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Abstract

Compared to the integer-order modeling, the fractional-order modeling can achieve higher

accuracy for designing and analyzing the DC-DC power converters. However, its applica-

tions in pulse width modulation (PWM) converters are limited due to the computational

complexities. In this paper, a modified fractional-order modeling methodology for DC-DC

converters is proposed, and its effectiveness is verified on the fractional-order positive Luo

converters. Instead of using fractional-order calculus, the proposed methodology analyzes

the harmonic components of the PWM converters by utilizing the non-linear vector differen-

tial equations of the periodically time-variant system. The final solution of the state variables

is composed of two parts: the steady-state solution and the transient solution. The approxi-

mate steady state solution can be obtained by using the equivalent small parameter (ESP)

method and the harmonic balance theory, while the main part of the transient solution can

be obtained according to the explicit Grünwald-Letnikov (GL) approximation. In addition, the

influence of the fractional orders on the performance of the DC-DC converters, and on the

dynamic behaviors of the fractional-orders systems are also discussed in this paper. Com-

pared to the conventional fractional-order numerical models, the proposed model is able to

present the time-domain information more precisely, which helps to better reveal and ana-

lyze the non-linear behaviors of the DC-DC converters. The effectiveness of the work is

demonstrated by the simulation and experimental results of the equivalent circuits built with

fractional-order components.

Introduction

In recent years, the findings, of the fractional-order inductive phenomena, in physics, engi-

neering, biology and other fields, have led to a closer relationship between theory and practice

[1–4]. Numerous mathematical modeling studies on the passive components in [5, 6], i.e.

inductors and capacitors, have shown that, compared to the integer-order modeling, the frac-

tional order modeling methodology can better present the electrical characteristics of the sys-

tem, making it a widespread research topic [7]. In addition, since inductors and capacitors
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play important roles in the power converters, it is more accurate to model the power convert-

ers with the fractional-order modeling method [8–16]. So far, there are only a few commer-

cially available fractional-order passive components. The fractional-order modeling for passive

components are developed from empirical results [17, 18], or equivalent models of the passive

components described by the fractional-order definition [19–24].

Fractional-order models for different DC-DC converters in different modes given in [8–13]

are using fractional calculus and state space averaging techniques. By utilizing the fractional-

order definitions, the mean and ripple values of the steady-state variables can be obtained, but

the transient solutions cannot be derived. Because of the inconsistent definitions of the frac-

tional-order derivative, such modeling technique for the fractional-order converters is not

always valid. Besides, [12, 13] discussed the modified Oustaloup’s approximation in fractional

integral module, which is used to acquire the transient solutions. Without discretizing, this

method is a precise engineering simulation for the transient responses analysis, but is not an

appropriate solution for the non-linear behaviors analysis due to the frequency domain

approximation. [14] offers a fractional means to characterize the non-solid aluminum electro-

lytic capacitors in DC-DC converters. On the other hand, the Predictor-Corrector Adams-

Bashforth-Moulton (PECE-ABM) type numerical method is often used to obtain the solutions

of the fractional systems. Due to the “long memory” characteristics of the fractional-order

modeling, the derivation of the fractional-order calculus is usually not straightforward. The

approach to get the steady-state variables requires processing the whole datapoints between the

initial state and the steady state. Therefore, large amounts of computation efforts are involved

in the solving process. The time-domain modeling proposed in [15, 16] uses the simplified

equivalent small parameter (SESP) method to get the steady state waveforms, instead of using

the fractional-order derivative definitions. It is able to solve the steady state variables without

circuit simulations or multiple iterations. However, its accuracy still needs improvement and

it does not apply to the situation in which the system state variable changes abruptly in one

switching cycle. In addition, the transient solutions of the fractional model are not mentioned.

[12], [13] and [25] studied the dynamic behaviors of the fractional-order PWM converters,

but their results are obtained via the MATLAB/Simulink simulations using the approximation

of the fractional-order components. Furthermore, none of the above-mentioned literatures

have investigated the non-linear behaviors via numerical analysis in time-domain. Ref. [26]

presented extensive experimental results, which exposes the operating mechanism of the limit

cycle behavior in the integer-order boost converters. Nevertheless, its conclusions do not apply

to the Grünwald-Letnikov (a.k.a. Riemann-Liouville and Caputo) definition-based systems.

These fractional-order systems do not have periodic solutions [27–30], but only have the

asymptotically limit cycle behaviors. Considering their impact on the device stress and the sys-

tem efficiency during the switching periods, such asymptotically limit cycle behaviors require

special attention in practical applications.

This paper is focusing on the asymptotically limit cycle behaviors in the fractional-order

converters with the most widely used proportional-integral (PI) voltage compensator. Taking

the positive Luo converter as an example, a modified time-domain modeling and analyzing

methodology for DC-DC converters is proposed. The theoretical foundation of the work pre-

sented here is based on Eq (1) from [31],

dleot

dtl
¼ oleot ð1Þ

in which, λ is the order, and ω is the angular frequency of above differential operator. Notice-

ably, λ can be either an integer or a fraction.
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Eq (1) indicates that the differential operator only influences the amplitude, but not the

angular frequency in the exponential function. Because of this, the equivalent small parameter

(ESP) method and the harmonic balance theory can be applied to the fractional differential

operation. By extending the conventional ESP method into the fractional domain, a modeling

method and the steady state solutions of the fractional-order DC-DC converters can be

obtained. Therefore, the final approximate analytical solutions of the PWM converters in the

steady state can be represented as the sum of the harmonic contents. Different from basic

DC-DC converters, the voltage across the transfer capacitors in the positive Luo converter

exhibits huge oscillations when the power switch turns off. The filtering property of the posi-

tive Luo converter is not as strong as that in other PWM converters. Since the first three terms,

x0, x1 and x2, in [32], Eq (4) cannot ensure the accuracy of the state variables in positive luo

converters, a modified algorithm by extending the consideration scope to more equations of

the equivalent system is proposed in this paper. Compared with conventional schemes, the

proposed method is able to solve the steady state variables of the positive Luo converter more

accurately. With the explicit Grünwald-Letnikov (GL) approximation, the proposed method

greatly reduces the number of iterations when computing the transient solutions. Therefore,

the speed and the accuracy of the computations can be improved at the same time. Since the

proposed model is developed in the time domain, and the correction coefficients are used in

the case of a homogeneous initial value, it can uncover the nonlinear fractional-order behav-

iors more comprehensively and realistically.

This paper is organized as follows: Section 2 introduces the mathematical modeling method

for the fractional-order positive Luo converters operated in CCM, and their equivalent circuit

models based on the ESP method. Section 3 presents the procedure to get the steady state

and transient solutions of the fractional-order positive Luo converter. Section 4 provides the

detailed numerical simulation results, which demonstrate the effectiveness of the proposed

method. Since the fractional orders have great influence on the CCM-operating criterion, the

transfer functions and the harmonic amplitudes of the state variables of the converters, these

order-related phenomena are discussed in detail in Section 5. The asymptotically limit cycle

behavior analysis of the PI controlled fractional-order positive Luo converter is shown in sec-

tion 6. Section 7 carries out circuit simulations and experiments which further demonstrate

the above-mentioned analysis. Section 8 summarizes the conclusion and future work.

Equivalent model of the fractional-order positive Luo converter

using the ESP method

According to the linear capacitor model and the inductor model proposed by Westerlund [33,

34], all real capacitors and inductors are fractional essentially. The voltage across a real induc-

tor vL and the current through a real capacitor iC can be, respectively, described by

vL ¼ L
dliL
dtl

; 0 < l < 1 ð2aÞ

iC ¼ C
dmvC
dtm

; 0 < m < 1 ð2bÞ

where L presents the inductor’s inductance, C is the capacitor’s capacitance, and λ, μ are the

orders. They have relationships with the “proximity effect” and the kind of the dielectric.

As shown in Fig 1, circuit for the positive output elementary super lift Luo converter con-

sists of the DC supply voltage Vin, the inductor L, the capacitors Cb and Co, the power switch S,
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the diodes D1 and D2, and the load resistor Ro. During the analysis of the operating process, all

the components are assumed to be ideal and running in CCM mode.

Let n be any integer, T represent the switching period and D denote the duty ratio in the

steady state. Generally speaking, there are two switching states for the positive Luo converter

in CCM mode, identified as:

State 1: t 2 (nT, (n + D)T], during which S and D1 are on, and D2 is reversed-biased; the equiv-

alent circuit is shown in Fig 2(a).

State 2: t 2 ((n + D)T, (n + 1)T], during which S and D1 are off, and D2 is forward-biased; the

equivalent circuit is presented in Fig 2(b).

In State 1, during the on-time period of the switch S, capacitor Cb is charged by the voltage

supply, and the current iL flowing through L increases. In State 2, during the off-time interval

of the switch, the inductor L1 is still conducting current, and the capacitor Cb and Co are dis-

charged. It is worth mentioning that Rin is the internal resistance of the voltage supply, which

is a very small value but cannot be neglected in the model of this paper [35, 36]. To represent

the switching state of the PWM converter, a periodic scalar function s(t) is introduced, which

Fig 1. Circuit of the positive Luo converter.

https://doi.org/10.1371/journal.pone.0237169.g001

Fig 2. Operating states of the positive Luo converter: (a) State 1; (b) State 2.

https://doi.org/10.1371/journal.pone.0237169.g002
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is denoted as

sðtÞ ¼
0 t 2 ðnT; ðnþ DÞT�

1 t 2 ððnþ DÞT; ðnþ 1ÞT�

8
<

:
ð3Þ

Select the inductor current iL, the capacitor voltages vb and vo as the state variables. In State

1, the state equations of the positive Luo converter can be described as

daiL
dta
�

1

L
vb ¼ 0 ð4aÞ

dbvo
dtb
þ

1

RoCo
vo ¼ 0 ð4bÞ

dgvb
dtg
þ

1
Cb

iL þ
1

RinCb
vb ¼

1
RinCb

Vin ð4cÞ

When operating in State 2, the state equations are expressed as

daiL
dta
þ
Rin

L
iL þ

1

L
vo �

1

L
vb ¼

1

L
Vin ð5aÞ

dbvo
dtb
�

1

Co
iL þ

1

RoCo
vo ¼ 0 ð5bÞ

dgvb
dtg
þ

1
Cb

iL ¼ 0 ð5cÞ

In order to simplify the equations, we use p to replace d/dt. Correspondingly, dα/dtα, dβ/dtβ

and dγ/dtγ are represented by pα, pβ and pγ, respectively. In this way, the converter in the steady

state can be formulated by the following vector differential equation of the state variable

G1ðpa; pb; pgÞx þ G2fðxÞ ¼ H1 þ sðtÞH2 ð6Þ

Here, the vector of the state variables is x = [iL vo vb]T, and the non-linear vector function is

indicated as f(x) = s(t)x. H1 = [Vin/L 0 0]T and H2 = [−Vin/L 0 Vin/(Rin Cb)]
T are the constant

vectors. The matrices G1(pα, pβ, pγ) and G2 are denoted by

G1pa; pb; pg ¼

pa þ
Rin

L
1

L
�

1

L

�
1

Co
pb þ

1

RoCo
0

1

Cb
0 pg

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð7aÞ
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G2 ¼

�
Rin

L
�

1

L
0

1

Co
0 0

0 0
1

RinCb

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð7bÞ

These equations have shown that the fractional orders can only influence the matrix G1, but

not G2.

In consideration of the ESP method, the equation solution for Eq (6) can be represented by

a series

x ¼ x0 þ
X1

i¼1

εixi ð8Þ

where the zero order approximate vector x0 is called the main wave and ith order approximate

vectors xi are called the corrections. Smallness indicator parameter εi is introduced temporar-

ily to supply the order of the magnitude in the terms and to indicate that xi is much smaller

than x0. More accurately speaking, we have x0� εi xi� εi+1 xi+1. Similarly, s(t) can be

expanded into

sðtÞ ¼ s0 þ
X1

i¼1

εisi ð9Þ

Substituting Eqs (8) and (9) into f(x), and merging terms that have the same order εi, the

expression of f(x) can be obtained as

f ¼ f0 þ
X1

i¼1

εif i ð10Þ

where

f0 ¼ s0x0 ð11aÞ

f1 ¼ s0x1 þ s1x0 ð11bÞ

f2 ¼ s0x2 þ s1x1 þ s2x0 ð11cÞ

f3 ¼ s0x3 þ s1x2 þ s2x1 þ s3x0 ð11dÞ

f4 ¼ s0x4 þ s1x3 þ s2x2 þ s3x1 þ s4x0 ð11eÞ

and so on.

According to Eq (1), the order of the fractional differential operator does not affect the

angular frequency. Similar to the method of [15], the terms in expansion (8) can be repre-

sented as

xi ¼
X

m2Ei

xmi ¼ a0i þ
X
½amie

jmt þ �amie
� jmt� ð12Þ
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Here, m is an integer, the normalized time τ = ωt (ω = 2π/T). The terms a0i are the DC com-

ponents, ami represent the mth harmonic magnitudes. The spectral content set of {E0} of the

vector x0, which is a group of numbers denoting relevant frequencies of harmonics, depends

on the physical phenomena of object. Considering the low-pass filtering properties of the

power converters, the first term x0 only has the DC components of the state variables, implying

that x0 = a00 and {E0} = {0}. Likewise, the spectral content {Ei} for each xi in the DC-DC con-

verters is unknown in advance. {Ei} can be obtained via the iterated operation, which starts

with x1 and moves to higher order corrections.

Like x1 that uses normalized time τ, the switching function s(τ) can be depicted in Fourier

series as

sðtÞ ¼ b0 þ
X1

l¼1

ðble
jlt þ �ble

� jltÞ ð13Þ

where b0 ¼ ð
R T

0
sðtÞdtÞ=T ¼ D, bl = (αl − jβl)/2, and �bl stands for the conjugate complex of bl,

in which

al ¼
2

T

Z T

0

sðtÞ cos ðlotÞdt ¼
sin ð2DlpÞ

lp
ð14aÞ

and

bl ¼
2

T

Z T

0

sðtÞ sin ðlotÞdt ¼
1 � cos ð2DlpÞ

lp
ð14bÞ

The coefficient bl decreases with the increasing of l. According to the definition described

in [15], si(τ) can be chosen as

s0ðtÞ ¼ b0 þ b1ejt þ �b1e� jt ð15aÞ

siðtÞ ¼ b2iej2it þ b2iþ1ejð2iþ1Þt þ �b2ie� j2it þ �b2iþ1e� jð2iþ1Þt ð15bÞ

If Eqs (8) and (9) are introduced to (10), the spectral content of each term fi gets wider in

comparison with that of xi. Then, fi can be denoted as

f i ¼ f ik þ Riþ1 ð16Þ

where

f ik ¼
X

m2Ei

pmi ¼ g
0i þ

X
ðgmie

jmt þ �gmie
� jmtÞ ð17aÞ

Ri ¼
X

m2Ei

qmi ¼ V0i þ
X
ðVmie

jmt þ �Vmie
� jmtÞ ð17bÞ

In the above equations, the spectral content of the term f0k has the same harmonics with the

spectral content of the term x0, while the additional harmonics outside the set {E0} belong to

R1. Generally speaking, the harmonics of R1 have magnitudes that are smaller than the magni-

tudes of the harmonics in f0k. As in [15], the set {E1} is determined by the newly generated

harmonics in f0. In another word, the spectral content of the term f1k includes the same har-

monics with the spectral content of the correction x1. In the same manner, the spectral con-

tents of the correction xi+1 is determined by the spectral contents in Ri+1, and the term Ri+1 is
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considered smaller compared to fik [37]. Thus, Eq (16) can be rewritten as

f i ¼ f ik þ εRiþ1 ð18Þ

Introducing Eqs (18) into (10), we can obtain that

f ¼ ðf0k þ εf1k þ ε
2f2k þ � � �Þ þ ðεR1 þ ε

2R2 þ � � �Þ ð19Þ

Then substituting Eqs (8) and (19) into (6) and equating the terms with the same εi on the

both sides, we can obtain the following differential equations:

G1ðpa; pb; pgÞx0 þ G2f0k ¼ H1 þ s0H2 ð20aÞ

G1ðpa; pb; pgÞx1 þ G2ðf1k þ R1Þ ¼ s1H2 ð20bÞ

G1ðpa; pb; pgÞx2 þ G2ðf2k þ R2Þ ¼ s2H2 ð20cÞ

G1ðpa; pb; pgÞx3 þ G2ðf3k þ R3Þ ¼ s3H2 ð20dÞ

G1ðpa; pb; pgÞx4 þ G2ðf4k þ R4Þ ¼ s4H2 ð20eÞ

and so on.

Because the influence of the exponential functions has been eliminated, these equations are

all linear. Using the harmonic balance method, the solutions of Eq (20) in the steady state can

be found. The amplitudes of the main wave x0 can be solved by using the Eq (20a). Likewise,

the harmonic amplitudes of the corrections x1, x2, x3, x4,. . ., etc can be obtained by using Eq

(20b) and the following equations.

When the sufficient components are found, the steady-state solution of x is acquired by a

simple summing of these components, which is approximated by

x � x0 þ x1 þ x2 þ x3 þ x4 þ � � � ð21Þ

Therefore, the parameter ε was used essentially to point out the order of the equations. The

right side of Eqs (Eq (20a))–(20e) can be adjusted according to the order of the exponent func-

tion in the left side.

Solutions for the state variables of the fractional-order positive Luo

converter

Steady-state solutions

In order to conveniently interpret the low-pass filtering characteristics of the power convert-

ers, x0 is selected as

x0 ¼ a00 ¼ ½ I00 Vo00 Vb00 �
T ð22Þ

where I00, Vo00 and Vb00 are the DC components.

The solutions of x0, x1, x2 in Eqs (Eq (20a))–(20c) can be found in S1 Appendix. Normally,

considering the low-pass filtering characteristic of the power converters, the magnitudes of

harmonics with order higher than three are quite small. This represents that, for most of

DC-DC converters, the solution of x in the steady state can be approximated by x0, x1 and

x2. However, for the positive Luo converter, vb varies greatly when the switch S is on. In

other words, the magnitudes of its high frequency harmonic components are very high
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correspondingly. The high order correction xi(i� 3) can greatly affect the low order harmonic

magnitudes of x, especially for the magnitudes of the DC component and the exponent e−jτ.
Increasing the order of the correction xi we consider can greatly improve the accuracy of x.

Take x3 and x4 as examples, their DC components and the first order harmonic magnitudes

are relatively larger. Therefore, these terms cannot be ignored.

According to S1 Appendix, the spectral content set of x3 can be derived as {E3} = {1, 4, 5}.

The correction x3 can be assumed to be

x3 ¼ a13ejt þ �a13e� jt þ a43ej4t þ �a43e� j4ta53ej5t þ �a53e� j5t ð23Þ

in which a13 = [I13 Vo13 Vb13]T gives the corrections of the first order harmonics in a11. By

introducing si and xi(i = 0, 1, 2, 3) into f3, the following expressions of f3m and R4 can be con-

cluded.

f3m ¼ ðb0a13 þ b3
�a22 þ

�b2a32Þejt þ ðb0a43 þ
�b1a53 þ b2a22 þ b5

�a11Þej4t

þðb0a53 þ b1a43 þ b3a22 þ b2a32 þ b4a11Þej5t þ c:c
ð24aÞ

R4 ¼ ðb1
�a13 þ

�b1a13 þ
�b2a22 þ b2

�a22 þ
�b3a32 þ b3

�a32Þ þ ðb1a13 þ b2a02Þej2t

þð�b1a43 þ b3a02 þ b4
�a11Þej3t þ ðb1a53 þ b3a32 þ b5a11 þ b6a00Þej6t þ c:c

ð24bÞ

Substituting x3, f3m and R3, the following equation can be obtained:

ðG11 þ G2b0Þa13 ¼ � G2ðb3
�a22 þ

�b2a32 þ b1a02 þ
�b1a22 þ b2

�a11Þ ð25Þ

Eq (25) can be overwritten as

ðjoÞa þ
Rin

L
1

L
�

1

L

�
1

Co
ðjoÞb þ

1

RoCo
0

1

Cb
0 ðjoÞg

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

þ D

�
Rin

L
�

1

L
0

1

Co
0 0

0 0
1

RinCb

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

I13

Vo13

Vb13

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ �

�
Rin

L
�

1

L
0

1

Co
0 0

0 0
1

RinCb

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

b3
�I 22 þ

�b2I32 þ b1I02 þ
�b1I22 þ b2

�I 11

b3
�Vo22 þ

�b2Vo32 þ b1Vo02 þ
�b1Vo22 þ b2

�Vo11

b3
�Vb22 þ

�b2Vb32 þ b1Vb02 þ
�b1Vb22 þ b2

�Vb11

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð26Þ

Thus, a13 is obtained. From Eq (24b), the spectral content set of x4 can be deduced, {E4} =

{0, 2, 3, 6}. Then the correction x4 can be assumed to be

x4 ¼ a04 þ a24ej2t þ �a24e� j2t þ a34ej3t þ �a34e� j3t þ a64ej6t þ �a64e� j6t ð27Þ

where a04 = [I04 Vo04 Vb04]T gives the corrections of the DC components in a00, similarly.
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Introducing si and xi(i = 0, 1, 2, 3, 4) into f4, the following expression of f4m can be deduced.

f4m ¼ b0a04 þ ðb0a24 þ
�b1a34 þ

�b2a43 þ b3
�a13 þ

�b3a53 þ b4
�a22Þej2t

þ ðb0a34 þ b1a24 þ b2a13 þ
�b2a53Þej3t þ ðb0a64 þ b2a43 þ b4a22 þ b7

�a11Þej6t þ c:c
ð28Þ

Utilizing x4, f4m and R4, we can obtain the following equation:

ðG10 þ G2b0Þa04¼ � G2ðb1�a13 þ
�b1a13 þ

�b2a22 þ b2�a22 þ
�b3a32 þ b3�a32Þ ð29Þ

Eq (29) can be represented in the matrix form as

Rin

L
1

L
�

1

L

�
1

Co

1

RoCo
0

1

Cb
0 0

2

6
6
6
6
6
6
6
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6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

þ D

�
Rin

L
�

1

L
0

1

Co
0 0

0 0
1

RinCb

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

0

B
B
B
B
B
B
B
B
B
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C
C
C
C
C
C
C
C
C
C
A

I4

Vo4

Vb4
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6
6
6
6
6
4

3

7
7
7
7
7
5

¼ �

�
Rin

L
�

1

L
0

1

Co
0 0

0 0
1

RinCb

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

b1
�I 13 þ

�b1I13 þ
�b2I22 þ b2

�I 22 þ
�b3I32 þ b3

�I 32

b1
�Vo13 þ

�b1Vo13 þ
�b2Vo22 þ b2

�Vo22 þ
�b3Vo32 þ b3

�Vo32

b1
�Vb13 þ

�b1Vb13 þ
�b2Vb22 þ b2

�Vb22 þ
�b3Vb32 þ b3

�Vb32

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð30Þ

In this manner, a04 is solved. Furthermore, the approximate steady state solution of x can

be expressed as

x � x0 þ x1 þ x2 þ x3 þ x4 þ � � �

¼ ða00 þ a02 þ a04Þ þ ða11 þ a13Þejt þ a22ej2t þ a32ej3t þ c:cþ � � �
ð31Þ

Components of x are

iL � ðI00 þ I02 þ I04Þ þ 2½realðI11 þ I13Þcosot � imagðI11 þ I13Þsinot

þrealðI22Þcos2ot � imagðI22Þsin2ot

þrealðI32Þcos3ot � imagðI32Þsin3ot� þ � � �

ð32aÞ

vo � ðVo00 þ Vo02 þ Vo04Þ þ 2½realðVo11 þ Vo13Þcosot � imagðVo11 þ Vo13Þsinot

þrealðVo22Þcos2ot � imagðVo22Þsin2ot

þrealðVo32Þcos3ot � imagðVo32Þsin3ot� þ � � �

ð32bÞ

vb � ðVb00 þ Vb02 þ Vb04Þ þ 2½realðVb11 þ Vb13Þcosot � imagðVb11 þ Vb13Þsinot

þrealðVb22Þcos2ot � imagðVb22Þsin2ot

þrealðVb32Þcos3ot � imagðVb32Þsin3ot� þ � � �

ð32cÞ

where real(•) and imag(•) stand for the real part and the imaginary part of complex terms,

respectively.
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Transient solutions

As high order oscillation equations have little effect on the transient process, we should focus

on the main expression of the state variables, which can be presented as:

paiL0 ¼ �
ð1 � dÞRin

L
iL0 �

ð1 � dÞ
L

vo0 þ
1

L
vb0 þ

ð1 � dÞ
L

Vin ð33aÞ

pbvo0 ¼
ð1 � dÞ

Co
iL0 �

1

RoCo
vo0 ð33bÞ

pgvb0 ¼ �
1

Cb
iL0 �

d
RinCb

vb0 þ
1

RinCb
Vin ð33cÞ

Using the explicit Grünwald-Letnikov (GL) approximation, the numerical solution of Eq

(33) has the following form:

iL0ðtkÞ ¼ ha �
ð1 � dÞRin

L
iL0 tk� 1ð Þ �

ð1 � dÞ
L

vo0 tk� 1ð Þ þ
1

L
vb0 tk� 1ð Þ þ

ð1 � dÞ
L

Vin

� �

þ
Xk

i¼1

wðaÞi iL0ðtk� iÞ þ rðaÞk iL0ð0Þ

ð34aÞ

vo0ðtkÞ ¼ hb
ð1 � dÞ

Co
iL0 tkð Þ �

1

RoCo
vo0 tk� 1ð Þ

� �

þ
Xk

i¼1

wðbÞi vo0 tk� ið Þ

þrðbÞk vo0ð0Þ

ð34bÞ

vb0ðtkÞ ¼ hg �
1

Cb
iL0 tkð Þ �

d
RinCb

vb0 tk� 1ð Þ þ
1

RinCb
Vin

� �

þ
Xk

i¼1

wðgÞi vb0 tk� ið Þ

þrðgÞk vb0ð0Þ

ð34cÞ

where tk = kh, h represents the step time size. iL0(tk) and vo0(tk) are the main instantaneous

components of the inductor current and the output voltage at time tk respectively. The coeffi-

cients can be calculated by the following expressions:

wðlÞl ¼ �
Gðl � lÞ

Gð� lÞGðl þ 1Þ
ð35aÞ

rðlÞk ¼
1

klGð1 � lÞ
ð35bÞ

where Γ(•) represents the gamma function. rðlÞk is necessary to improve the accuracy in the

case of a homogeneous initial value.

To obtain the high order harmonics of the transient solutions, results of Eqs (34a)–(34c)

can replace the main wave a00. And then they will be substituted back to the formulas (Eq

(20a))–(20e) in Section 4. The approximate transient solutions of the state variables can be

expressed as the sum of all the harmonics, the same as Eq (32).
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Comparison and simulation of the conventional schemes and the

proposed method

Comparison of the steady-state solutions

In order to get the analytical solutions of the fractional-order DC-DC converters in the

steady state, there are many methods proposed by previous researchers. Among them, the

predictor-corrector method [38] is the most widely used used numerical scheme based on

the fractional-order definition and the time-domain analysis. It can solve the fractional-

order equations in each operating state. By running the routines programmed in MATLAB,

the numerical analysis of the fractional-order DC-DC converters can be accomplished cycle

by cycle. Through this process, the final results would include the complete contents of the

state variables from the initial state to the stable state. On the other hand, the whole informa-

tion can also be obtained by performing MATLAB/Simulink simulations with the modified

Oustaloup’s approximation method [39]. The fractional integral module in the simulation is

replaced by the approximated equations. As mentioned in the introduction, the modified

Oustaloup’s approximation method is a precise engineering simulation running in the fre-

quency domain. Therefore, a modified Oustaloup’s approximation method proposed in this

section will be used to verify the validity of the proposed method, and be used as the compar-

ison criterion for other methods.

In this subsection, the circuit parameters of the fractional-order positive Luo converter are

listed as follows: the input voltage Vin = 10 V, the switch frequency f = 20 kHz, the duty ratio

D = 0.5, L = 1 mH, Cb = 47 μF, Co = 10 μF, and Ro = 50 O. This part compares the results of

the modified Oustaloup’s approximation method, the PECE-ABM method and the proposed

scheme. The accuracy of the state variables is the main comparing object. In the modified Ous-

taloup’s method, there are three key parameters: the filter order 2N + 1, the lower limit ωb and

the upper limit ωh of the fitting frequency. Normally, ωb ωh = 1. We choose ωh = 5 × 105 rad/s,
ωb = 2 × 10−6 rad/s and N = 8 for the fractional-order positive Luo converter in this paper. The

results gotten by these three methods are listed in Table 1.

From Table 1, we can see that the DC components of these three schemes keep good consis-

tency. Evidently, both iL and vo are dependent of the orders of the capacitor and the inductor.

No matter which method is selected, the DC components of the state variables decrease with

the decreasing of α, β and γ. In order to further compare these three methods, the steady state

ripples are shown in Figs 3 and 4, where the black dash lines, the blue dotted lines and the red

solid lines stand for the results of the PECE-ABM method, the modified Oustaloup’s approxi-

mation method and the proposed scheme, respectively.

As shown in Figs 3 and 4, the waveforms from these three schemes are consistent with

each other, and the steady state ripples are influenced by the fractional orders. Specifically, the

steady state ripples of iL and vo increase with the decreasing of α and β respectively. In general,

the steady state ripples gotten by the proposed scheme are more closely resemble to the simula-

tion results obtained by the modified Oustaloup’s method, especially with smaller values of α
and β. For the PECE-ABM method, the rangeabilities of both the DC components and the AC

components are all undersized when α and β changes. This proves that the proposed method

can track the dramatic changes more closely compared to the PECE-ABM method. Reducing

the step size can improve the accuracy of the PECE-ABM, but the number of iterative compu-

tations will be greatly increased at the same time. For the modified Oustaloup’s method,

although it is more accurate, complex fractional-order component approximation and circuit

simulation should be used to obtain the steady state solutions.

In order to show that the proposed method can obtain more accurate state variables, of

the positive Luo converters, compared to the simplified equivalent small parameter (SESP)
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Table 1. The DC parts of IL and Vo acquired by using different schemes.

(α, β, γ) Proposed Method (a00a02a04) PECE Method Oustaloup’s Method

IL (A) Vo (V) IL (A) Vo (V) IL (A) Vo (V)

(1, 1, 1) 1.1696 29.2919 1.1585 29.2847 1.1784 29.5141

(1, 1, 0.95) 1.1618 29.1003 1.1585 29.0356 1.1677 29.2579

(1, 0.9, 1) 1.1545 28.9929 1.1622 29.0623 1.1647 29.2449

(1, 0.9, 0.95) 1.1467 28.8024 1.1519 28.8151 1.1541 28.9926

(1, 0.8, 1) 1.0873 27.4978 1.1107 27.9653 1.1012 27.8534

(1, 0.8, 0.95) 1.0799 27.3154 1.1012 27.7348 1.0916 27.6223

(0.95, 1, 1) 1.1760 29.2553 1.1703 29.2268 1.1829 29.4770

(0.95, 1, 0.95) 1.1681 29.0621 1.1591 28.9665 1.1716 29.2138

(0.95, 0.9, 1) 1.1568 28.9126 1.1631 28.9278 1.1650 29.1632

(0.95, 0.9, 0.95) 1.1489 28.7200 1.1520 28.6693 1.1539 28.9040

(0.95, 0.8, 1) 1.0799 27.2967 1.1043 27.6246 1.0911 27.6438

(0.95, 0.8, 0.95) 1.0724 27.1108 1.0941 27.3836 1.0809 27.4064

(0.9, 1, 1) 1.1951 29.1875 1.1781 29.1446 1.1973 29.4103

(0.9, 1, 0.95) 1.1872 28.9923 1.1656 28.8689 1.1849 29.1343

(0.9, 0.9, 1) 1.1692 28.7659 1.1708 28.7388 1.1724 29.0157

(0.9, 0.9, 0.95) 1.1613 28.5703 1.1585 28.4638 1.1602 28.7440

(0.9, 0.8, 1) 1.0774 26.9268 1.1031 27.1367 1.0815 27.2600

(0.9, 0.8, 0.95) 1.0698 26.7354 1.0919 26.8795 1.0705 27.0108

https://doi.org/10.1371/journal.pone.0237169.t001

Fig 3. Comparison of the steady state ripples in iL under different fractional orders: (a) (α, β, γ) = (1, 1, 0.95); (b) (α,

β, γ) = (1, 0.8, 0.95); (c) (α, β, γ) = (0.95, 1, 0.95); (d) (α, β, γ) = (0.95, 0.8, 0.95); (e) (α, β, γ) = (0.9, 1, 0.95); (f) (α, β, γ)

= (0.9, 0.8, 0.95).

https://doi.org/10.1371/journal.pone.0237169.g003
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method in [15, 16], the tolerance error index [40] is used to indicate the end of the iteration

process. This index is the ratio of the matrix-norm of ami (mth harmonic magnitude of Xi) to

that of a00. Thus, the tolerance of ami is denoted as

Tami ¼
kamik

ka00k
� 100% ð36Þ

The 1% tolerance error index is utilized to control the iteration process of xi. The correcting

process ends once the tolerance error index is smaller than 1%. For most DC-DC converters, x

in the steady state approximating by x0, x1 and x2 is accurate enough. However, for the positive

Luo converter, with the decreasing of β, the tolerance error index of a32 can reach 1% or even

larger, as represented in Fig 5, implying that the harmonic magnitudes in the high order cor-

rection xi(i� 3) are correspondingly high compared to the DC component. Thus, the iteration

process of xi should be continued. Fig 5 also shows the tolerance error index of a13 and a04.

This index of a13 is inversely proportional to α and β, and can be close to 1%. Because the

computational efforts for calculating the amplitude of the first three order harmonic amplitude

are relatively small, this paper only computes a13 and a04. As depicted in Fig 5, the tolerance

error index of a04 with different fractional orders keeps below 0.6%. Therefore, the approxi-

mate solution of x calculated by the proposed method is precise enough for the positive Luo

converter shown in Fig 1. And the tolerance error index at the end of the iteration process

decreases from larger than 1.3% to 0.6%.

In order to comprehensively compare the steady state solutions obtained by the SESP

method, the Oustaloup’s approximation method and the proposed scheme, we consider the

case in which (α, β, γ) = (0.9, 0.8, 0.95). Fig 6 shows the comparison of these three schemes,

which obviously shows that the steady state solutions obtained by the proposed method can

be more closely resemble to the results gotten by the Oustaloup’s approximation method,

Fig 4. Comparison of the steady state ripples in vo under different fractional orders: (a) (α, β, γ) = (1, 1, 0.95); (b)

(α, β, γ) = (1, 0.9, 0.95); (c) (α, β, γ) = (1, 0.8, 0.95); (d) (α, β, γ) = (0.9, 1, 0.95); (e) (α, β, γ) = (0.9, 0.9, 0.95); (f) (α,

β, γ) = (0.9, 0.8, 0.95).

https://doi.org/10.1371/journal.pone.0237169.g004
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compared to the SESP method, especially for vb. When the power switch turns off, the gap

between the results gotten by the SESP method and the proposed scheme can be greater than

3%. Similar to the tolerance error index of ami, the tolerance error indexes of each state variable

are calculated. It can be obtain that Ta13 = [TiL13 Tvo13 Tvb13]T = [1.81% 0.88% 0.76%]T and

Ta04 = [TiL04 Tvo04 Tvb04]T = [0.02% 0.01% 0.67%]T. For vb, the lack of significant decrease in

tolerance error index indicates that the number of iterations for SESP method is not enough.

Thus, the corrections of DC value and main wave proposed in this paper are necessary.

Fig 5. The tolerance error index of mth harmonic magnitude in xi (a32, a13 and a04).

https://doi.org/10.1371/journal.pone.0237169.g005

Fig 6. The steady state solutions obtained by using the SESP method (black dash lines), the proposed method (red solid lines) and the Oustaloup’s

approximation method (blue solid lines): (a) iL; (b) vo; (c) vb.

https://doi.org/10.1371/journal.pone.0237169.g006
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Transient solutions comparison

To verify the transient solutions obtained with the proposed method, a comparison is made

between them and other simulation results obtained by using the SESP method and the modi-

fied Oustaloup’s method. Circuit parameters in this subsection are listed as follows: Vin = 10 V,

f = 20 kHz, D = 0.4, L = 1 mH, Cb = 47 μF, Co = 10 μF, Ro = 50O, (α, β, γ) = (0.9, 0.8, 0.95).

The comparison of the state variables versus n (n = (1000f)−1 t), between the SESP method,

the Oustaloup’s approximation method and the proposed scheme, is depicted in Fig 7. It can

be seen that, the transient solutions of the proposed method are in good accordance with those

from the Oustaloup’s approximation method. Based on the analysis of the previous subsection,

using the proposed method, the numerical solution of each cycle is more accurate than SESP

method. Because the explicit Grünwald-Letnikov (GL) approximation is used in the transient

solution calculation, this error will accumulate with the increase of iterations, and be more

apparent in the steady state. Therefore, the steady state solutions obtained by the proposed

method are more accurate compared to the SESP method, especially for vb. When the power

switch turns on, the gap between the SESP method and the proposed method is more obvious

than that shown in Fig 6. The error between the maximum values of vb obtained by the two

methods can exceed 1%. Moreover, the vb waveform obtained by the SESP method during the

switching on conduction appears obvious distortion, which does not conform to the actual sit-

uation. Expect for the increased accuracy, the number of iterations is greatly reduced using

proposed method, since the step size is not required to be smaller than the switching cycle.

Analysis of fractional order related phenomena

CCM operating boundary

According to the operating criterion of the positive Luo converter, when the circuit of Fig 1

operates in continuous-conduction mode (CCM), the current iL must be continuous, meaning

that the inductor current is always greater or equal to zero. The CCM operating criterion ccan

be obtained from two parameters, namely �IL and ΔiL, which denote the average value of the

inductor current and the peak-peak ripple, respectively. �IL can be approximated by the combi-

nation of I00, I02 and I04. ΔiL can be computed using the inductor volt-second balance principle

Fig 7. Transient waveforms comparison of solutions obtained by the SESP method (black dash lines), the proposed method (red solid lines) and the Oustaloup’s

approximation method (blue solid lines): (a) iL; (b) vo; (c) vb.

https://doi.org/10.1371/journal.pone.0237169.g007
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and the definition of fractional-order derivative given by Caputo. As Rin is a very small value,

vb is very close to the input voltage Vin during the ON-state of the switch. Due to this and Eq

(4a), the CCM operating formula of the positive Luo converter with the fractional order can be

concluded as

C ¼ �IL �
1

2
DiL � I00 þ I02 þ I04 �

VinðDTÞ
a

2LaGðaÞ
ð37Þ

where Γ(•) represents the gamma function. The fractional-order positive Luo converter is

operating in CCM mode when C� 0. In other words, the converter goes to discontinuous

conduction mode (DCM) when C< 0.

According to the calculation method derived in the previous Section, the 3D plot of the

CCM operating criterion can be found in Fig 8 utilizing the circuit parameters in subsection A

of Section 4. The space beneath the surface in Fig 8 indicate the DCM mode, while the above

part represents the CCM mode. As shown in this figure, the CCM operating criterion is mainly

determined by the order α, while β partly affects it, and the impact of γ on the boundary can be

neglected.

Transfer functions of the converter

The transfer functions of the converter can be obtained by the small-signal perturbation analy-

sis based on Eq (6). Perturbed values can be represented as

~x ¼ Xþ x̂ ð38aÞ

~d ¼ Dþ d̂ ð38bÞ

~vin ¼ Vin þ v̂in ð38cÞ

where ~x, ~d and ~vin represent three perturbations. And X, D and Vin are the DC parts

Fig 8. Operating criterion of fractional-order positive Luo converter.

https://doi.org/10.1371/journal.pone.0237169.g008
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corresponding to the perturbed values. Substituting Eqs (38a)–(38c) into (6) gives expression

½G1ðpa; pb; pgÞ þ G2
~d�~x ¼ ðH1 þ

~dH2Þ~vin ð39Þ

Neglecting the infinitely small 2th perturbation can yield the following equation

G1ðpa; pb; pgÞx̂ þ G2ðDx̂ þ d̂XÞ ¼ H1v̂in þH2ðDv̂in þ d̂VinÞ ð40Þ

In order to get the transfer functions from v̂in to x̂, d̂ ¼ 0 should be assumed. Hence, Eq

(40) can be changed into

½G1ðpa; pb; pgÞ þ G2D�x̂ ¼ ðH1 þH2DÞv̂in ð41Þ

Then, x̂ is depicted as

x̂ ¼ ½G1ðpa; pb; pgÞ þ G2D�
� 1
ðH1 þH2DÞv̂in

¼

pa þ
ð1 � DÞRin

L
1 � D
L

�
1

L

�
1 � D
Co

pb þ
1
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Similarly, by letting v̂in ¼ 0, the transfer functions from d̂ to x̂ can be obtained. Thus, Eq

(40) can be rewritten as

G1ðpa; pb; pgÞx̂ þ G2ðDx̂ þ d̂XÞ ¼ H2d̂Vin ð43Þ

where X� a00. In this case, x̂ is denoted by
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In this way, the final transfer functions are equal to the results gotten with the state-space

averaging model. However, the derivation is much simpler. From the Fig 9(a) and 9(c), it can
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be seen that α significantly affects GiLvin
ðsÞ and GiLd (s) with the same fractional order. With

the decrease of α, the open loop amplitude margin increases. In Fig 9(b) and 9(d), both α
and β can affect Gvovin

ðsÞ and Gv0d (s). While, the order γ has very little influence on the bode

diagrams.

Harmonics of the state variables

Based on the results gotten by the proposed scheme, we further analyze the harmonics of the

inductor current iL and the output voltage vo with different orders. In a word, with the decreas-

ing of α, β and γ, the RMS values of the harmonics increase as displayed in Fig 10. This directly

results in the increasing of the inductor current ripples and the output voltage ripples, which

are generally undesired in the DC-DC converters design. Separately, α has a significant impact

on the first and third harmonics of iL, while β exerts considerable influence on the first and

third harmonics of vo. However, their effects on the second harmonic are reversed. The order

α decreases with the increasing of the second harmonic amplitude in vo. Similarly, β decreases

Fig 9. Bode diagrams of GiLvin
ðsÞ, Gvovin

ðsÞ, GiLd (s) and Gvod (s) with different α, β and γ: (a) GiLvin
ðsÞ; (b) Gvovin

ðsÞ;
(c) GiLd (s); (d) Gvod (s).

https://doi.org/10.1371/journal.pone.0237169.g009

Fig 10. RMS values of harmonics in iL and vo with different fractional orders: (a) iL; (b) vo.

https://doi.org/10.1371/journal.pone.0237169.g010
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when the second harmonic amplitude of iL increases. Normally, the order γ has very little

influence on iL and vo, relatively speaking. It mainly affects iL by influencing the value of vb.

Dynamical behavior analysis of the PI controlled fractional-order

positive Luo converter

In this section, whether the non-existence isolated period oscillations can be observed in frac-

tional-order model is used to establish the validity of proposed model in analyzing dynamical

behavior.

In order to analyze dynamical behaviors in the fractional-order model, the block diagram

of the positive Luo converter with PI voltage compensator are described in Fig 11. The control

voltage vvf can be expressed as

vvf ¼ kpðvref � kvvoÞ þ kI
R
ðvref � kvvoÞdt ð45Þ

The integral coefficient kI of the controller is treated as the bifurcation parameter, which is

critical in the practical design. The component values and the control parameters of the test

bench, as shown in Fig 11, are chosen as: Vin = 10 V, f = 20 kHz, L = 4 mH, Cb = 47 μF, Co = 10

μF, Ro = 50 O, Vref = 18 V, kv = 1, kp = 0.01.

With the parameter kI varying from 10 to 110, the bifurcation graphs of the integer-order

and the fractional-order circuits are depicted in Fig 12, which are only constructed with the

steady state data at the beginning of each switching cycle. Take the integer-order system as an

example. As presented in Fig 12(a), the converter remains stable in period-1 orbit when kI var-

ies from 10 to 34. Once kI reaches to 34, the Hopf bifurcation appears, forming the bifurcation

points. Fig 12(a)–12(d) have shown that the bifurcation points are shifting backward with the

decreasing fractional order α of converters, given a fixed β value. In other words, with the

same parameters, the bifurcation occurs in the integer-order circuit, while the fractional-order

converter remains asymptotically stable. Similarly, the value of kI at the time of bifurcation

increases when β decreases, which effect is dominating. The analysis discussed above shows

that the fractional-order converter is easier to keep stable.

Fig 11. Block diagram showing the positive Luo converter with PI voltage compensator.

https://doi.org/10.1371/journal.pone.0237169.g011
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To observe the causes of the asymptotically limit cycle behavior, we keep kI = 105. To reveal

the differences of the non-linear behaviors between the fractional and the integer order con-

verters, the phase portraits, the harmonic spectrums and the time-domain curves are utilized.

The simulation results can be found in Figs 13–15. Because the steady state solutions in the

proposed model are acquired without using the definitions of fractional calculus, the vital dif-

ference between the essence of regular oscillations in the integer and the fractional order sys-

tems can be evinced. Unlike their integer order corresponding systems under the same

condition, the limit cycle behaviors do not exist in the fractional-order converters. Take the

fractional-order converter with (α, β, γ) = (0.95, 0.95, 1) as an example. Fig 15(b) illustrates the

Fig 12. Bifurcation diagrams (vo vs. kI) of the integer-order and the fractional-order converters: (a) (α, β, γ) = (1, 1, 1); (b) (α, β, γ) = (0.95, 1, 1);

(c) (α, β, γ) = (1, 0.95, 1); (d) (α, β, γ) = (0.95, 0.95, 1).

https://doi.org/10.1371/journal.pone.0237169.g012
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Fig 13. Simulation results of asymptotically limit cycle behavior with (α, β, γ) = (0.95, 1, 1): (a) phase portrait; (b) time-domain waveform; (c)

harmonic spectrum.

https://doi.org/10.1371/journal.pone.0237169.g013

Fig 15. Simulation results of asymptotically limit cycle behavior with (α, β, γ) = (0.95, 0.95, 1): (a) phase portrait; (b) time-domain waveform; (c)

harmonic spectrum.

https://doi.org/10.1371/journal.pone.0237169.g015

Fig 14. Simulation results of asymptotically limit cycle behavior with (α, β, γ) = (1, 0.95, 1): (a) phase portrait; (b) time-domain waveform; (c) harmonic

spectrum.

https://doi.org/10.1371/journal.pone.0237169.g014
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time-domain waveforms of the output voltage vo, the inductor current iL, the control voltage

vvf and the triangular wave vramp. It can be seen that in the steady state, the control signal vvf
(red line) reaches the lower limit of vramp (blue line) several times, but the inductor current iL
remains continuous all the time. The phase graph (Fig 15(a)) seems to be a trajectory of the

periodic oscillation (solar to the limit cycle), while actually this oscillation is not perfectly peri-

odic but is generating non-periodic items obviously. If the approximation of the fractional-

order components in [13] is used, the phase graph will be a closed curve like Fig 13(a), which

does not satisfy the well-known fact that the fractional-order systems cannot have any periodic

solutions. Fig 15(c) shows the most significant harmonic component occurs at a frequency of

1159 Hz, indicating the frequency of the asymptotically limit cycle facyc under this condition. It

is lower than the switching frequency. From above analysis and the plots in Figs 13–15, it can

be revealed that facyc increases with the decreasing of the fractional order. Besides, the influence

of β is more obvious. In addition, since the transient solutions are obtained using the explicit

Grünwald-Letnikov (GL) approximation, the limit cycle behaviors, which normally appear in

the time-domain analysis, do not exist in the converters when using the proposed method.

The only existence of the asymptotically period oscillation can further demonstrate the validity

of the proposed modeling of the non-linear behaviors.

Circuit simulation and experimental results

As there are no commercially available fractional-order components, many schemes are

designed to build the equivalent circuit of the fractional-order components. In order to further

analyze the simulation results listed in previous section, according to the method in [41], the

approximation circuits of the inductor and the capacitor with fractional-order properties are

built by using the resistor/inductor or resistor/capacitor networks (as shown in Fig 16(a) and

16(b) respectively). The parameters in the approximation circuit of the fractional-order com-

ponents are deduced in S2 Appendix. And the circuit parameters are the same with the simula-

tion in subsection A of Section 4.

Circuit simulation results

Let L, Cb and Co in Fig 1 be replaced by the fractional-order inductor and capacitor units

shown in Fig 16(a) and 16(b) correspondingly, the circuit simulation results can be found in

Figs 17 and 18. All these simulations are accomplished by PLECS Standalone.
For example, the bode diagrams of Gvovin

ðsÞ and Gvod (s) with (α, β, γ) = (0.9, 0.9, 0.95) and

(α, β, γ) = (0.9, 0.8, 0.95) respectively are shown in Fig 17. These curves are obtained by the

theoretical analysis in Section 3 and the PLECS circuit simulation separately. The theoretical

Fig 16. The approximate circuit of components with fractional-order property: (a) fractional-order inductor; (b) fractional-

order capacitor.

https://doi.org/10.1371/journal.pone.0237169.g016
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equations of Gvovin
ðsÞ and Gvod (s) gotten by the proposed fractional-order model have been

expressed by (42) and (44). As depicted in Fig 17, the circuit simulation results are basically

like the theoretical analysis. The discrepancies are mainly caused by the approximation of cir-

cuit for the fractional-order inductor and capacitor.

As shown in the steady state waveforms in Fig 18, with decreasing of the fractional-order α
and β, the ripple of iL and vo increase significantly, which is consistent with the results of the

theoretical analysis and the numerical simulation in the previous sections.

Especially, as shown in Fig 18(c), when α = 0.8, the converter enters into the DCM mode, in

which vo changes greatly. All of these phenomena agree very well with the analysis of the CCM

operating criterion,as shown in Fig 8.

To verify the mechanism of the asymptotically limit cycle behavior, a circuit simulation of

the positive Luo converter with the PI voltage compensator (schematically presented in Fig 11)

has been performed. The simulation setup has the same parameters as listed in Section 6. Fig

19 shows the time-domain waveforms of the inductor current and the output voltage when

kI = 105. The green and the red curves present the simulation results of the converters with

(α, β, γ) = (1, 1, 1) and (α, β, γ) = (0.95, 0.95, 1) respectively. As shown in Fig 19, the waveforms

have a good agreement with the numerical simulation results described in Section 6.

Experimental results

In order to further verify the effectiveness of the proposed method and to realize the practical

performance of fractional-order components, a positive Luo converter prototype is built. Fig

20 shows the photograph of the positive Luo converter. In this prototype, power switch and

diode in Fig 1 choose STB18N20 and MUR160 respectively. To reduce the interference of

inductors in the equivalent implementation circuit of fractional-order inductor, some shielded

techniques, such as shielded power inductors are utilized.

Fig 21 shows the steady-state wave forms of iL and vo, which is obtained by experimental

test with different fractional orders. Experimental measurements of these state variables are

listed in Table 2. From Fig 21(a)–21(d) and Table 2, it can be seen that the RMS and peak-peak

Fig 17. Bode diagram obtained by the theoretical analysis and the circuit simulation with (α, β, γ) = (0.9, 0.9, 0.95) and (α, β, γ) = (0.9, 0.8, 0.95):

(a) Gvovin
ðsÞ; (b) Gvod(s).

https://doi.org/10.1371/journal.pone.0237169.g017
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value of iL and vo are basically consistent with the simulation analysis. Considering the influ-

ence of parasitic parameters and electromagnetic interference, the error between them can be

ignored.

Conclusion

A modified fractional-order modeling and asymptotically limit cycle behavior analysis

method for the positive Luo converters is proposed in this paper. With the proposed method,

the approximate steady state solutions can be obtained without utilizing the definitions of

Fig 18. State variables in the steady state under different fractional orders: (a) iL in CCM; (b) vo in CCM; (c) iL in

CCM and DCM; (d) vo in CCM and DCM.

https://doi.org/10.1371/journal.pone.0237169.g018

Fig 19. Circuit simulation results of (a) vo; (b) iL.

https://doi.org/10.1371/journal.pone.0237169.g019
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Fig 20. Photograph of the prototype positive Luo converter.

https://doi.org/10.1371/journal.pone.0237169.g020

Fig 21. Experimental results under different fractional orders: (a) (α, β, γ) = (1, 1, 1); (b) (α, β, γ) = (0.9, 1, 1); (c)

(α, β, γ) = (1, 0.9, 1); (d) (α, β, γ) = (0.9, 0.9, 1).

https://doi.org/10.1371/journal.pone.0237169.g021

Table 2. Experimental results under different fractional orders.

(α, β, γ) iL_RMS ΔiL_pp vo_RMS Δvo_pp

(1, 1, 1) 1.112 0.062 29.42 1.83

(0.9, 1, 1) 1.131 0.098 29.23 1.87

(1, 0.9, 1) 1.096 0.196 29.16 4.79

(0.9, 0.9, 1) 1.097 0.198 28.95 4.84

https://doi.org/10.1371/journal.pone.0237169.t002
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fractional calculus. In addition, it eliminates the needs for the circuit simulations or multiple

iterations. Based on the particularity of the positive Luo converter, the improved algorithm

can ensure the accuracy without adding more harmonics in the approximate expression,

compared to [32]. The final transient solution can be acquired by replacing the DC part by

the primary transient components. Therefore, the proposed modeling methodology provides

a more convenient and faster approach to the optimal design of the fractional-order positive

Luo converters. Furthermore, the proposed method, with the time-domain model using the

explicit Grünwald-Letnikov (GL) approximation, can analyze the nonlinear behaviors via

the numerical analysis more accurately. The analysis of the dynamic behaviors in this paper

confirms that nonexistence of the periodic solutions in continuous-time fractional-order

is a remarkable difference between the integer-order converters and the fractional-order

converters.

As the DC parts and the harmonics of the state variables in the converters are directly

related to the fractional orders, changing orders influences the characteristics in the steady

state. The most obvious phenomenon is that the ripples of the state variables are markedly

depended on the fractional orders. More specifically, as presented in the simulation results, the

steady state ripples of iL and vo increase with the decreasing of α and β, respectively. Moreover,

the CCM-operating criterion is also order-dependent, and is mainly determined by the order

α of the inductor. At the meantime, the line-to-output and duty cycle-to-output transfer func-

tions of the DC-DC converters can be obtained from the analysis discussed in this paper,

which both show a close relationship to the fractional orders. The generation condition of the

asymptotically limit cycle behaviors, in the PI controlled fractional-order positive Luo convert-

ers, are also affected by the fractional orders. A smaller α or β, can help the converter to keep

stability, and to increase the frequency of the asymptotically limit cycle facyc. In this paper, all

the phenomena discussed above have been analyzed by the proposed method, of which the

effectiveness has been verified by simulations and experiments.

In recent years, study results of the mathematical modeling of the passive components have

shown that both the inductors and the capacitors are essentially of the fractional order. The

modeling of the fractional-order converters has received widespread acceptance in engineering

applications. Due to the great influence of the fractional orders to the properties of the power

converters and their nonlinear dynamical behaviors, there is a big room for development and

improvement in this research area. Based on the fact that the equivalent small parameter

method and the principle of the harmonic balance are suitable for all DC-DC converters, the

modified method proposed in this paper can be expanded to and cope with other fractional-

order DC-DC converters. Moreover, with more precise equivalent circuit models of the elec-

trolytic capacitors and the coil inductors, the benefits of using fractional-order modeling

methodology can be further explored in the future.
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