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The gut microbiota plays important roles in animal overall health and productiveness. Balancing host gut
microbiota by probiotics has been documented. Our previous study showed that Saccharomyces boulardii
(Sb) and Bacillus subtilis B10 (Bs) significantly improve growth performance and modulate the intestinal
histomorphology in broilers. To increase the knowledge regarding Sb and Bs, this study investigated the
effects of these 2 probiotic strains on the gut microbiota in broilers. Three hundred 1-day-old Sanhuang
broilers (Chinese cross breed) were randomly divided into 3 groups, each group with 5 replications
(n ¼ 20). The control group (CK) was fed a basal diet containing an antibiotic (virginiamycin, 20 mg/kg) and
the other 2 groups received Sb and Bs (1 � 108 cfu/kg of feed) in addition to the basal diet. After 72 d of
treatment, pyrosequencing revealed that the bacterial communities varied along the section of intestinal
tract in the control and Bs groups, but not in the Sb group. No difference in microbial diversity was observed
among 3 groups. The major phyla observed along the GI tract of broilers (particularly in the duodenum and
cecum) were Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia, which were considered
potentially growth performance-related. Bacteroidetes, Proteobacteria, and Verrucomicrobia were observed
at a much higher abundance in the jejunums and ileums of the Sb group (P < 0.05). In addition, the jejunal
microbial communities formed 3 different clusters at either the genus level or the category of metabolism
among the groups, based on the principal component analyses. These data indicated that Sb and Bs can
modulate the microbial ecosystem, and subsequently enhance the health status of broilers.

© 2018, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The gastrointestinal (GI) tract is home to a complex and dynamic
microbial ecosystem d a so-called ‘microbiota superorganism’,
which contains hundreds of microbe species (Apajalahti et al.,
iation of Animal Science and
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nce and Veterinary Medicine. Prod
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2004; Wei et al., 2013; Zoetendal et al., 1998). The genomes of
these intestinal microbes form a microbiome that by far out-
numbers the host's genome (Cisek and Binek, 2014). Consequently,
these gut microbes play a key role in host energy metabolism and
immune functions and greatly contribute to a wide range of
processes involved in gastrointestinal development, including
regulation of intestinal epithelial proliferation (Forder et al., 2007),
vitamin synthesis and ion absorption, carbohydrate and protein
fermentation (Hamer et al., 2012), bile acid biotransformation
(Degirolamo et al., 2014; Ridlon et al., 2006), protection against
pathogens and immune system modulation (Guarner, 2006;
Guarner and Malagelada, 2003; Noverr and Huffnagel, 2004;
Round and Mazmanian, 2009).

Bacterial colonization of the animal gut by environmental
microbes begins immediately at birth or after hatching. The
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Table 1
Ingredients (as-fed basis) and calculated composition of the basal diet (%).

Item 1 to 35 d 36 to 72 d

Ingredients
Corn 55.90 61.60
Soybean meal 31.00 27.00
Wheat shorts 3.00 4.00
Imported fish meal 5.00 2.00
Rapeseed oil 1.50 2.00
Salt 0.30 0.30
Dicalcium phosphate 1.20 1.00
Limestone 1.00 1.00
DL-Met 0.10
Lysine 0.10
Premix1 1.00 1.00
Total 100.00 100.00
Calculated composition
ME, MJ/kg 12.78 13.05
Crude protein 22.86 19.14
Lys 1.07 0.98
Met þ Cys 0.86 0.72
Ash 7.38 6.41
Ca 0.93 0.91
Total phosphorus 0.64 0.56

1 Each kilogram of premix compound contained: vitamin A, 7,000 IU; vitamin D3,
2,500 IU; vitamin E, 30 mg; vitamin K3, 1 mg; vitamin B1, 1.5 mg; vitamin B2, 4 mg;
vitamin B6, 2 mg; vitamin B12, 0.02 mg; niacin, 30 mg; folic acid, 0.55 mg;
pantothenic acid, 10 mg; biotin, 0.16 mg; choline chloride, 400 mg; Cu, 20 mg; Fe,
70 mg; Mn, 100 mg; Zn, 70 mg; I, 0.4 mg and Se, 0.5 mg.
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composition of the gut microbiota is modulated by numerous
extrinsic factors such as age, diet, medication, and stress (Claesson
et al., 2011; De La Cochetiere et al., 2008; Louis et al., 2007; O'Toole
and Claesson, 2010). Additionally, balance among the gastrointes-
tinal microbial communities is crucial for host health maintenance.
Disturbances of the gut microbiota, also known as dysbiosis, have
often been associatedwith several diseases including inflammatory
bowel diseases (Frank et al., 2011), diabetes (Cani et al., 2008),
obesity (Ley et al., 2006), fatty liver (Dumas et al., 2006), and
anxiety (Neufeld et al., 2011). The gut microbiota composition is
readily changeable (Jia et al., 2008); consequently, this plasticity
favors the development of gut microbiota-targeted therapies such
as antibiotics, prebiotics, and probiotics. Antibiotics in feed have
been successfully utilized since the 1950s for growth promotion
during food-animal production (Dibner and Richards, 2005;
Gaskins et al., 2002). However, antibiotic resistance among bacte-
rial pathogens and antibiotic residues in animal products has
garnered global interest in limiting antibiotic use in animal agri-
culture (Seal et al., 2013). Probiotics are live microorganisms that
provide beneficial effects to the host when adequately adminis-
tered. Researchers have shown that probiotic bacteria have a vari-
ety of beneficial effects, including counteraction of dysbiosis,
promotion of gut health and homeostasis, promotion of growth
enhancement of immune defenses and protection of the host from
infection by pathogens (Aureli et al., 2011; Cisek and Binek, 2014).

Poultry has become one of the most prominent sources of ani-
mal proteinworldwide; therefore, the gut microbiome of chicken is
a major interest of investigators attempting to improve the growth,
health and food safety of poultry (Kohl, 2012; Oakley et al., 2013;
Wise and Siragusa, 2007). Our previous study showed that
Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) signifi-
cantly improve the growth performance and modulate the
morphology of the intestine (the intestinal villus height, width, and
goblet cell number are increased in the Sb and Bs groups) in broilers
(Rajput et al., 2013a). Accordingly, we speculated that the admin-
istration of these 2 probiotic strains might yield a common or
similar gut microbial community to that induced by virginiamycin
treatment or even a more optimal gut microbial structure than
virginiamycin in broilers. In addition, there is little information
available concerning the effect of these 2 probiotic strains on the
gut microbiota in broilers. Therefore, this study is aimed to inter-
pret the beneficial effects of the 2 probiotic strains in the gut
microbiota perspective.
2. Materials and methods

Procedures involving animals were performed in according to
the guideline of the declaration of Zhejiang Animal Center at the
Institute of Medical Science, and approved by the Ministry of
Livestock, Zhejiang University, Hangzhou, China.
2.1. Bacteria and yeast

Bacterial strains Sb and Bs used here were isolated and
identified by the Institute of Feed Sciences, Zhejiang University,
China. S. boulardii was cultured in yeast peptone dextrose broth
(Oxoid, Basingstoke, UK) in aerobic conditions at 30 �C for 24 h,
and B. subtilis in Luria-Bertani broth (Oxoid) for 12 h. After
cultivation, the yeast and bacterial were collected by centrifu-
gation (6,000 � g for 5 min at 4 �C). The pellets were washed
twice with PBS (pH 7.4) and resuspended in sterile water at a
final concentration of 1.0 � 109 cfu/mL. The prepared mixture
was added into the basal diet (Table 1) and maintained at
1 � 108 cfu/kg.
2.2. Animals

Three hundred 1-day-old Sanhuang broilers (a Chinese cross
breed) were randomly divided into 3 groups, each group with 5
replications (n ¼ 20). The control group (CK) was fed a basal diet
(Table 1) supplemented with an antibiotic (virginiamycin,
20 mg/kg), whereas broilers in Sb and Bs groups were fed the
basal diet supplemented with Sb and Bs (1 � 108 cfu/kg of feed)
for 72 d.

2.3. Sample collection

After the 72-d feeding treatment, 10 broilers from each replicate
of each treatment group were killed by administering lethobarb
(0.5 mL/bird) intravenously and then weighed before sample
collection. Duodenum, jejunum, ileum and cecum were collected
aseptically. The contents of each section of the gut (duodenum,
jejunum, ileum, and cecum) were isolated. And, the contents of
each section of the gut of each replicate from different treatment
groups were pooled and stored at �70 �C for microbiota analysis.

2.4. DNA extraction and pyrosequencing

For each treatment group, 3 pool samples of each section of the
gut were selected randomly to use for microbiota analysis. Total
bacteria DNA from each sample (200 mg) was extracted using a
DNA Isolation Kit (Tiangen, Beijing, China). Sequencing was
performed at Tongji-SCBIT Biotechnology Co. Ltd. Shanghai, China.
Briefly, DNA was amplified using the conserved primers 341F
(50-XXXXXXXCCTACGGGAGGCAGCAG-30) and 534R (50- ATGAGCT-
GATTACCGCGGCTGCT-30), which targets the V3 region of the 16S
rRNA, with the forward primer containing a 7-bp barcode unique to
each sample. The PCR was performed with the following condition:
94 �C for 5min (94 �C for 40 s, 55 �C for 30 s, and 72 �C for 30 s)� 30
cycles. The PCR products were purified using a gel extraction kit
(Axygen Scientific Inc., USA). The concentrationwas measured with
a UVevis spectrophotometer (NanoDrop ND1000, USA) and then
adjusted to 50 ng/mL for each sample. Finally, equal amounts of DNA
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from each sample were mixed together and sequenced by Tongji-
SCBIT Biotechnology Co., Ltd. (Shanghai, China) using the 454 Life
Sciences/Roche GS-FLX sequencing system (Roche Applied Science,
Penzburg, Germany).

Sequences obtained through 454 pyrosequencing were then
filtered by QIIME software (QIIME version 1.9.0) with default
parameters (Caporaso et al., 2010; Zhang et al., 2014). Low-
quality or ambiguous reads were discarded, and primer se-
quences and barcodes were trimmed from the 50 region. The
operational taxonomic unit (OTU) clustering pipeline UPARSE
was used to select OTU at 97% similarity. Diversity between the
samples (Shannon index) was also analyzed by QIIME. The final
taxonomic assignment was based on the consensus identification
for each OTU. A multivariate data analysis was performed using
METAGENassist (http://www.metagenassist.ca/METAGENassist/
faces/Home.jsp), a web server tool that assigns probable micro-
bial functions based on taxonomy (16 S ribosomal subunit) as
described by Arndt et al. (2012) and Badri et al. (2013). Principal
component analyses (PCA) and the identification of significant
features were performed for all treatments combined.
2.5. Statistical analyses

Data were represented as means ± SEM and analyzed with
SPSS 16.0. The intergroup variationwas tested with paired-samples
t-test, followed by Fisher's least significant difference test among
the groups. P-value � 0.05 is considered significant.
3. Results

3.1. Microbial diversity along the broiler intestinal tract

Shannon index was used to evaluate the microbial ecological
diversity of each sample (Fig. 1). The results revealed that the ileal
and jejunal samples had much lower diversity, whereas the cecal
and duodenal samples had much higher Shannon index values
(Fig. 1). B. subtilis B10 and Sb administrations did not affect the
microbiota diversity along the GI tract compared with the control,
except in the duodenums of the Bs group, the microbiota diversity
was lower than that of the control (Fig. 1, P < 0.05).
Fig. 1. Shannon diversity of each sample from different treatment groups. CK: birds fed
the basal diet supplemented with virginiamycin; Bs: birds fed the basal diet supple-
mented with Bacillus subtilis B10; Sb: birds fed the basal diet supplemented with
Saccharomyces boulardii.
3.2. Changes in bacterial community structure along the broiler
intestinal tract

The bacterial community structure varied among different
anatomical regions along the chicken intestinal tract (Figs. 2 and
3). Taxonomically, 19 different bacterial phyla were identified in
the broiler intestinal tract (Fig. 2). The major bacterial phyla
identified were Bacteroidetes, Firmicutes, Proteobacteria, and
Verrucomicrobia. Only Firmicutes, Proteobacteria, and Verruco-
microbia were found in all sections of the intestine in all treat-
ment groups (Fig. 2). Firmicutes was dominant along the broiler
intestinal tract and with much higher abundance in the jejunum
and ileum than in the duodenum and cecum (Fig. 2). However,
Actinobacteria were much enriched in the duodenum and
jejunum, and the relative abundance of Bacteroidetes was much
higher in the duodenum and cecum than in the jejunum and
ileum (Fig. 2, P < 0.01). Based on the PCA, we observed that the
bacterial community among the duodenum, ileum, and jejunum
formed into 2 different clusters in control (Fig. 4A), whereas in the
Bs group, the bacterial community of the cecal was separated from
those of the ileum and jejunum (Fig. 4B). Interestingly, no sig-
nificant difference was observed in the bacterial communities
along the intestinal tract in the Sb group (Fig. 4C).

At the genus level, Akkermansia, Bacteroides, Oscillospira,
Prevotella, and Ruminococcus were all enriched in the duodenum
and cecum (Fig. 3). However, Lactobacillus was enriched in the
jejunum and ileum, and the abundance of Lactobacillus was much
higher in the jejunum and ileum than in the duodenum and cecum
(Fig. 3, P < 0.05).
3.3. Effect of probiotics on the microbial structure along the
intestinal tract

The effects of probiotics on the microbial community structure
in the chicken intestinal tract were identified at the phylum (Fig. 2)
and genus (Fig. 3) by pyrosequencing analyses. The microbial
community structure after the probiotic treatments were mainly
changed at the genus levels in the duodenum and jejunum
compared with the control group (Fig. 3). However, the microbial
community structure in the ileum and cecum was relative stable
among the 3 groups (Fig. 3).

For microbial communities of digesta in the duodenum of
broilers, no significant difference was observed among 3 groups at
phylum level base on PCA (Fig. 5A); However, at the genus levels,
Fig. 2. Relative abundance of bacterial phyla present in the intestinal tract in different
treatment groups revealed by pyrosequencing. CK: birds fed the basal diet supple-
mented with virginiamycin; Bs: birds fed the basal diet supplemented with Bacillus
subtilis B10; Sb: birds fed the basal diet supplemented with Saccharomyces boulardii.
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Fig. 3. Relative abundance of bacterial genus present in the intestinal tract in different treatment groups revealed by pyrosequencing. CK: birds fed the basal diet supplemented
with virginiamycin; Bs: birds fed the basal diet supplemented with Bacillus subtilis B10; Sb: birds fed the basal diet supplemented with Saccharomyces boulardii.

Fig. 4. Microbial community analyzed by principal component (PC) analyses at phyla levels. (A) CK: birds fed the basal diet supplemented with virginiamycin; (B) Bs: birds fed the
basal diet supplemented with Bacillus subtilis B10; (C) Sb: birds fed the basal diet supplemented with Saccharomyces boulardii.
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the microbial communities in the Bs and control groups formed 2
different clusters in the duodenum (Fig. 6A). The abundance of
Lactobacillus in the Bs and Sb groups was much higher than that
of the control group (Fig. 3, P < 0.05), and the abundance of
Clostridium in the Bs groupwas also higher than those of the control
and Sb groups (Fig. 3, P < 0.05). However, the abundance of
Bacteroides and Oscillospira in the Bs and Sb groups was lower than
that of the control group (Fig. 3, P < 0.05).

In the jejunum, the microbial community structure was similar
to that of the duodenum at the phylum level. According to the



Fig. 5. Gut microbiome sequencing data of treatments and controls analyzed by principal component (PC) analyses at phyla level (A) duodenum, (B) jejunum, (C) ileum and (D)
cecum CK: birds fed the basal diet supplemented with virginiamycin; Bs: birds fed the basal diet supplemented with Bacillus subtilis B10; Sb: birds fed the basal diet supplemented
with Saccharomyces boulardii.
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PCA, there was no significant difference between the probiotic
treatment and control groups at the phylum level (Fig. 5B).
However, at the genus level, the microbial communities among
the 3 groups formed 3 different clusters in the jejunum (Fig. 6B).
At the genus level, the microbial diversity was increased, and the
abundance of other bacteria was also increased at the expense of
Lactobacillus in the Sb treatment group compared with the control
and Bs treatment groups (Fig. 3B). The abundance of Streptococcus
was higher in Bs group than those in the control and Sb groups
(Fig. 3, P < 0.05).

In the Ileum and cecum, the bacterial community structure was
not much different and relatively stable among the 3 groups
(Figs. 2 and 3). In the Ileum, no significant difference was observed
among the 3 treatment groups based on PCA at phylum or genus
level (Figs. 5C and 6C). In the cecum, no significant difference was
observed based on PCA in phyla levels (Fig. 5D). Moreover, neither
Bs administration nor Sb administration changed the cecum
microbial community at the genus level compared with the con-
trol (Fig. 3), and the same results were obtained by the PCA
(Fig. 6D).
3.4. Clustering of the bacterial community based on the category of
metabolism

The OTU were assigned from taxonomic to phenotypic map-
ping using the METAGENassist webserver tool for multiple
phenotype (about 21) categories classified based on habitat,
metabolism, oxygen requirements, energy source, and other fac-
tors. Based on the category of metabolism, the PCA revealed that
the microbial community of the 3 treatment groups formed into 3
different clusters in the jejunum and ileum (Figs. 7B and C).
However, no difference was observed in either the cecum or du-
odenum (Figs. 7A and D). Notably, we also observed different
microbial communities in different sections of the intestinal tract,
based on the metabolism category analyses (Fig. 8). The microbial
communities in the ileum and jejunum were separated from the
cecum and duodenum in the control group (Fig. 8A). In the Bs
group, the bacterial community in the cecum differed from those
in the ileum and jejunum (Fig. 8B). Whereas in the Sb group, the
bacterial community in the cecum differed from those in the
jejunum and duodenum (Fig. 8C).



Fig. 6. Gut microbiome sequencing data of treatments and controls analyzed by principal component (PC) analyses at genus level (A) duodenum, (B) jejunum, (C) ileum, and (D)
cecum. CK: birds fed the basal diet supplemented with virginiamycin; Bs: birds fed the basal diet supplemented with Bacillus subtilis B10; Sb: birds fed the basal diet supplemented
with Saccharomyces boulardii.
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4. Discussion

The intestinal microbiota has an enormous metabolic potential
and affects the host's state of health and nutrition (Rinttila and
Apajalahti, 2013). Manipulation of the intestinal microbiota is a
way to improve animal health and growth performance. Antibiotics
are considered to modulate the microbial community within the GI
tract, which subsequently promotes growth promotion and reduces
disease occurrence when administered at subtherapeutic levels
(Angelakis et al., 2013; Danzeisen et al., 2011). Virginiamycin is
one of the antibiotic growth promoters that are widely used in
agricultural animal production (Dumonceaux et al., 2006; Miles
et al., 1984). However, antibiotics resistance and health problems
make the trend to ban the use of them in animal agriculture. Our
previous research indicated that Bs or Sb administration resulted in
a higher body weight in broilers compared with virginiamycin
treatment (Rajput et al., 2013a). This paper is aimed to interpret
growth promotion effects (as observed in our previous study) of the
2 probiotic strains in the gut microbiota perspective.

The bacterial communities of different sections of the GI tract
are markedly different, and it has been suggested that they should
be considered separate ecosystems (van der Wielen et al., 2002).
Moreover, the microbial densities and diversities vary in the
different sections of GI tract, being maximal in the ceca of broilers,
where fermentation is most active, reviewed by Yeoman andWhite
(2014). Our results in this study also support this point of views. The
microbial diversity in duodenum and cecumwas much higher than
that in the jejunum and ileum in all treatment groups. In addition,
Bs or Sb administration did not affect gut microbial diversity
compared with the control (except in the duodenums of Bs treat-
ment group). What is more, according to the PCA, the microbial
communities from different sections of the GI tract trended to be
separated from each other, except in the Sb treatment group. The
microbiotawere parallel among the sections of the GI tract after the
Sb administration, but the mechanism was not clear.

The ability to balance the host gut microbiota with probiotics
has been documented. Chicken performance is linked to the gut
microbiota. According to Torok's research, there are 8 common
performance-linked OTU identified within both the ileum and
cecum of chickens based on 16S rRNA gene sequences, which
belong to the phyla Firmicutes, Bacteroidetes, Proteobacteria, and
Verrucomicrobia (Torok et al., 2011). Interestingly, our results
showed that the major phyla of Firmicutes, Bacteroidetes, Pro-
teobacteria, and Verrucomicrobia were observed along the GI
tract in all groups, especially in the duodenum and cecum.
Furthermore, Bacteroidetes, Proteobacteria, and Verrucomicrobia
were observed much higher abundance in the jejunum and ileum
of the Sb group compared with the control and Bs groups. When



Fig. 7. Gut microbiome sequencing data of treatments and controls analyzed by principal component (PC) analyses base on the category of metabolism (A) cecum, (B) ileum, (C)
jejunum, and (D) duodenum. CK: birds fed the basal diet supplemented with virginiamycin; Bs: birds fed the basal diet supplemented with Bacillus subtilis B10; Sb: birds fed the
basal diet supplemented with Saccharomyces boulardii.
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the sequences were classified further into the genus levels, our
present results were also similar to those of Torok et al. (2011). At
the genus level, we found that Akkermansia, Bacteroides and
Lactobacillus, which were performance-related genera (Torok
et al., 2011) observed in the duodenum (except for Lactobacillus
in the control and Bacteroides in the Bs group) and cecum at a
much higher abundance compared with other intestinal sections.
A low abundance of Akkermansia and Bacteroides was in the
jejunum and cecum, whereas Lactobacillus was enriched in the
jejunum and ileum, which was consistent with previous studies
(Stanley et al., 2012; van der Hoeven-Hangoor et al., 2013). In
addition, we also observed a very high abundance of Prevotella in
the duodenum and cecum among the 3 treatment groups. Pre-
votella has been shown to be the dominant genus in both rumi-
nants and swine (Kim et al., 2011; Stevenson and Weimer, 2007).
Recently, Kang et al. (2013) demonstrated significantly lower
abundances of the genera Prevotella, Coprococcus, and unclassified
Veillonellaceae in samples from autistic children. This finding
indicated that Prevotella may play an important role in animal
behavior and health.

The gut microbiota plays an important role in host meta-
bolism and nutrient absorption. The microbes help break down
and digest the food ingested by the host. In ruminant livestock,
the gut microbiota are required to fulfill approximately 70% of
the animal's daily energy requirements (Flint and Bayer, 2008).
The small intestine, which consists of the duodenum, jejunum,
and ileum, is the compartment where most of the digestion and
absorption of nutrients occurs (Renner, 1965). Previous studies
showed that the activities of jejunal digestive enzymes (Naþ Kþ

ATPase, lipase and g-glutamyl transpeptidase [gGT]) were
significantly increased in the Sb treatment group, and the activity
of gGT in the Bs treatment group also significantly increased
compared with the control (Rajput et al., 2013b). Moreover, the
villus height and width in the jejunum and ileum increased after
Sb administration (Rajput et al., 2013a). Interestingly, our results
showed that the microbial community in jejunum significantly
differed among the Bs, Sb, and control groups at the genus level
based on the PCA, forming 3 different clusters. The same result
was also observed when it was analyzed base on the category of
metabolism by PCA. These findings indicated that Sb and Bs ad-
ministrations, especially that of Sb, could enhance food digestion
and nutrient absorption by regulating or optimizing the gut
microbial community composition, subsequently improve
growth performance.

In conclusion, the results of the present study revealed that Sb
and Bs can modulate a healthier microbial ecosystem, subsequently
enhance the health status of broilers, and eventually improve the
growth performance.



Fig. 8. Microbial community analyzed by principal component (PC) analyses based on metabolism. (A) CK: birds fed the basal diet supplemented with virginiamycin; (B) Bs: birds
fed the basal diet supplemented with Bacillus subtilis B10; (C) Sb: birds fed the basal diet supplemented with Saccharomyces boulardii.
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