss is the second best filter method with respect to
feature selection stability.

Finally, we compare the results of the similarity analyses and
the performance analyses. The groups of similar filter methods
identified on the basis of Figure 1 also provides a similar pre-
dictive accuracy. They are positioned next to each other in the
ranking in Figure 4 and they obtain similar scaled predictive per-
formance values in Figure 5. Furthermore, the groups of similar
filters also select similar proportions of features (see Figure 6)
with a similar feature selection stability (see Figure 7) for the
respective optimal prop-values. All in all, the results of the two
analyses are consistent.

Conclusion
Feature selection is a fundamental problem in statistical
research, especially for the analysis of high-dimensional
biomedical data sets. It is often advantageous with respect
to predictive performance, run time and interpretability to
disregard the irrelevant and redundant features. Filter methods
are a popular class of feature selection methods because they
are fast to compute and can be combined with any subsequent
predictive model.

We considered gene expression survival data, which is a
typical example of high-dimensional, censored data used in
bioinformatics. Existing benchmark studies of filter methods are
conducted on the basis of classification or regression data sets.
But commonly used regression or classification techniques are
not suitable for survival data sets, because they cannot take into
account the censoring information. Since censored survival data
are frequently used in bioinformatics and since filter methods
for survival data had not been thoroughly benchmarked before,
we conducted such a benchmark for survival data.

We compared 14 filter methods based on 11 high-dimensional
survival data sets containing gene expression data. The data
sets were chosen as a subset of the data sets used in [66] based
on the number of events. This choice of data sets can be seen
as unbiased. First, we analyzed the orders in which the filter
methods rank the top 100 features, identifying groups of similar
filter methods. Filter methods that were classified as similar
often used similar concepts such as mutual information.

Next, we compared the filter methods with respect to pre-
dictive performance when combined with a L2-regularized Cox
proportional hazards model. We also included the approach of
not applying a filter method before fitting the L2-regularized
Cox model in our analyses. We could conclude that the filter
methods variance and carss perform best with respect to the
integrated Brier score on all considered data sets. Filter vari-
ance ranks the features based on their variance, independent of
the survival outcome, while filter carss computes correlation-
adjusted regression survival scores. In comparison to fitting L2-
reqularized Cox models with all features, models with much
better predictive accuracy were obtained when first applying
one of these filters. When considering both the predictive per-
formance and the run time for applying the filter, fitting the
model and prediction and then aggregating these performance
criteria across data sets, filter variance outperformed all other
approaches.

Next, we analyzed the feature selection of the filter methods.
We observed that all filter methods that lead to models with
high predictive accuracy only select a small number of features
on all data sets. An analysis of the feature selection stability of
the filter methods showed that filter variance provides by far the
most consistent sets of selected features.

Comparing the results of the similarity and the performance
analysis, we found them to be in accordance. We observed that
the filter methods that were categorized as similar based on
their feature rankings also achieved a similar predictive perfor-
mance and selected a similar number of features with a similar
feature selection stability.

Based on our extensive analyses, we recommend using the
simple variance filter before fitting a Cox regression model on a
high-dimensional gene expression survival data set. This filter
method allowed fitting models with the best predictive perfor-
mance, required the least run time for filter score calculation,
model fitting and prediction and at the same time produced
the most stable results. When a more elaborate filter method

Benchmark of filter methods 11

is desired, we recommend the carss filter. This filter achieved
a comparable predictive accuracy, required a bit more run time
and ranked second with respect to feature selection stability.

Both the variance and the carss filter do not have any hyper
parameters (other than the proportion of features to select) that
require tuning or a robust choice. This is an advantage over filter
methods that are based on feature importance values calculated
from models like random forest or boosting. In our benchmark
study, we did not tune the hyper parameters of random forest or
boosting. Tuning them could have led to an increase in predictive
accuracy for the respective filter methods. This, however, would
have come at the expense of a large increase in run time and
the run time of these filters already was the longest among all
considered filter methods.

In comparison to the considered mutual information filters,
for both the variance and the carss filter, no categorization of
the survival outcome and features, resulting in a loss of infor-
mation, is required. An advantage of the variance filter over the
carss filter is that it allows unbiased testing in a subsequent
unregularized model, if the proportion of features to select is
prespecified. This is because the variance filter does not take into
account the survival outcome for feature selection, see also [78].
A disadvantage of the variance filter is that it requires that all
features are measured on the same scale, because the feature
variance is not scale invariant. On data sets with features that
are measured on strongly differing scales, the variance filter will
likely be misguided. Also, the features must not have been scaled
to unit variance during preprocessing. The carss filter does not
have these limitations.

In conclusion, our results suggest that the filters variance
and carss are a well-performing and convenient tool to elimi-
nate overfitting caused by the high dimensionality of the gene
expression data. However, when comparing the integrated Brier
score values of the L2-regularized Cox regression models based
on the features selected by the best-performing filters to the
respective integrated Brier score values of the non-informative
Kaplan–Meier estimator, it must be pointed out that the former
did not show a clear tendency to outperform the latter. This
result is in line with an earlier comparison study by Herrmann et
al. [66] based on the same data sets, who noted that ‘in general,
conclusions about the superiority of one method over the other
with respect to the prediction performance must be drawn with
caution, as the differences in performance can be very small
and the confidence intervals often show a remarkable over-
lap’ [66]. Furthermore, this finding highlights the importance of
the inclusion of clinical (non-genetic) features such as age, sex
and disease stage in survival prediction models. Adding clinical
covariates to the genetic features could improve the survival
predictive performance over the covariate-free Kaplan–Meier
estimator. In our study, we only included genetic features in the
covariate sets, since these are high-dimensional and subject to
filtering, and since we aimed at investigating the performance
of filter methods.

Many of the filter methods investigated in this benchmark
study are analyzed in [38], too. But there, classification data sets
from various domains were used instead of gene expression sur-
vival data sets. In [38], especially random forest feature impor-
tance filters and mutual information filters performed well with
respect to predictive accuracy and run time. The carss filter
was not analyzed, since it is not suitable for classification data.
With the variance filter, comparably poor results were obtained.
Comparing the findings of this benchmark study with the results
of [38], it becomes obvious that the best filter methods differ for

different types of data. This stresses the importance of having
conducted this benchmark study.

For future analyses one could consider additional data sets
from different domains. Also, one could compare the filter meth-
ods in simulation studies. In contrast to real data, this would
allow assessing whether the filter methods select the features
that were used for generating the target. Moreover, one could
consider further survival prediction models.

Key Points
• On the considered high-dimensional gene expression

survival data sets, it is beneficial to first apply a filter
method before fitting a L2-regularized Cox propor-
tional hazards model in order to achieve high predic-
tive accuracy.

• The simple variance filter outperforms all other con-
sidered filter methods with respect to the predictive
accuracy of a subsequent L2-regularized Cox propor-
tional hazards model, the run time and the feature
selection stability. This filter selects the features with
the largest variance and does not take into account the
survival outcome.

• The correlation-adjusted regression scores filter is a
more elaborate alternative to the variance filter that
allows fitting models with similar predictive accuracy.

• Groups of similar filter methods can be identified
based on feature rankings. Filter methods of the same
group achieve a similar predictive performance and
select a similar number of features with a similar
feature selection stability.

Data availability

All analyses are reproducible using the R code publicly avail-
able on Github. The data sets were derived from OpenML.

Author contributions statement

A.B. conceived the experiments with input from J.R., T.W.
and M.S.; A.B. conducted the experiments; A.B. analyzed the
results with input from J.R., T.W. and M.S.; A.B. wrote the
manuscript; and J.R., T.W. and M.S. reviewed the manuscript.

Acknowledgments

This work was supported by German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG), Collaborative
Research Center SFB 876, A3 and German Research Foun-
dation (Deutsche Forschungsgemeinschaft, DFG), grant
number SCHM 2966/2-1. We acknowledge the computing
time provided on the Linux HPC cluster at TU Dortmund
University (LiDO3), partially funded in the course of the
Large-Scale Equipment Initiative by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG) as
Project 271512359.

References
1. Guyon I, Elisseeff A. An introduction to variable and fea-

ture selection. Journal of Machine Learning Research 2003;3:
1157–82.

https://github.com/bommert/survival-filter-benchmark
https://www.openml.org/

12 Bommert et al.

2. Lazar C, Taminau J, Meganck S, et al. A survey on fil-
ter techniques for feature selection in gene eexpression
microarray analysis. IEEE/ACM Trans Comput Biol Bioinform
2012;9(4):1106–19.

3. Kohavi R, John GH. Wrappers for feature subset selection.
Artificial Intelligence 1997;97(1–2):273–324.

4. Kittler J. Feature Set Search Algorithms. Alphen aan den Rijn,
Netherlands: Sijthoff and Noordhoff, 1978, 41–60.

5. Huang X, Zhang L, Wang B, et al. Feature clustering based
support vector machine recursive feature elimination for
gene selection. Applied Intelligence 2018;48(3):594–607.

6. Yang J, Honavar V. Feature Subset Selection Using a Genetic
Algorithm. New York, USA: Springer, 1998, 117–36.

7. Xue B, Zhang M. Will N Browne, and Xin Yao. A survey
on evolutionary computation approaches to feature selec-
tion. IEEE Transactions on Evolutionary Computation 2016;20(4):
606–26.

8. Brezočnik L, Fister I, Podgorelec V. Swarm intelligence
algorithms for feature selection: A review. Applied Sciences
2018;8(9).

9. Tibshirani R. The lasso method for variable selection in the
Cox model. Stat Med 1997;16(4):385–95.

10. Ishwaran H, Kogalur UB, Blackstone EH, et al. Random sur-
vival forests. The Annals of Applied Statistics 2008;2(3).

11. Friedman JH. Greedy function approximation: A gradient
boosting machine. Annals of Statistics 2001;29(5):1189–232.

12. Bühlmann P, Hothorn T. Boosting algorithms: Regulariza-
tion, prediction and model fitting. Statistical Science 2007;
22(4):477–505.

13. Liu H, Yu L. Toward integrating feature selection algorithms
for classification and clustering. IEEE Transactions on Knowl-
edge and Data Engineering 2005;17(4):491–502.

14. Saeys Y, Inza I, Larrañaga P. A review of feature
selection techniques in bioinformatics. Bioinformatics 2007;
23(19):2507–17.

15. Chandrashekar G, Sahin F. A survey on feature selection
methods. Computers & Electrical Engineering 2014;40(1):16–28.

16. Tang J, Alelyani S, Liu H. Feature Selection for Classification: A
Review, pages 37–64. Boca Raton, FL, USA: CRC Press, 2014.

17. Hira ZM, Gillies DF. A review of feature selection and feature
extraction methods applied on microarray data. Advances in
Bioinformatics 2015;2015.

18. Jović A, Brkić K, Bogunović N. A review of feature selection
methods with applications. In: 38th International Convention
on Information and Communication Technology, Electronics and
Microelectronics, 2015, 1200–5.

19. Cai J, Luo J, Wang S, et al. Feature selection in machine
learning: A new perspective. Neurocomputing 2018;300:70–9.

20. Li J, Cheng K, Wang S, et al. Feature selection: A data perspec-
tive. ACM Computing Surveys 2018;50(6).

21. Venkatesh B, Anuradha J. A review of feature selection
and its methods. Cybernetics and Information Technologies
2019;19(1):3–26.

22. Liu H, Li J, Wong L. A comparative study on feature selec-
tion and classification methods using gene expression
profiles and proteomic patterns. Genome Inform 2002;13:
51–60.

23. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos
A. A review of feature selection methods on synthetic
data. Knowledge and Information Systems 2013;34(3):
483–519.

24. Bolón-Canedo V, Sánchez-Marono N, Alonso-Betanzos A,
et al. A review of microarray datasets and applied feature
selection methods. Inform Sci 2014;282:111–35.

25. Inza I, Larrañaga P, Blanco R, et al. Filter versus wrapper gene
selection approaches in dna microarray domains. Artif Intell
Med 2004;31(2):91–103.

26. Forman G. An extensive empirical study of feature selection
metrics for text classification. Journal of Machine Learning
Research 2003;3:1289–305.

27. Aphinyanaphongs Y, Fu LD, Li Z, et al. A comprehensive
empirical comparison of modern supervised classification
and feature selection methods for text categorization. J Assoc
Inf Sci Technol 2014;65(10):1964–87.

28. Darshan SLS, Jaidhar CD. Performance evaluation of filter-
based feature selection techniques in classifying portable
executable files. Procedia Computer Science 2018;125:346–56.

29. Liu Y. A comparative study on feature selection methods for
drug discovery. J Chem Inf Comput Sci 2004;44(5):1823–8.

30. Peng H, Long F, Ding C. Feature selection based on mutual
information criteria of max-dependency, max-relevance,
and min-redundancy. IEEE Trans Pattern Anal Mach Intell
2005;27(8):1226–38.

31. Dash M, Liu H. Feature selection for classification. Intelligent
Data Analysis 1997;1:131–56.

32. Sánchez-Maroño N, Alonso-Betanzos A, Tombilla-Sanromán
M. Filter methods for feature selection – a comparative
study. In International Conference on Intelligent Data Engineering
and Automated Learning 2007;178–87.

33. Wah YB, Ibrahim N, Hamid HA, et al. Feature selection
methods: Case of filter and wrapper approaches for max-
imising classification accuracy. Pertanika Journal of Science &
Technology 2018;26(1):329–40.

34. Xue B, Zhang M, Browne WN. A comprehensive comparison
on evolutionary feature selection approaches to classifi-
cation. International Journal of Computational Intelligence and
Applications 2015;14(2).

35. Meyer PE, Schretter C, Bontempi G. Information-theoretic
feature selection in microarray data using variable comple-
mentarity. IEEE Journal of Selected Topics in Signal Processing
2008;2(3):261–74.

36. Brown G, Pocock A, Zhao M-J, et al. Conditional likelihood
maximisation: A unifying framework for information the-
oretic feature selection. Journal of Machine Learning Research
2012;13:27–66.

37. Hall MA. Correlation-Based Feature Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New
Zealand, 1999.

38. Bommert A, Sun X, Bischl B, et al. Benchmark for filter meth-
ods for feature selection in high-dimensional classification
data. Computational Statistics & Data Analysis 2020;143.

39. Lang M, Kotthaus H, Marwedel P, et al. Automatic model
selection for high-dimensional survival analysis. Journal of
Statistical Computation and Simulation 2015;85(1):62–76.

40. Bommert A, Rahnenführer J, Lang M. A multicriteria
approach to find predictive and sparse models with stable
feature selection for high-dimensional data. Comput Math
Methods Med 2017;2017.

41. Bommert A. Integration of Feature Selection Stability in Model
Fitting. PhD thesis, TU Dortmund University, Germany, 2020.

42. Lang M, Binder M, Richter J, et al. ref42: A modern object-
oriented machine learning framework in ref67. Journal of
Open Source Software 2019.

43. Kalousis A, Prados J, Hilario M. Stability of feature selection
algorithms: A study on high-dimensional spaces. Knowledge
and Information Systems 2007;12(1):95–116.

44. Klein JP, Moeschberger ML. Survival Analysis: Techniques for
Censored and Truncated Data. New York, USA: Springer, 2003.

Benchmark of filter methods 13

45. Simon N, Friedman J, Hastie T, et al. Regularization paths for
Cox’s proportional hazards model via coordinate descent. J
Stat Softw 2011;39(5):1.

46. Gerds TA, Schumacher M. Consistent estimation of the
expected brier score in general survival models with right-
censored event times. Biom J 2006;48(6):1029–40.

47. Therneau TM, Grambsch PM, Fleming TR. Martingale-based
residuals for survival models. Biometrika 1990;77(1):147–60.

48. Van der Laan MJ, Robins JM. Unified Methods for Censored
Longitudinal Data and Causality. New York, USA: Springer,
2003.

49. Zuber V, Strimmer K. High-dimensional regression and vari-
able selection using CAR scores. Stat Appl Genet Mol Biol
2011;10(34):2194–6302.

50. Kessy A, Lewin A, Strimmer K. Optimal whitening and decor-
relation. The American Statistician 2018;72(4):309–14.

51. Schäfer J, Strimmer K. A shrinkage approach to large-scale
covariance matrix estimation and implications for func-
tional genomics. Stat Appl Genet Mol Biol 2005;4(1):1–30.

52. Welchowski T, Zuber V, Schmid M. Correlation-adjusted
regression survival scores for high-dimensional variable
selection. Stat Med 2019;38(13):2413–27.

53. Harrell FE, Jr, Lee KL, Mark DB. Multivariable prognostic mod-
els: Issues in developing models, evaluating assumptions
and adequacy, and measuring and reducing errors. Stat Med
1996;15(4):361–87.

54. Hastie T, Tibshirani R, Friedman J. The elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, USA
2 edition: Springer, 2009.

55. Kursa MB. praznik: Tools for Information-Based Feature Selection,
R package version 8.0.0, 2020.

56. Yang HH, Moody JE. Data visualization and feature selec-
tion: New algorithms for nongaussian data. In: Advances in
Neural Information Processing Systems 12 (NIPS 1999), 1999,
687–93.

57. Bennasar M, Hicks Y, Setchi R. Feature selection using joint
mutual information maximisation. Expert Systems with Appli-
cations 2015;42(22):8520–32.

58. Meyer PE, Bontempi G. On the use of variable complementar-
ity for feature selection in cancer classification. In: EvoWork-
shops 2006: Applications of Evolutionary Computing, 2006,
91–102.

59. Fleuret F. Fast binary feature selection with conditional
mutual information. Journal of Machine Learning Research
2004;5:1531–55.

60. Schratz P, Lang M, Bischl B, et al. mlr3filters: Filter Based Feature
Selection for ‘mlr3’, 2020.

61. Therneau TM, Grambsch PM. Modeling Survival Data: Extend-
ing the Cox Model. New York, USA: Springer, 2000.

62. Welchowski T. carSurv: Correlation-Adjusted Regression Sur-
vival (CARS) Scores, 2018, R package version 1.0.0.

63. Wright MN, Ziegler A. ref63: A fast implementation of ran-
dom forests for high dimensional data in C++ and ref67. J
Stat Softw 2017;77(1):1–17.

64. Chen T, He T, Benesty M, et al. xgboost: Extreme Gradient
Boosting, 2020, R package version 1.1.1.1.

65. Bommert A and Rahnenführer J . Adjusted measures for
feature selection stability for data sets with similar fea-
tures. In Nicosia G, Ojha V, Malfa EL, Jansen G, Sciacca V,
Panos Pardalos, Giuffrida G, and Umeton R, editors, Machine
Learning, Optimization, and Data Science, pages 203–14, 2020.

66. Herrmann M, Probst P, Hornung R, et al. Large-scale bench-
mark study of survival prediction methods using multi-
omics data. Brief Bioinform 2021;22(3):1–15.

67. R Core Team. R: A Language and Environment for Statisti-
cal Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2020.

68. Sonabend R, Kiraly F, Lang M. mlr3proba: Probabilistic Super-
vised Learning for ‘mlr3’, 2020, R package version 0.2.6.

69. Lang M, Quay A, Coors S, et al. mlr3learners: Recommended
Learners for ‘mlr3’, 2020, R package version 0.4.3.

70. Binder M, Pfisterer F, Schneider L, et al. mlr3pipelines: Pre-
processing Operators and Pipelines for ‘mlr3’, 2020, R package
version 0.3.1.

71. Simon N, Friedman J, Hastie T, et al. Regularization paths for
Cox’s proportional hazards model via coordinate descent. J
Stat Softw 2011;39(5):1–13.

72. Bischl B, Lang M, Mersmann O, et al. BatchJobs and BatchEx-
periments: Abstraction mechanisms for using ref67 in batch
environments. J Stat Softw 2015;64(11):1–25.

73. Bommert A, Lang M. stabm: Stability measures for feature
selection. Journal of Open Source Software 2021;6(59):3010.

74. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New
York, USA: Springer, 2016.

75. Yang X, Scheid S, Lottaz C. OrderedList: Similarities of Ordered
Gene Lists, 2020, R package version 1.62.0.

76. Bøvelstad HM, Nygärd S, Størvold HL, et al. Predicting sur-
vival from microarray data – a comparative study. Bioinfor-
matics 2007;23(16):2080–7.

77. Bischl B, Mersmann O, Trautmann H, et al. Resampling meth-
ods for meta-model validation with recommendations for
evolutionary computation. Evol Comput 2012;20(2):249–75.

78. Hackstadt AJ, Hess AM. Filtering for increased power for
microarray data analysis. BMC Bioinformatics 2009;10.

	Benchmark of filter methods for feature selection in high-dimensional gene expression survival data
	Introduction
	Methods
	Experiments
	Conclusion
	Data availability
	Author contributions statement

