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Abstract

The extracellular matrix (ECM) is an assembly of hundreds of proteins that structurally supports the cells it
surrounds and biochemically regulates their functions. Drosophila melanogaster has emerged as a powerful
model organism to study fundamental mechanisms underlying ECM protein secretion, ECM assembly, and
ECM roles in pathophysiological processes. However, as of today, we do not possess a well-defined list of the
components forming the ECM of this organism. We previously reported the development of computational
pipelines to define the matrisome - the ensemble of genes encoding ECM and ECM-associated proteins - of
humans, mice, zebrafish and C. elegans. Using a similar approach, we report here that our pipeline has
identified 641 genes constituting the Drosophila matrisome. We further classify these genes into different
structural and functional categories, including an expanded way to classify genes encoding proteins forming
apical ECMs. We illustrate how having a comprehensive list of Drosophila matrisome proteins can be used to
annotate large proteomic datasets and identify unsuspected roles for the ECM in pathophysiological
processes. Last, to aid the dissemination and usage of the proposed definition and categorization of the
Drosophila matrisome by the scientific community, our list has been made available through three public
portals: The Matrisome Project (http://matrisome.org), The FlyBase (https://flybase.org/), and GLAD (https://
www.flyrnai.org/tools/glad/web/).

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The extracellular matrix (ECM) is an assembly of
hundreds of proteins that structurally supports and
biochemically regulates the cells it surrounds [1,2].
The ECM organizes the tissues of all metazoans [3]. It
plays a role in a number of biological processes, from
development and homeostasis [4–6] to pathological
processes including fibrosis and cancer [4,7,8].With a
growing interest from the scientific community in the
ECM and the emergence of high-throughput technol-
ogies generating large datasets came the realization
that a robust definition of the proteins contributing to
the formation of the ECM was needed. We thus
defined the matrisome of human and mouse [9–11].
This was achieved by developing a computational
uthor. Published by Elsevier B.V. This
g/licenses/by-nc-nd/4.0/).
approach based on protein sequence analysis using
key structural features of ECM proteins, including the
presence of a signal peptide and specific protein
domains found predominantly in ECM and ECM-
associated proteins [9,12]. We further proposed to
classify the matrisome into the core matrisome, which
is the compendium of genes encoding proteins
forming the structure of the ECM (collagens, glyco-
proteins, and proteoglycans), and the matrisome-
associated ensemble comprising genes encoding
accessory proteins and proteins involved in the
remodeling of the ECM [9,10,13]. The adoption of
these definitions by the scientific community has
allowed the identification of ECM proteins previously
unsuspected to play roles in physiological or patho-
logical processes [14–16] and of ECM signatures in –
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Fig. 1. Bioinformatic workflow to define the in-silico matrisome of Drosophila melanogaster. The databases FlyBase,
DIOPT, and Ensembl were interrogated with the full list of human and mouse matrisome and matrisome-associated gene
symbols. Selected InterPro domains, including domains characteristic of collagens, proteoglycans, ECM-affiliated
proteins, and cuticle-binding proteins (see Supplementary Table 4) were used to identify ECM-domain-containing proteins
in the reference proteome. The Gene Ontology annotations related to the ECM were then used to identify previously-
annotated ECM components. Finally, selected published literature using proteomic and/or bioinformatic methods, as well
as reviews on the subject, were searched to identify ECM proteins not identified by the orthology-based or protein-
sequencing methods. These data were combined and manually curated to generate the first complete Drosophila
matrisome. Hs, Homo sapiens; Mm, Mus musculus; Dm Drosophila melanogaster.
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omic datasets predictive, for example, of cancer
patient outcome [7,17–19]. This prompted us and
others to further define the matrisome of several
model organisms: zebrafish [20], Caenorhabditis
elegans [21], and planarians [22].
In recent years, there has been a surge of interest

in using the genetic tractability of Drosophila
melanogaster to identify fundamental mechanisms
underlying ECM assembly, structure, and function,
since several ECM proteins and processes con-
tributing to the formation and assembly of the ECM
are conserved between Drosophila and other
organisms [23–25]. This surge is most evident in
studies of basement membrane (BM) biology
[26,27]. BM is an ancient and highly conserved
ECM that lines the basal surface of epithelial and
endothelial tissues and surrounds muscles, adi-
pose tissue, and nerves [26,28,29]. Studies using
Drosophila have made particularly strong contri-
butions to our understanding of BM secretion and
assembly [30–45], and the role BMs play in shaping
tissues during development [35,42,46–53]. They
have also shown how BMs heal after injury [54,55]
and how they regulate the immune response
[56–60]. More recently, work in Drosophila has
introduced a new role for BM proteins in intercel-
lular adhesion [31].
Although the core BM proteins (type IV collagens,

laminins, heparin sulfate proteoglycans, and nido-
gens) are well known, proteomic studies have
revealed that BMs can harbor numerous accessory
proteins that vary by tissue [14,61,62]. A compre-
hensive list of these proteins will provide an
important tool for Drosophila researchers as they
continue to probe the diverse roles BMs play in
animal development and physiology.
Drosophila also have ECMs that are unique to

arthropods and are therefore not found in any other
organism for which the matrisome has been defined.
These include: the chitin-based cuticle that forms the
animal's exoskeleton and lines the lumens of the
foregut and hindgut [63–65]; non-cuticular, chitin-
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3Matrisome of Drosophila melanogaster
based ECMs that line the lumens of the trachea,
salivary glands, and midgut [64,66]; the eggshell that
protects the developing embryo [67,68]; and the
salivary glue that is produced by the larva to affix the
pupa to a surface [69]. Defining the list of proteins
that comprise these ECMs will provide a reference
dataset for the arthropod clade and aid with the
annotation of large proteomic datasets, including the
developmental proteome of Drosophila [70]. More-
over, because insects can be both disease vectors
and agricultural pests, these data could provide an
important source of information to combat these
threats to human welfare.
Here, we define the in-silico matrisome for

Drosophila melanogaster. To this end, we developed
a computational pipeline that combines orthology
comparison, protein sequence analysis, interroga-
tion of experimental proteomic data, and literature
search (Fig. 1) and identified 641 genes that we
propose to comprise the Drosophila matrisome. We
further classified these 641 genes into different
structural and functional categories based on the
model we have proposed for the matrisomes of other
organisms [9,20,21]. We then describe the deploy-
ment of our list and terminology in the Matrisome
Project website (http://matrisome.org) and in two
databases, FlyBase [71,72] and GLAD [73], broadly
used by the Drosophila community. Last, we
illustrate how this new resource can be used to
annotate –omic datasets.
In-silico definition of the Drosophila
melanogaster matrisome

Identification of Drosophila orthologs of human
and mouse matrisome genes

We first set out to identify the Drosophila orthologs
of human and mouse matrisome genes. The
sequence alignment tools built into Flybase
(FB2017_03, released June 2017) [71], the Dro-
sophila RNAi Screening Center's Integrative Ortho-
log Prediction Tool (DIOPT, Version 6.0.2, released
June 2017) [73,74], and Ensembl (Ensembl 89,
released May 2017) [75] were interrogated with the
full list of human and mouse core matrisome and
matrisome-associated gene symbols from each of
the six categories of ECM components defined
previously (Fig. 1) [11]. Although these sequence-
alignment meta-algorithms return a confidence
score based on the number of algorithms returning
a hit, we did not eliminate genes with low-confidence
scores at this stage to maximize our potential to
identify relevant genes.
The genes retrieved by each of the three

databases (Supplementary Table 1A and 1B)
were compiled to obtain a list of all predicted
Drosophila orthologs of human and/or mouse
matrisome genes (Supplementary Table 1C). The
results of this approach led to the identification of
834 putative Drosophila matrisome orthologs. Of
these genes, 114 were orthologous to a human
gene but not a mouse gene, whereas 51 were
orthologous to amouse gene but not a human gene.
There were 296 human genes with no Drosophila
ortholog (Supplementary Table 2A) and 340 mouse
genes with no Drosophila ortholog (Supplementary
Table 2B).

Protein-domain-based approach to identify ad-
ditional Drosophila matrisome proteins

Since it is well known that flies also have a large
number of ECM proteins that do not have mamma-
lian orthologs (see Introduction), we next used the
UniProt Drosophila reference proteome (down-
loaded August 10, 2017) [76] to further expand our
search for matrisome components (Supplementary
Table 3A). Taking advantage of the conserved
domain-based nature of ECM proteins [12], we
selected InterPro domains [77] which were previ-
ously used to identify human and mouse matrisome
proteins [9,10], including domains characteristic of
collagens, proteoglycans, and ECM-affiliated pro-
teins, to search for ECM-domain-containing proteins
in the Drosophila proteome (Supplementary Table
4A). We also included in the search three domains
characteristic of proteins involved in the production
and maintenance of chitin-based ECMs: insect
cuticle protein (IPR000618), chitin-binding domain
(IPR002557), and chitin-binding type R&R consen-
sus (IPR031311) [78]. Although three ECM domains
were initially used to search the UniProt Drosophila
reference proteome, the domain chitin-binding type
R&R consensus (IPR031311), a conserved motif of
35–36 amino acids identified by Rebers and
Riddiford (R&R) [79,80], was found to be redundant
with the domain insect cuticle protein (IPR000618)
for the identification of the 213 Drosophila proteins.
(Supplementary Table 4B). To complete the list of
proteins composing the Drosophila cuticle we further
interrogated CuticleDB, a database of structural
components of arthropods identified experimentally
or through protein sequence analysis [81]. This
allowed us to retrieve an additional 7 genes
(CG13670, CG7548, CG8541, CG8543, Cpr65Ax1,
Edg91, Lcp6) that were added to the class of
cuticular proteins.
Using this method, we identified 353 Drosophila

proteins with ECM domains: 140 using domains
previously used to identify mammalian matrisome
proteins and an additional 213 using domains
characteristic of Drosophila proteins (Supplemen-
tary Table 4B). We compared the list of proteins
identified with human matrisome domains to the
proteins identified via gene orthology and found that

http://matrisome.org


Fig. 2. The Drosophilamatrisome. (A) The Drosophilamatrisome comprises 641 genes. These genes are then divided
into either categories which we have previously defined, or the newly proposed apical matrix category. (B) The genes that
encode proteins that make up the apical matrix of Drosophila were further divided into classes and sub-classes.
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49 of the 140 proteins discovered by domains
characteristic of ECM proteins (35%) were not
previously identified using the orthology approach
(Supplementary Table 4C).

Gene-Ontology-based approach to identify addi-
tional Drosophila matrisome proteins

The Drosophila proteome retrieved from UniProt is
also annotated with Gene Ontology (GO; http://
geneontology.org) – Cellular Component terms
describing the intra- and extracellular localization of
proteins [82,83]. The Gene Ontology terms extracel-
lular matrix (GO:0031012), extracellular region
(GO:0005576), extracellular space (GO:0005615),
basement membrane (GO:0005604), and proteina-
ceous extracellular matrix (GO:0005578) were used
to identify ECM components. The term proteina-
ceous extracellular matrix was found to be redun-
dant with the term extracellular matrix, but the other
four terms made significant contributions to the
breadth of the search, which retrieved 1308 proteins
from the Drosophila proteome (Supplemental Table
3B).
Manual curation of potential Drosophila matri-
some genes

The three computational approaches described
above identified 1585 genes encoding potential
Drosophila matrisome proteins. As we reported for
other organisms, a purely computational approach is
not sufficient to identify ECM genes [9,10,21]. For
example, examination of the list revealed the
presence of proteins that share structural features
with ECM proteins such as transmembrane recep-
tors, anti-microbial peptides or accessory gland
proteins, but that are clearly not ECM components.
We thus undertook a knowledge-based approach to
manually curate the list and either eliminate non-
ECM genes or include ECM genes that had been
missed by our computational approach. As GO
annotations have been found previously to lack
specificity to define ECM components [10], analysis
of all proteins identified by GO annotation was
performed using the Phobius signal peptide predic-
tor [84]. Proteins that lack a signal peptide and did
not exhibit other significant ECM characteristics
were excluded along with proteins predicted to be

http://geneontology.org
http://geneontology.org
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5Matrisome of Drosophila melanogaster
cytoplasmic, proteins with multiple transmembrane
domains, and proteins with contradictory GO anno-
tation such as cytosolic (GO:0005829) or lysosomal
(GO:0005764) localization. This step alone excluded
303 genes. We further consulted extensively the
literature on the Drosophila ECM, and made direct
queries of FlyBase [71] and UniProt [76] to examine
closely the protein sequences and orthology rela-
tionships to mammalian ECM proteins of genes and
decide whether there was sufficient evidence to
classify these genes as part of the matrisome. This
final curation step allowed us to identify some genes
encoding ECM proteins that were missed by our
computational screen and to eliminate some genes
for which experimental evidence does not support
their classification as matrisome components (see
below).

The Drosophila matrisome is composed of 641
genes

Based on the combined result of these analyses,
we propose that the Drosophila matrisome is
composed of 641 genes (Supplemental Table 5).
Interestingly, this number represents 4% of the
15,500 protein-coding genes in the Drosophila
genome, which is comparable to the percentage of
the genome encoding ECM proteins in humans,
mice, zebrafish, and C. elegans [9,20,21] and is
likely to be similar to the proportion of matrisome
genes in the planarian genome [22,85]. Below, we
describe how these 641 genes have been classified
into matrisome categories based on their structure,
localization, and/or function.
Classification of Drosophila genes orthologous or
homologous to mammalian matrisome genes

Genes with orthology or homology to human
genes were categorized based on the previously
proposed mammalian matrisome divisions (core
matrisome or matrisome-associated) and categories
(collagens, glycoproteins and proteoglycans for the
core matrisome, and ECM-affiliated proteins, ECM
regulators and secreted factors for matrisome-
associated components) [9].
The Drosophila matrisome contains 34 core

matrisome genes: 4 collagens, 27 glycoproteins,
and 3 proteoglycans, the majority of which are
orthologous to mammalian core matrisome genes
(Supplementary Table 5A and 5B and Fig. 2A). Only
1 collagen (pericardin) [86,87] and 6 glycoproteins
(artichoke [88], anachronism [89], Defense protein l
(2)34Fc, glutactin [90], tiggrin [91], and tenectin
[92,93]) were not homologous or orthologous to
mammalian core matrisome genes. Since the
expansion and complexification of the ECM
emerged with the appearance of deuterostomes, a
large number of ECM genes or families of genes
were not found in Drosophila, including fibronectin,
matricellular proteins such as thrombospondins and
tenascins, and non-basement membrane collagens
[23,94–96].
In addition to core matrisome genes, we predict that

the Drosophila genome encodes 279 matrisome-
associated genes, including 219 that are orthologous
or homologous to mammalian genes (Supplementary
Tables 5A and B and Fig. 2A).
We previously defined ECM-affiliated proteins as

proteins either somewhat structurally related to core
ECM proteins or that have been found experimen-
tally to be associated with the ECM in detergent-
insoluble fractions of tissue lysates by proteomics
[9,11]. Our computational approach predicts that 106
Drosophila genes encode ECM-affiliated proteins.
Among these are galectins, C-type lectins (structur-
ally characterized by three InterPro domains,
IPR001304, IPR016186, and IPR016187), mucins,
and semaphorins, some of which are orthologous or
homologous to mammalian genes (Supplementary
Table 5A). In addition, we classified under this
category 6 collagen-triple-helix repeat-containing
proteins and 9 fibrinogen-domain-containing pro-
teins with no clear mammalian orthologs.
The ECM regulators category groups enzymes

participating in the synthesis or remodeling of the
ECM together with the regulators of these enzymes
(including inhibitors). We identified 98 ECM regula-
tors (Supplementary Table 5), including matrix
metalloproteinases [25], cathepsins, ADAMs, and
two orthologs of the recently identified serine/
threonine kinase family Fam20 [97]. Our study also
identified a total of 24 prolyl-4-hydroxylases (P4Hs).
Prolyl-4-hydroxylases catalyze the formation of
hydroxyprolines [24,98–100]. The most well-
recognized role of this post-translational modification
is to stabilize collagen triple-helical structures.
Interestingly, and as previously noted [24], the
human genome encodes 44 collagen genes and 3
P4Hs, whereas the Drosophila genome encodes
only 4 collagen genes, 6 collagen-triple-helix repeat-
containing proteins and yet 24 P4Hs. Both previous
work [100] and interrogation of The National Human
Genome Research Institute model organism ENCy-
clopedia Of DNA Element (modENCODE) database
[101] indicate that the P4Hs are expressed in a
tissue-specific manner and at different developmen-
tal stages. Whether P4Hs have additional substrates
in Drosophila remains to be determined.
Last, we previously included secreted factors in

our definition of the matrisome, since the ECM is
recognized as a reservoir of growth factors and other
soluble factors [102]. These 75 proteins (Supple-
mentary Table 5) were defined using a combination
of orthology or homology annotations, GO terms,
literature references, and the presence of charac-
teristic domains not previously used to define
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secreted factors but identified from the examination
of the Drosophila melanogaster extracellular domain
database (FlyXCDB http://prodata.swmed.edu/
FlyXCDB/info.list.new21_26.html, [103]). These do-
mains are the PDGF/VEGF domain (IPR000072),
the Spaetzle domain (IPR032104), the von Will-
ebrand factor type C (IPR029277), the insulin-like
domain (IPR016179), the eclosion hormone domain
(IPR006825), and the interleukin-17 family domain
(IPR010345).
Classification of Drosophila genes with no mamma-
lian orthologs or homologs

Since the chitin-based ECMs, eggshell, and salivary
glue are all secreted from the apical side of epithelial
tissues, we classified both the structural and regulatory
proteins associated with these ECMs under a category
termed “Apical ECM” (Supplementary Table 5 and Fig.
2B). As a group, these proteins comprise nearly 50%of
the Drosophila matrisome. To further subdivide this
diverse group of proteins, an additional level of
classification was created (Supplementary Table 5,
column C) to reflect their respective proteins' domain
structure, enzymatic function, or localization. Thechitin-
binding-domain-containing proteins and R&R chitin-
binding-domain-containing proteins families refer to
proteins containing InterPro domains IPR002557 and
IPR031311, respectively. TheChitinase andChitinase-
like families also have a group of defining domains, the
chitinase II domain, IPR011583, and three glycoside
hydrolase domains, IPR029070, IPR001223, and
IPR017853. The Tweedle family represents the only
proteins with the domain DUF243 (IPR004145) [104].
Chitin deacetylases were identified based on the
presenceof a glycoside hydrolase/deacetylase domain
(IPR011330). A group of 11 zona-pellucida-domain-
containing proteins was also identified [105]. These
proteins have a shared structural attribute, the zona
pellucida domain (IPR001507), which we originally
used to identify core components of the mammalian
matrisome. However, since zona-pellucida-domain-
containing proteins do not present clear orthology or
homologywithmammalian proteins,we classified them
apart.
Groups without clear structural similarities were

classified by othermeans. Proteins of the cuticle that
did not meet the definitions above were classified by
their shared GO term, chitin-based cuticle develop-
ment (GO:0040003). Included in this class were also
a number of genes reported to be cuticle proteins of
low complexity [106,107]. The eggshell superfamily
includes two protein classes, corresponding to the
vitelline membrane and chorion layers of this ECM,
respectively [68,108,109]. The vitelline membrane
proteins were defined by GO term or literature
search. The chorion proteins had all previously been
assigned chorion-related GO terms and chorion-
related protein names, except Cp38 which has
chorion in the name and is cited [108]. Finally, 11
proteins including new-glue and salivary glue
secretion proteins, Eig71Ee [69,110], and the
newly ident i f ied tandem paralog of Sgs5
(FBgn0038523) [111] were classified as glue
proteins.
Accessing the Drosophila matrisome
and utilizing it to annotate large datasets

The Drosophila matrisome is available from
three sources

To facilitate the use of our definition and catego-
rization of the Drosophila matrisome by the scien-
tific community, the list devised here has been
made available through three public platforms.
Similar to the matrisome lists of human, mouse,
zebrafish and C. elegans, the Drosophila matri-
some list can be found on the Matrisome Project
website (http://matrisome.org) [11]. Moreover, it has
been implemented in two databases widely used by
the Drosophila community. The Drosophila matri-
some is available within the “Gene Groups” section
of FlyBase (FB2019_04, accessible at: https://
flybase.org), which is the most comprehensive
source of genetic information for this model organ-
ism [71,72,112]. In addition, as a result of the
Matrisome analysis, two new terms were added to
the Gene Ontology Cellular Component aspect:
chitin-based extracellular matrix (GO:0062129) and
adhesive extracellular matrix (GO:0062130), allow-
ing more precise GO annotation of the constituents
of these specific types of ECM. All Drosophila
cuticle proteins and glue genes have now been
annotated with these respective terms in FlyBase.
The Drosophila matrisome is also available in the

Gene List Annotation for Drosophila (GLAD, acces-
sible at: https://www.flyrnai.org/tools/glad/web/) da-
tabase, which is maintained by the Perrimon
laboratory to enhance the utility of the cell-based
RNAi screening (DRSC) and in vivo fly RNAi (TRiP)
collections for the community [73]. For consistency
with the current GLAD nomenclature, the matrisome
forms a new gene list/group; the matrisome divi-
sions are listed as sub-groups, the categories as
sub-sub-groups, and the families are listed under
comments.

The Drosophila matrisome provides a powerful
tool to annotate large datasets

One powerful application of the matrisome list for
any species is in the annotation of large -omic
datasets [11]. Thus, as a proof of principle, we used
the newly defined Drosophila matrisome to re-

http://prodata.swmed.edu/FlyXCDB/info.list.new21_26.html
http://prodata.swmed.edu/FlyXCDB/info.list.new21_26.html
http://matrisome.org
https://flybase.org
https://flybase.org
https://www.flyrnai.org/tools/glad/web/
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evaluate two recently published datasets that focus
heavily on ECM-associated proteins. In the first
study, Baycin-Hizal and colleagues identified 399
N-glycosylated proteins of the Drosophila head
region using solid phase extraction of N-linked
glycopeptides coupled to LC-MS/MS [113]. They
reported that 4.5% of the proteins identified
experimentally in their study were part of the
ECM. We found, however, that 13% of the proteins
they identified (which included 8 of the 26 glyco-
proteins and 2 of the 3 proteoglycans we have
predicted) are in fact matrisome proteins, more than
double the original number. In the second study,
Sessions and colleagues reported changes in the
abundance of ECM proteins in the Drosophila heart
during aging [114]. 104 of the proteins detected
were identified as ECM proteins using the Software
Tool for Rapid Annotation and Differential Compar-
ison of Protein Post-Translational Modifications
(STRAP PTM) developed by Spender and col-
leagues. Of these 104 proteins, 27 are part of the
matrisome, whereas 77 are not. Examination of
these 77 proteins revealed that most are in fact
localized intracellularly, with little evidence to
support that they are ECM components. We
retrieved the raw mass spectrometry data from the
ProteomeXchange repository (PXD006120) and
reannotated the data using the matrisome list. We
identified a total of 46 matrisome proteins, finding
19 additional proteins not originally annotated as
belonging to the ECM. Together, these two exam-
ples demonstrate the power of our matrisome list to
comprehensively annotate large experimental
datasets. We thus propose that the use of our
annotations and nomenclature would assist in the
comprehensive identification of ECM signatures
contributing to cellular, physiological and patholog-
ical phenotypes.
Conclusion

We propose here an in-silico definition of Dro-
sophila melanogastermatrisome that comprises 641
genes encoding ECM and ECM-associated proteins.
We further propose their comprehensive classifica-
tion according to structural and/or functional fea-
tures. Of note, and as it has been the case with the
human and mouse matrisomes, this list is meant to
evolve as we gain knowledge in the functions of
these genes. We hope that this list and nomencla-
ture will aid with the annotations of large datasets,
and thus further our understanding of the roles of the
ECM in fundamental biological processes and
pathophysiology.
Supplementary data to this article can be found

online at https://doi.org/10.1016/j.mbplus.2019.
100015.
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