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Abstract: A polymeric stencil with microdot apertures made by using polydimethylsiloxane (PDMS)
molds with pillar patterns has many advantages, including conformal contact, easy processability,
flexibility, and low cost compared to conventional silicon-based membranes. However, due to the
inherent deformability of PDMS materials in response to external pressure, it is challenging to
construct structurally stable stencils with high structural fidelity. Here, we propose a design rule on
the buckling pressure for constructing polymeric stencils without process failure. To investigate the
critical buckling pressure (Pcr), stencils are fabricated by using different PDMS molds with aspect
ratio variations (AR: 1.6, 2.0, 4.0, and 5.3). By observing the buckled morphology of apertures, the
structures can be classified into two groups: low (AR 1.6 and 2.0) and high (AR 4.0 and 5.3) AR
groups, and Pcr decreases as AR increases in each group. To investigate the results theoretically, the
analysis based on Euler’s buckling theory and slenderness ratio is conducted, indicating that the
theory is only valid for the high-AR group herein. Besides, considering the correction factor, Pcr

agrees well with the experimental results.

Keywords: structural stability; buckling; UV curable polymer; membranes; aperture

1. Introduction

Membranes with microdot apertures are widely used in lithography masks, etching
masks, microfluidic devices, membranes, and filters [1–3]. Based on the membrane charac-
teristics such as mechanical rigidity, surface characteristics, and optical transparency, vari-
ous materials have been used for fabricating membranes as summarized in Table S1 [4–6].
Small-sized silicon nitride (SiNx) membranes with precisely controlled apertures on rigid
silicon (Si) support layer, which is fabricated by a conventional lithography process, have
been used in various fields requiring mechanical rigidity [7]. However, silicon-based
membranes are vulnerable to external forces, and it is challenging to apply such mem-
branes to curved surfaces due to their high rigidity. Besides, the manufacturing process is
complicated and requires high cost, even for small-area manufacturing. To overcome these
issues, researches on fabricating polymeric membranes have been conducted, which is ad-
vantageous for easy processability, flexibility, transparency, and low cost [8]. Among many
types of polymeric membrane, UV-cured membranes using the oxygen-scavenging effect
of the UV curable materials have been reported [9]. To fabricate polymeric membranes
with microdot apertures, UV-curable prepolymer was dispensed on the patterned poly-
dimethylsiloxane (PDMS) mold, and the flat PDMS mold was put on it. After contacting
each layer, the appropriate vertical pressure was applied to the assembly and followed by
the UV curing process. This simple and rapid process is advantageous for time-saving,
low cost, scalability, and potential to be used in automated large-area roll-to-roll processes.
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However, due to the inherently deformable characteristic of PDMS, including buckling,
bending, clustering, and fracture in response to the external load, it is still challenging to
construct upstanding microdot apertures without clogging or bending over the whole area
of UV-cured membrane through this process. As the structural aspect ratio (AR: height-
to-diameter (H/D) ratio) increases, the deformation of the structures is inevitable, which
leads to the process failure of the membrane with apertures. To achieve reliability and
reproducibility of the process and advance toward realization of large-scale fabrication and
automatization, this issue should be addressed. Since previous studies did not address the
processibility depending on the structural features and vertical pressure, process criteria
considering the AR and vertical pressure should be developed. Here, we have established
a design rule based on critical buckling pressure (Pcr) to prevent the buckling phenomenon.
The experiments were conducted using different structures with various ARs of 1.6, 2.0,
4.0, and 5.33. Moreover, additional structures with different diameters and heights of the
pillars with same ARs of 2.0 and 4.0 were prepared to verify whether the AR is the only
determining factor for structural stability in the structural features.

2. Materials and Methods
2.1. Materials

Commercially available UV curable polyurethane acrylate (PUA) resin (MINS-311RM,
Changsung Sheet, Cheonan, Korea) was used in the experiment. The PUA prepolymer
resin consists of a photoinitiator, a UV curable releasing agent, and a prepolymer for
crosslinking with acrylate functional groups.

2.2. Preparation of Polydimethylsiloxane (PDMS) Patterned Array Mold

To fabricate the patterned polydimethylsiloxane (PDMS) molds, PDMS was poured
into the hole patterned silicon masters, which were made by photolithography and reactive
ion etching. The surface of the silicon masters was treated with C4F8 gas to detach the
patterned PDMS polymer easily. Next, the mixture of PDMS (Sylgard 184 PDMS elastomer,
Dupont, Wilmington, DE, USA) base and curing agent with a weight ratio of 10:1 was
poured on the patterned silicon masters and cured for 2 h at 70 ◦C. The cured PDMS molds
were carefully peeled from the silicon masters [10].

2.3. Fabrication of Polymeric Stencil with Microdot Apertures

The fabrication process of the polymeric stencil with microdot apertures using a piece
of imprint equipment is illustrated in Figure 1a–d. After dispensing the PUA resin onto
micropillar patterned PDMS molds, a flat PDMS mold was placed on the PUA resin. The
prepared sandwich-like assembly (patterned-PDMS-mold/PUA-resin/flat-PDMS-mold)
were inserted into the UV imprint equipment and pressed through the imprint plate
connected to the compressor line (Figure 1a). The applied pressure was regulated by
adjusting the valve in the compressor. Next, the assembly was exposed to UV light with
the intensity of 2 mWcm−2 (Figure 1b), measured using a UV light meter (UV-340A, Lutron
Electronic, Coopersburg, PA, USA) for 10 s (Figure S1 shows the camera image of the
equipment used in experiment). After turning off the UV light, releasing the assembly from
the external pressure, and detaching the flat PDMS mold from the sandwiched layer, the
cured PUA membrane was carefully detached from the micropillar patterned PDMS mold
(Figure 1c) and then the free-standing PUA stencil with microdot apertures was successfully
constructed (Figure 1d). In this process of Figure 1a,b, oxygen gas is infiltrated into the skin
surface of the PUA prepolymer layers due to the gas permeability of PDMS, which is called
the oxygen-infiltrated layer (OIL), as previously investigated. The UV curing in this layer
is delayed from the existence of the oxygen gas, which is called the oxygen-scavenging
effect. When the flat and patterned PDMS surfaces get close enough to make contact, the
overlapped OILs further delay the UV curing, leading to the formation of the apertures in
the polymeric stencil structures [9]. Finally, the constructed PUA membranes were exposed
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to UV light without any external load in the UV imprint equipment for more than 6 h to
fully cure the uncured PUA resin on its surface.

Figure 1. Schematic of the fabrication process of polymeric stencils with microdot apertures using UV imprint equipment.
(a) Applying external pressure to the assembly of polydimethylsiloxane (PDMS) pillar patterned mold-polyurethane acrylate
(PUA) prepolymer-PDMS flat mold, (b) ultraviolet (UV) irradiation process, (c) peeling off the PDMS molds, (d) Digital
camera image of the free-standing PUA stencil with microdot apertures.

2.4. Physical Analysis

Scanning electron microscopy (SEM) images were obtained using field emission SEM
(FE-SEM, JSM-7800F, JEOL, Tokyo, Japan) with 10.0-kV acceleration voltage. Also, optical
microscope (OM) images were obtained by optical microscopy (BX53M, Olympus, Tokyo,
Japan). To confirm the shape of the apertures for each case, the constructed polymeric
stencils were prepared by freeze-fracturing with liquid nitrogen and observed through
SEM and OM images.

3. Results and Discussion
3.1. Fabrication of the Polymeric Stencil with Microdot Apertures with the Variation of Structural
Aspect Ratio

Controlling the distance between the PDMS surfaces, which is adjusted by the ex-
ternally applied pressure from the compressor in the system, is more important in the
process of fabricating the polymeric stencil than applying pressure by hand to achieve
reproducibility, reliability, uniformity, and accuracy. When the applied pressure is insuffi-
cient to secure the proper distance between the PDMS surfaces, the PUA layers, where the
apertures should be formed, would be fully cured, resulting in the blocking of the apertures
in the PUA stencil. However, if excessive pressure is applied, the pillars in the patterned
PDMS in contact with the flat PDMS would be buckled or fractured, which is considered a
process failure. The previous studies for fabricating a UV-cured membrane with apertures
exhibit the need for investigation of properly applied pressure depending on the structural
dimension as summarized in Table S2. Therefore, it is essential to establish a design rule for
the Pcr depending on the geometrical features of the pillars to prevent buckling-induced
process failure. This approach would provide concrete fundamentals for the fabrication
criteria progressed from an empirical approach. To investigate the structural stability, six
patterned PDMS molds with micropillars having different D and H were set. The detailed
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information on the fabrication process of PDMS molds and patterned silicon masters is
provided in the Section 2.2.

The scanning electron microscopy (SEM) images in Figure 2 show the geometry of each
experimental sample. The samples have geometrical features as listed below: (1) D = 50 µm,
H = 80 µm, and AR = 1.6; (2) D = 40 µm, H = 80 µm, and AR = 2.0; (3) D = 50 µm,
H = 100 µm, and AR = 2.0; (4) D = 30 µm, H = 120 µm, and AR = 4.0; (5) D = 40 µm,
H = 160 µm, and AR = 4.0; (6) D = 30 µm, H = 160 µm, and AR = 5.3. The samples were
mainly categorized into four kinds of AR (1.6, 2.0, 4.0, and 5.3). For the case of AR = 2.0
and 4.0, the samples with different D and H while fixing the AR were prepared to confirm
if AR is the only factor in geometry, which determine the mechanical stability herein. With
the prepared patterned PDMS mold, the fabrication of the polymeric stencil with microdot
apertures was conducted with the sandwich-like assembly as mentioned above. The
applied vertical pressure to the assembly was increased gradually and discretely through
the imprint machine. For each case, the applied imprint force was converted into the
pressure per single pillar. The pressure that induces the buckling phenomenon is denoted
as the experimental buckling pressure.

Figure 2. Scanning electron microscopy (SEM) images of prepared PDMS pillar patterned molds: (a) aspect ratio (AR) 1.6
[diameter (D) 50, height (H) 80], (b) AR 2.0 [D40 H80, D50 H100], (c) AR 4.0 [D30 H120, D40 H160], (d) AR 5.3 [D30 H160].

3.2. Buckling Phenomena of the Microdot Apertures in Stencils Depending on Aspect Ratio

First, to confirm if the other geometrical features, such as D and H, affect the buckling
phenomena in the same AR condition, the experiment was performed using two pillar
structures with same AR = 2.0 (Figure 3). The results show that the shape of the aperture in
the polymeric stencils, depending on the applied pressure, can be categorized into three
cases: (1) clogging, (2) stable, and (3) buckled. Without applying external pressure to the
assembly, the apertures in the PUA stencil are blocked, which is called clogging. If the
appropriate pressure, which is 0.091 MPa to the single pillar in this case, is applied to the
assembly, the upstanding apertures without slanting and bending in the PUA stencil are
constructed stably. Also, when the pressure over 0.17 MPa is applied, the apertures in
the PUA stencil are slanted, which is a buckling phenomenon. This pressure is denoted
as Pcr. From the summarized results in Table 1, the pressures that transit the state of the
apertures from stable to buckled were comparable even with different D and H of the
pillars, indicating that the critical factor for buckling is the AR, not D or H.
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Figure 3. (a,b) SEM and optical microscopy (OM) images of constructed polymeric stencil membranes with aspect ratio of
2 and imprint pressure variation. Structural geometry with a diameter of 40 µm and a height of 80 µm (a), and a diameter of
50 µm and a height of 100 µm (b).

Table 1. Applied imprint pressure during fabrication of polymeric stencil membranes with aspect
ratio of 2.

Sample/Case Clogging (MPa) Stable (MPa) Buckling (MPa)

H80 D40 (µm) 0 0.091 0.171
H100 D50 (µm) 0 0.091 0.175

The same trend is observed in the other case, as displayed in Figure 4 and Table 2.
The experiments using two different samples with same AR = 4.0 were conducted, and
the structural features depending on the pressure are also classified as clogging, stable,
and buckled, which is the same with the previous result. The Pcr of the two samples
was the same, with a value of ~0.229 MPa for both. From the results, it is also confirmed
that the only geometric factor affecting the buckling phenomenon is AR. Based on this
fact, structures with four ARs (1.6, 2.0, 4.0, and 5.3) were prepared, and the stencils were
fabricated with each structure (Figure 5). The pressures at the transition from the stable
to the buckled state, which are Pcr, were 0.225 MPa (AR = 1.6), 0.171 MPa (AR = 2.0),
0.229 MPa (AR = 4.0), and 0.140 MPa (AR = 5.3) (Table 3). Note that the shapes in the
buckling state appear differently depending on the AR; the structures can be classified
according to the buckled shapes into two groups: low (AR = 1.6 and 2.0) and high (AR = 4.0
and 5.3) AR groups. The structures with relatively low AR were slanted without a curved
wall and point of inflection, while those with relatively high AR were bent with a curved
wall. Obviously, Pcr decreases in each group as the AR increases since the slender and slim
structures would be easily deformed and unstable. However, when comparing the results
of the high AR group and low AR group, the critical buckling pressure is expected to be
much larger in the case of the low AR group compared to the high AR group, however,
experimental results were not. The overall experimental pressures at which the membranes
are in stable and buckling states are plotted in Figure S2. To investigate the previous
experimental results theoretically, the comparative analysis of Pcr based on the commonly
known Euler’s buckling theory was conducted. Two main issues were encountered in the
analysis—first, a comparison of the theoretical and experimentally obtained values of Pcr,
and second, the criteria for classification into low or high AR.
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Figure 4. (a,b) SEM and OM images of constructed polymeric stencil membranes with aspect ratio of 4 and imprint pressure
variation. Structural geometry with a diameter of 30 µm and a height of 120 µm (a), and a diameter of 40 µm and a height of
160 µm (b).

Table 2. Applied imprint pressure during fabrication of polymeric stencil membranes with aspect
ratio of 4.

Sample/Case Clogging (MPa) Stable (MPa) Buckling (MPa)

H120 D30 (µm) 0 0.175 0.229
H160 D40 (µm) 0 0.168 0.229

Figure 5. (a–h) SEM and OM images of constructed polymeric stencil membranes with varying aspect ratios. Polymeric
stencil membranes in stable state (a–d), and in buckled state with structural AR of 1.6, 2.0, 4.0, and 5.3 (e–h).
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Table 3. Applied pressure (buckling phenomenon inclusive) depending on aspect ratio.

Aspect Ratio 1.6 2.0 4.0 5.3

Pressure (MPa) 0.225 0.171 0.229 0.140

3.3. Theoretical Approach to Determine the Critical Buckling Pressure

To address both issues, the proposed simple analytical model is illustrated in Figure 6.
To calculate the theoretical value of Pcr, the end conditions of the pillar in the model should
be set reflecting the behavior of the experimentally used PDMS pillar. In this analytical
model, the bottom and the vertical line connected as one body represents the patterned
PDMS, while the top cover represents the flat PDMS. The bottom-end condition of the pillar
is fixed at the base, and the upper-end condition of the pillar is assumed to be rotation-fixed
and translation-free. Figure 6a indicates the state of the pillar with a height of L without
an applied load. Figure 6b demonstrates the buckling shape of the pillar when the critical
buckling load (Fcr) is applied to the pillar, which corresponds to the shape of the apertures
in Figure 5g,e. In the schematic model, the point of injection (c′) is defined as the center
point of the deflected pillar where the bending moment is zero. The theoretical Fcr can be
obtained by solving the bending-moment equation considering the zero-moment at the
point of injection (c′) in Equation (1), which is called Euler’s buckling equation (see detailed
derivation for Fcr in Equation S1 from Euler’s Buckling Equation).

Fcr =
π2E∗ I

L2 [N] (1)

Figure 6. A simple analytical schematic of a pillar in (a) stable and (b) buckled states.

Pcr can be calculated by dividing Fcr by the top surface area of the pillar of the
patterned PDMS mold as expressed in Equation (2). The Pcr in this equation corresponds
to the pressure applied to a single pillar among numerous pillars in the patterned PDMS
mold with an area of 9 cm2.

Pcr =
Fcr

A
=

πE∗

16
×
(

D
L

)2
=

πE∗

16
×
(

1
AR

)2 [
N m−2

]
(2)
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Here, I is the moment of inertia with respect to the principal axis of buckling, which is
πD4

64 , A is the top surface area of the pillar, which is πD2

4 , and the L is the height of the
pillar (H). E* = E/(1 − v2), where v is the Poisson’s ratio and E is the Young’s modulus.
E* in Equations (1) and (2) is the combined elastic modulus, which is commonly used for
large deformations considering the material’s Poisson’s ratio [11–13]. After substituting
the Poisson’s ratio of PDMS as 0.5, E* is expressed as 4E/3 [14,15].

To elucidate the applicability of this equation to the cases in this study, the criteria for
applying Euler’s buckling theory were investigated. Since Euler’s buckling equation is
derived assuming that the pillars under the external load are extremely thin like a thread
or string, it is not that suitable to assume such for the pillars used herein. In particular,
the low-AR structures are likely to be excluded from the applicable range of Euler’s
buckling equation. To set the criteria for the applicability of Euler’s buckling equation, the
slenderness ratio was introduced and used, which is defined as the ratio of the length of
the structure to its least radius of gyration r. Based on the definition, the slenderness ratio
can be expressed as follows:

L
r
=

L√
I/A

=
L√

πd4

64 ∗
4

πd2

=
L

d/4
= 4

L
d
= 4AR, (3)

where the radius of gyration (r) describes the cross-sectional area distribution in a pillar

around its centroidal axis, which is
√

I
A . This result indicates that the slenderness ratio

equals four fold of the AR. The critical slenderness ratio (L/r)c, which determines the
applicability of Euler’s buckling equation, is obtained by assuming that the material’s
critical stress (σcr) is equal to its proportional limit (σpl) [16]. Euler’s buckling equation is
applicable in the range above the critical slenderness ratio; however, it is not applicable in
the range below the critical slenderness ratio. Determining the critical slenderness ratio
requires calculating σcr and σpl . The critical stress (σcr) can be expressed by dividing the
critical load by the top surface area of the single pillar (i.e., equal to the Pcr), and the
relationship between σcr and (L/r)c can be re-expressed by substituting Equation (2) into
Equation (3) as follows:

σcr = Pcr =
Fcr

A
=

π2E∗

(L/r)c
2

[
N m−2] (4)

After rearranging the equation for (L/r)c and assuming that σcr is the same as σpl , the
equation is expressed as follows:

(
L
r

)
c
=

√
π2E∗

σpl
=

√
2π2E∗

σy
(5)

In Equation (5), σpl is generally considered half of the material’s yield strength,
σy [16–19]. In a previous study, the yield strength of PDMS was reported as 700 kPa [20].
E* is calculated as 3.48 MPa using the E-value of PDMS (2.61 MPa) [21]. Based on the
information, (L/r)c was calculated as 9.906. By considering the relationship between the
critical slenderness ratio and AR in Equation (3), the critical AR (ARc) as an indicator of
applicability of Euler’s buckling equation was calculated as 2.4765. Thus, Euler’s buckling
equation is only valid for the pillar structure with AR over ~2.5 in the case of using PDMS
as molds. From the results, the calculated critical slenderness ratio, the theoretical Pcr, and
the experimentally obtained buckling pressure are plotted in Figure 7. As shown in the
graph, in the applicable range of Euler’s buckling equation, the theoretical (green line)
and the experimental (gray bar) values are incompletely matched, indicating that despite
applying higher pressure than Pcr, the polymeric stencil was stably made without the
buckling phenomenon. This result can be attributed to the inaccuracy in the following
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cases, which is not considered while analyzing the buckling phenomenon using Euler’s
buckling equation [22,23]:

• Inhomogeneity due to the inherent non-uniformity of the material and imperfect
mixing process of PDMS base and curing agent of PDMS.

• The imperfect flatness of the UV-imprinting machine used in the experiment.
• Slightly different distances from the substrate to the top surface of each pillar due to

the finely inclined PDMS mold.

Figure 7. Plot of experimentally obtained and theoretically calculated critical buckling pressures of
pillared structures as a function of aspect ratio: (gray bar) is the experimental values, (green line) is
the theoretical values, (blue line) is the correction factor calibrated theoretical values, and (red dotted
line) indicates the criteria of applicability of Euler’s buckling theory.

To correct the inaccuracy, the correction factor was considered, the value of which
is 1.67 as derived from the comparison between the experimental and theoretical results.
Consequently, in the applicable range of Euler’s buckling equation in Figure 7, which are
the cases of AR = 4.0 and 5.3, the experimental results (Gray bar) and the correction-factor-
calibrated theoretical values (blue line) fit well. However, in the non-applicable range of
Euler’s buckling equation, which are the cases of AR = 1.6 and 2.0, the experimentally
obtained values are more than thrice lower the theoretical values, even when the correction
factor is considered. This result indicates that the experiment-based approach should be
used to anticipate the structural deformation of the structures with low AR below ARc due
to the mismatch of the experimental result and Euler’s buckling theorem. Apparently, the
resultant shapes of the low-AR structures were slanted without the curved wall, whereas
the high-AR structures were bent with a curved wall. Also, the lateral shift of the pillar top
surface of the low-AR structures was more alleviated than that of the high-AR structures
under the comparable applied pressure. This trend implies that although the deformation
of the low-AR structures occurs below the anticipated theoretical buckling pressure, the
amount of deformation was restrained compared to the high-AR structures. It is well
known that the large deformation for a short pillar is restrained, and since the structural
stress is accumulated due to less deformation, it would be fractured rather than deformed.
In this aspect, ideally, the low-AR structures under compression are likely to be expanded
laterally (Figure 8), which is slightly different from the resultant shape based on observation.
This trend is ascribed to the inevitably and unintentionally applied shear stress from the
process inaccuracy, including the material’s inhomogeneity and imperfect flatness. Hence,
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to manufacture completely upstanding apertures without deformation in the polymeric
stencil, the design rules should be considered as follows. First, in the case of the pillars with
higher AR than ARc, the pressure on a single pillar should be lower than the predicted Pcr
based on Euler’s buckling theory. Meanwhile, in the case of the pillars with lower AR than
ARc, an experimental approach to obtain Pcr is required rather than the theoretical approach
based on Euler’s buckling equation. Second, in both cases, it is extremely important to
minimize the aforementioned inaccuracy, including material inhomogeneity and imperfect
flatness in the process.

Figure 8. (a–c) Schematic of the ideal shape of pillars with low aspect ratio with variations of applied pressure. Stable (a),
buckled (b), and fractured states (c).

4. Conclusions

We fabricated UV-cured polymeric stencils with microdot apertures having varied AR
of the structures based on the scavenging effect of PDMS molds. In the fabrication process,
the buckling phenomenon of the PDMS pillars was observed when the applied vertical
pressure increased above a certain pressure, which is Pcr. As a result of the investigation of
the buckling behavior of the PDMS pillar during the process, the structures with the same
AR showed almost the same Pcr, which confirms that the structural factor determining the
buckling phenomenon of the single pillar is AR, not D or H. Furthermore, based on the
observation of the buckled morphology, the structures can be classified into two groups: a
low-AR group (AR = 1.6 and 2.0), and a high-AR group (AR = 4.0 and 5.3). In each group,
Pcr decreases as the AR increases, as expected. Also, the comparative analysis of Pcr based
on Euler’s buckling theory was conducted to validate the buckling behavior. By considering
the slenderness ratio, which is calculated as four times the AR in this study, we found
the applicable range of Euler’s buckling theory. ARc was determined as 2.476; therefore,
the analysis based on Euler’s buckling theory for the high-AR group is only valid herein.
By considering a correction factor of 1.67, the experimentally obtained values and the
calibrated theoretical buckling pressure agreed well for the high-AR group, but not for the
low-AR group, in which the experimental approach rather than the theoretical approach
should be considered. Such a design rule for preventing the buckling phenomenon can
be used as an indicator to produce stable polymeric stencils with microdot apertures and
can be advantageously applied to scalable processes, including the roll-to-roll process for
manufacturing polymeric membranes for applications in biomedical, microfluidic, and
flexible devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13244361/s1, Figure S1: Camera images of UV-imprinting equipment, chamber
interior, and UV exposure process with pressure application, Equation S1. Derivation of criti-
cal buckling load (Fcr) from Euler’s Buckling Equation, Figure S2: A plot of applied pressure
with variations of aspect ratios, which indicates the pressure for the stable state and the buckling
state, Table S1: Summarized processes for fabricating membranes with nano/micro apertures,
Table S2: Summarized process condition of geometrical dimension and applied pressure to fabri-
cate the UV cured polymeric membrane with apertures. Supplementary data to this article can be
found in the online version or from the author.
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