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A numerical investigation of entropy generation, heat and mass transfer is performed on steady double diffusive 
natural convection of water-based Al2O3 nanofluid within a wavy-walled cavity with a center heater under the 
influence of an uniform vertical magnetic field. The top horizontal wavy wall, left and right vertical walls of 
the enclosure are kept at low temperature and concentration of 𝑇𝑐 and 𝑐𝑐 whereas central part of the bottom 
horizontal wall is maintained at high temperature and concentration of 𝑇ℎ and 𝑐ℎ and the remaining part is 
kept adiabatic where temperature and concentration gradient are taken as zero. The Bi-CGStab method and 
Tri-diagonal algorithm are used to solve the governing equations. The study has been performed for several 
relevant parameters such as Rayleigh number (103 ≤𝑅𝑎 ≤ 105), Hartmann number (0 ≤𝐻𝑎 ≤ 60), buoyancy ratio 
number (−2 ≤𝑁 ≤ 2), volume fraction of nanoparticles (0.0 ≤ 𝜙 ≤ 0.2) and different undulation number of the 
upper wavy wall (𝑛). The Prandtl number and Lewis number are kept fixed at Pr = 6.2 and Le = 2. The effect of 
these parameters are revealed in terms of streamlines, isotherms, isoconcentrations, entropy generation, average 
Nusselt number and Sherwood number. Results indicate that heat and mass transfer rate augment as Rayleigh 
number and volume fraction of nanoparticles increase and are found to drop with the increase in Hartmann 
number and buoyancy ratio.
1. Introduction

Fluid dynamics induced by the combination of temperature and 
concentration gradients is called double-diffusive convection. Double 
diffusive natural convection heat transfer has fundamental aspects in 
modern life. Some applications of double diffusive natural convection 
occur in engineering fields such as natural gas storage tanks, drying pro-

cesses, solar ponds, material processing etc. as well as in scientific fields 
such as astrophysics, biology and chemical processes, geosciences etc. In 
most of these applications, numerous enclosures of various shapes (in-

cluding rectangular, triangular, trapezoidal, rhomboidal, sinusoidal or 
ellipsoidal) have been considered to analyze the heat and mass transfer 
effects. Lee and Hyun [1] investigated the double-diffusive convection 
in a rectangular enclosure. They reported that Nusselt number reduces 
monotonically as the buoyancy ratio rises from a small value. The anal-

ysis of double-diffusive convection in vertical enclosures for different 
aspect ratios and Lewis numbers have been studied by Ghorayeb and 
Mojtabi [2]. Mahapatra et al. [3] analyzed the effect of buoyancy ratio 
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on double-diffusive mixed convection with uniform and non-uniform 
heating of walls.

In literature, convection in nanofluids has been extensively investi-

gated by many researchers, due to the thermal conductivity enhancing 
feature of the nanofluid ([4, 5, 6, 7, 8]). Some applications of nanofluid 
to enhance heat transfer performance includes heat exchangers, solar 
energy, cooling of electronic devices equipped with nanofluids, food 
processing etc. ([9, 10]). The book written by Das et al. [11] con-

tains many studies on natural convection in nanofluids. Esfahani and 
Bordbar [12] simulated double-diffusive natural convection heat trans-

fer enhancement in a square enclosure filled with various nanofluids. 
They discussed the impact of the volume fraction of nanoparticle and 
Lewis number on Nusselt number and Sherwood number. Parvin et al. 
[13] numerically analyzed the double diffusive natural convection of 
water-Al2O3 nanofluid in a partially heated enclosure. They established 
that the heat transfer rate is most effective in case of highest Rayleigh 
number. Nasrin and Alim [14] numerically investigated laminar double 
diffusive convection in a prism shaped solar collector using water-CuO 
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nanofluid. Chen et al. [15] numerically investigated entropy generation 
on double diffusive natural convection in a rectangular enclosure filled 
with nanofluid.

The impact of the magnetohydrodynamics on convective heat trans-

fer in an enclosure has been carried out to determine the effects of 
the magnetic field on the heat transfer either in conduction or con-

vection mode. Ghasemi et al. [16] carried out natural convection in a 
differentially heated square enclosure filled with Al2O3-water nanofluid 
in presence of magnetic field. They conveyed that the heat transfer 
rate increases and decreases with the increase of Rayleigh number and 
Hartmann number respectively. Teamah [17] studied double diffusive 
flow in a rectangular cavity in the presence of magnetic field and in-

ner heat source. They reported that the fluid circulation and heat and 
mass transfer rate within the enclosure reduces with the increase in 
magnetic field effect. Teamah and Shehata [18] carried out MHD dou-

ble diffusive natural convection in a trapezoidal enclosure with various 
inclination angles. They found that rate of heat and mass transfer de-

creases with the increase in inclination angle and Hartmann number. 
Rahman et al. [19] investigated MHD double-diffusive mixed convec-

tion in a horizontal channel with an open cavity. Mahapatra et al. [20]

presented numerical study of double-diffusive natural convection in a 
trapezoidal enclosure filled with nanofluid under the influence of mag-

netic field.

Some engineering applications that are associated to partial heating 
and cooling zones such as solar energy collection, effective cooling of 
electronic components, prevention of subsoil water pollution etc. have 
become increasingly important with the fast growth of electronic tech-

nology. In such practical applications complete effective walls are not 
taken into account for heat and mass transfer. Also the corresponding 
location of the hot and cold wall regions plays an important role in opti-

mizing heat and mass transfer rate in the enclosure. Natural convection 
is the only favorable mode of cooling the heat source in many appli-

cations. Therefore, the study of convective heat and mass transfer in 
the enclosures having partially active thermal walls is required in order 
to achieve a better understanding of these applications. Calcagni et al. 
[21] numerically and experimentally studied the convective heat trans-

fer in a square enclosure having discrete heater placed on the lower 
wall. They obtained that for high Rayleigh number, heat transfer in-

creases with an increase in dimension of the heat source. Oueslati et 
al. [22] have numerically investigated double-diffusive natural convec-

tion with entropy generation in an enclosure partially heated and salted 
from the left vertical sidewall. Kandaswamy et al. [23] numerically in-

vestigated magnetoconvection in a square enclosure having partially 
active vertical walls. They estimated that the heat transfer rate for the 
middle-middle thermally active locations was maximum as compared to 
top-bottom thermally active locations. Also the average Nusselt number 
enhances with rise in Grashof number but decreases with increase in 
Hartmann number. Natural convective heat transfer of different types 
of nanofluid filled rectangular enclosure with partially heated left ver-

tical wall was studied by Oztop and Abu-Nada [24]. They obtained the 
results that by increasing the value of Rayleigh number, volume frac-

tion of nanoparticles and heater size enhances the heat transfer rate. 
Aminossadati and Ghasemi [25] evaluated that the heat transfer aug-

ments with increasing the length of heater located at the bottom wall 
of a square enclosure filled with nanofluid. Chamkha and Al-Naser [26]

performed MHD double-diffusive convection along the left and right 
walls of the enclosure having constant heat and mass fluxes. Cho [27]

discussed entropy generation of natural convection in a square cavity 
having partially-heated wavy surface and filled with nanofluid. Teamah 
[28] made numerical simulation of MHD double diffusive natural con-

vection in a rectangular enclosure filled with nanofluid. They found 
that the fluid circulation, heat and mass transfer reduces in presence of 
magnetic field.

Natural convection heat transfer in corrugated or wavy enclosures is 
gaining attention of most of the researchers for enhancing the efficiency 
of heat and mass transfer. Over the last few years, natural convection 
2

Fig. 1. Schematic representation of boundary conditions.

in wavy enclosures have been carried out by various researchers ([29, 
30, 31, 32, 33, 34]). Although, double-diffusive natural convection has 
obtained less attention in complex enclosures, it has significant appli-

cations in various engineering fields such as solidification in material 
processing, chemical engineering, food industries, cement manufactur-

ing. The combined process of heat and mass transfer was analyzed by 
Rathish Kumar and Krishna Murthy [35] from a wavy vertical surface 
immersed in a fluid-saturated semi-infinite porous medium. Hussain 
[36] analyzed numerically heatline and entropy generation during dou-

ble diffusive MHD natural convection in a tilted sinusoidal corrugated 
porous enclosure. Gholizadeh et al. [37] examined double diffusive nat-

ural convection in a partially heated trapezoidal enclosure. They carried 
out the work for different position of the thermal active wall and differ-

ent inclination angle of the side walls.

After literature survey, we found that researchers have examined 
natural convection and entropy generation in various enclosures. Some-

time they have considered double diffusive natural convection and 
entropy generation in a wavy enclosure filled with nanofluid and some-

time they have considered MHD natural convection in a wavy enclosure 
with discrete heating filled with nanofluid. But, all these characteristics 
at the same time have not been considered so far. Hence in the current 
work, we aim to investigate MHD double diffusive natural convection 
and entropy generation of aluminium-water nanofluid in a wavy enclo-

sure having discrete heater placed on the lower wall. We incorporate 
nanofluid medium inside the enclosure as it greatly affect the heat trans-

fer rate.

2. Model

A schematic diagram of a wavy-walled enclosure with cartesian co-

ordinates (x,y) and velocity components (u,v) is shown in Fig. 1. The 
width and height of the enclosure is L and the fluid inside is water-

based nanofluid including Al2O3 nanoparticles. It is assumed that the 
top wavy wall and the vertical walls are maintained at low temperature 
(𝑇𝑐) and concentration (𝑐𝑐). The temperature and concentration of the 
central part of the bottom wall are 𝑇ℎ(> 𝑇𝑐) and 𝑐ℎ(> 𝑐𝑐), respectively, 
whereas zero gradient of temperature and concentration are maintained 
at the rest part of the lower wall. Distance of the heat and concentra-

tion source from both the vertical walls is exactly the same. A uniform 
magnetic field with constant magnitude 𝐵0 and the gravitational force 
are applied vertically normal to the horizontal wall. It is considered that 
the upper wavy wall of the enclosure is defined by the relation:

𝑓 (𝑥) =𝐿+𝐴𝑠𝑖𝑛(𝑛𝜋 𝑥
𝐿
)

where 𝐴 is the amplitude of the sinusoidal wall and 𝑛 is the undulation 
number of the upper wall. The symbols used here are defined in Table 1.
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Table 1

Nomenclature

𝑥, 𝑦 distance along x and y coordinate, m

𝑋, 𝑌 dimensionless distance along x and y coordinate

𝑢, 𝑣 x and y components of velocity

𝑈, 𝑉 x and y components of dimensionless velocity

𝑇 temperature of the fluid, K

𝑝 pressure, Pa

𝑃 dimensionless pressure

𝐶𝑝 Specific heat at constant pressure, 𝐽𝑘𝑔−1𝐾−1

𝐷 Mass Diffusivity, 𝑚2𝑠−1

𝑎 amplitude of the wavy wall

𝑔 acceleration due to gravity, 𝑚𝑠−2

𝑘 thermal conductivity,𝑊𝑚−1𝐾−1

𝑐 dimensional solute concentration (𝑘𝑔𝑚−3)
𝐶 dimensionless solute concentration

𝜈 kinematic viscosity, 𝑚2𝑠−1

𝜌 density, kg 𝑚−3

𝜃 dimensionless temperature

𝛼 thermal diffusivity, 𝑚2𝑠−1

𝛽𝑠 volumetric coefficient of thermal expansion, 𝐾−1

𝛽𝑇 volumetric coefficient of solutal expansion, 𝑚3𝑘𝑔−1

𝜇 dynamic viscosity, kg 𝑚−1𝑠−1

𝜎 Electrical conductivity, 𝐴2𝑠3𝑚−3𝑘𝑔−1

𝜓 dimensionless stream function

𝜉 transformed horizontal coordinate

𝜂 transformed vertical coordinate

𝑐 cold

ℎ hot

𝑛𝑓 nanofluid

Table 2

Thermophysical properties of the base fluid (pure water) 
and nanoparticle.

Physical properties Pure water 𝐴𝑙2𝑂3

𝐶𝑝 (J kg−1 K−1) 4179 765

𝜌 (kg m−3) 997.1 3970

𝑘 (W m−1 K−1) 0.613 40

𝛼 × 107 (m2 s−1) 1.47 131.7

𝛽 (K−1) 21 × 10−5 0.85 × 10−5

𝜇 (kg m−1 s−1) 0.001003 -

3. Theory/Calculation

3.1. Thermo-physical properties of nanofluid

The flow is considered to be laminar, steady and incompressible and 
the thermo-physical properties of base fluid and nano-sized particles are 
tabulated in Table 2.

The effective density (𝜌𝑛𝑓 ), specific heat (𝜌𝐶𝑝)𝑛𝑓 , thermal expansion 
coefficient (𝜌𝛽𝑇 )𝑛𝑓 of the nanofluid, according to [25], are:

(𝜌𝑛𝑓 ) = (1 − 𝜙)𝜌𝑓 +𝜙𝜌𝑠, (𝜌𝐶𝑝)𝑛𝑓 = (1 −𝜙)(𝜌𝐶𝑝)𝑓 + 𝜙(𝜌𝐶𝑝)𝑠 and

(𝜌𝛽𝑇 )𝑛𝑓 = (1 − 𝜙)(𝜌𝛽𝑇 )𝑓 + 𝜙(𝜌𝛽𝑇 )𝑠.

Effective dynamic viscosity, 𝜇𝑛𝑓 and the effective thermal conduc-

tivity, 𝑘𝑛𝑓 of the nanofluid which are obtained from Brinkman model 
[38] and Maxwell’s model [39] respectively, are introduced as:

𝜇𝑛𝑓 = 𝜇𝑓 (1 −𝜙)−2.5 and 𝑘𝑛𝑓 = 𝑘𝑓
[
𝑘𝑠 + 2𝑘𝑓 − 2𝜙(𝑘𝑓 − 𝑘𝑠)
𝑘𝑠 + 2𝑘𝑓 +𝜙(𝑘𝑓 − 𝑘𝑠)

]
.

Finally, the thermal diffusivity and electrical conductivity of the 
nanofluid are defined respectively as:

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓
and 𝜎𝑛𝑓 = 𝜎𝑓

(
1 + 3(𝜁 − 1)𝜙

(𝜁 + 2) − (𝜁 − 1)𝜙

)
.

Here 𝜙 represents the volume fraction of the nanoparticle and 
𝜁 = 𝜎𝑠∕𝜎𝑓 . The subscript 𝑓 and 𝑠 are used to refer base fluid and solid 
particle, respectively.
3

3.2. Governing equations

The equations which govern the two dimensional steady double-

diffusive natural convection flow of an electrically conducting incom-

pressible nanofluid are given in dimensional form by

Continuity equation:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0. (1)

Momentum conservation equations:

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= − 1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑥
+ 𝜈𝑛𝑓

[
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2

]
−
𝜎𝑛𝑓 𝐵

2
0 𝑢

𝜌𝑛𝑓
, (2)

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦
= − 1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑦
+ 𝜈𝑛𝑓

[
𝜕2𝑣

𝜕𝑥2
+ 𝜕

2𝑣

𝜕𝑦2

]
+
𝑔(𝜌𝛽𝑇 )𝑛𝑓
𝜌𝑛𝑓

(𝑇 − 𝑇0)

−
𝑔(𝜌𝛽𝑆 )𝑛𝑓
𝜌𝑛𝑓

(𝑐 − 𝑐0). (3)

Energy equation:

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓

[
𝜕2𝑇

𝜕𝑥2
+ 𝜕

2𝑇

𝜕𝑦2

]
. (4)

Concentration equation:

𝑢
𝜕𝑐

𝜕𝑥
+ 𝑣 𝜕𝑐

𝜕𝑦
=𝐷

[
𝜕2𝑐

𝜕𝑥2
+ 𝜕

2𝑐

𝜕𝑦2

]
. (5)

The particular boundary conditions of the problem in dimensional form 
are given by

u=0, v=0, 𝑇 = 𝑇𝑐 and 𝑐 = 𝑐𝑐 for 0 ≤ 𝑦 ≤𝐿 and x=0,L,

u=0, v=0, 𝑇 = 𝑇𝑐 and 𝑐 = 𝑐𝑐 for 0 ≤ 𝑥 ≤𝐿 and y=L,

u=0, v=0, 𝑇 = 𝑇ℎ and 𝑐 = 𝑐ℎ for 0.3𝐿 ≤ 𝑥 ≤ 0.7𝐿 and y=0,

u=0, v=0, 𝜕𝑇
𝜕𝑦

= 0 and 𝜕𝑐
𝜕𝑦

= 0 for 0 ≤ 𝑥 ≤ 0.3𝐿, 0.7𝐿 ≤ 𝑥 ≤ 𝐿 and 
y=0.

Following transformation of variables are used to convert the system 
(1)-(5) into non-dimensional form:

𝑋 = 𝑥

𝐿
, 𝑌 = 𝑦

𝐿
, 𝑈 = 𝑢𝐿

𝛼𝑓
, 𝑉 = 𝑣𝐿

𝛼𝑓
, 𝑃 = 𝑝𝐿2

𝜌𝑛𝑓 𝛼
2
𝑓

, 𝜃 =
𝑇 − 𝑇0
𝑇ℎ − 𝑇𝑐

, 𝐶 =
𝑐 − 𝑐0
𝑐ℎ − 𝑐𝑐

where 𝑇0 and 𝐶0 are the mean temperature and concentration of heated 
and cooled walls defined by,

𝑇0 =
𝑇ℎ + 𝑇𝑐

2
and 𝐶0 =

𝐶ℎ +𝐶𝑐
2

.

The resulting non-dimensional continuity, momentum, energy and con-

centration equations can be written as:

𝜕𝑈

𝜕𝑋
+ 𝜕𝑉
𝜕𝑌

= 0, (6)

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉 𝜕𝑈

𝜕𝑌
= − 𝜕𝑃

𝜕𝑋
+

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓

[
𝜕2𝑈

𝜕𝑋2 + 𝜕
2𝑈

𝜕𝑌 2

]
−
𝜎𝑛𝑓 𝜌𝑓

𝜎𝑓 𝜌𝑛𝑓
𝐻𝑎2𝑈𝑃𝑟, (7)

𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉 𝜕𝑉

𝜕𝑌
= − 𝜕𝑃

𝜕𝑌
+

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓

[
𝜕2𝑉

𝜕𝑋2 + 𝜕
2𝑉

𝜕𝑌 2

]
+

(𝜌𝛽𝑠)𝑛𝑓
𝜌𝑛𝑓 𝛽𝑓

𝑅𝑎𝑃 𝑟(𝜃 −𝑁𝐶), (8)

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉 𝜕𝜃

𝜕𝑌
=
𝛼𝑛𝑓

𝛼𝑓

[
𝜕2𝜃

𝜕𝑋2 + 𝜕2𝜃

𝜕𝑌 2

]
, (9)

𝑈
𝜕𝐶

𝜕𝑋
+ 𝑉 𝜕𝐶

𝜕𝑌
= 1
𝐿𝑒

[
𝜕2𝐶

𝜕𝑋2 + 𝜕
2𝐶

𝜕𝑌 2

]
, (10)

where the Prandtl number 𝑃𝑟 = 𝜈𝑓

𝛼𝑓
, Lewis number 𝐿𝑒 = 𝛼𝑓

𝐷
, Rayleigh 

number 𝑅𝑎 = 𝑔 𝛽𝑓 (𝑇ℎ−𝑇𝑐 )𝐿3

𝜈𝑓 𝛼𝑓
, Hartmann number 𝐻𝑎 =

√
𝜎𝑓

𝜇𝑓
𝐵0𝐿, and 

Buoyancy ratio 𝑁 =
(𝜌𝛽𝑠)𝑛𝑓 (𝑐ℎ−𝑐𝑐 ) .
(𝜌𝛽𝑇 )𝑛𝑓 (𝑇ℎ−𝑇𝑐 )
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Fig. 2. Mapping of physical domain (a) to computational domain (b).
The upper sinusoidal wall in non-dimensional form can be written 
as:

𝑓 (𝑥)
𝐿

= 1 + 𝐴
𝐿
𝑠𝑖𝑛(𝑛𝜋 𝑥

𝐿
),

i.e. 𝐹 (𝑋) = 1 + 𝑎𝑠𝑖𝑛(𝑛𝜋𝑋),

where 𝑎 = 𝐴∕𝐿(= 0.2) is the amplitude (𝐴) of the upper wall taken as 
0.2𝐿.

The initial and boundary conditions in non-dimensional form are:

U=0, V=0 and 𝜃 = −0.5 = 𝐶 , for 0 ≤ 𝑌 ≤ 1 and X=0, 1,

U=0, V=0 and 𝜃 = −0.5 = 𝐶 , for 0 ≤𝑋 ≤ 1 and Y=1,

U=0, V=0 and 𝜃 = 0.5 = 𝐶 , for 0.3 ≤𝑋 ≤ 0.7 and Y=0,

U=0, V=0 and 𝜕𝜃
𝜕𝑌

= 0 = 𝜕𝐶

𝜕𝑌
, for 0 ≤𝑋 ≤ 0.3, 0.7 ≤𝑋 ≤ 1 and Y=0.

3.3. Nusselt number and Sherwood number

The local and average heat and mass transfer are given in dimen-

sionless terms by the Nusselt and Sherwood numbers, respectively.

The local Nusselt number (𝑁𝑢) and local Sherwood number (𝑆ℎ)
along the discrete heat source at the lower wall are defined by

𝑁𝑢 = −
𝑘𝑛𝑓

𝑘𝑓

𝜕𝜃

𝜕𝑌
and 𝑆ℎ = − 𝜕𝐶

𝜕𝑌
. (11)

The average Nusselt number (𝑁𝑢𝑎𝑣𝑔) and average Sherwood number 
(𝑆ℎ𝑎𝑣𝑔) are obtained by integrating local Nusselt number (𝑁𝑢) and local 
Sherwood number (𝑆ℎ) along the discrete heat source.

𝑁𝑢𝑎𝑣𝑔 =

0.7

∫
0.3

𝑁𝑢𝑑𝑋 and 𝑆ℎ𝑎𝑣𝑔 =

0.7

∫
0.3

𝑆ℎ𝑑𝑋. (12)

To evaluate eq. (12), a Simpson’s 1
3 rd rule of integration is imple-

mented.

3.4. Entropy generation

The dimensionless forms of the local entropy generation expression 
using the dimensionless quantities are given by:

𝑆𝜃 =
𝑘𝑛𝑓

𝑘𝑓

[(
𝜕𝜃

𝜕𝑋

)2
+
(
𝜕𝜃

𝜕𝑌

)2]
,

𝑆𝜓 = 𝜆1
𝜇𝑛𝑓

𝜇𝑓

[
2
((
𝜕𝑈

𝜕𝑋

)2
+
(
𝜕𝑉

𝜕𝑌

)2)
+
(
𝜕𝑈

𝜕𝑌
+ 𝜕𝑉
𝜕𝑋

)2]
,

𝑆𝑚 = 𝜆1
𝜎𝑛𝑓

𝜎𝑓
𝐻𝑎2𝑈2,

𝑆𝑑 = 𝜆2
[(
𝜕𝐶

𝜕𝑋

)2
+
(
𝜕𝐶

𝜕𝑌

)2]
+ 𝜆3

[(
𝜕𝐶

𝜕𝑋

)(
𝜕𝜃

𝜕𝑋

)
+
(
𝜕𝐶

𝜕𝑌

)(
𝜕𝜃

𝜕𝑌

)]
,

where
4

𝜆1 =
𝜇𝑓𝑇0

𝑘𝑓

(
𝛼𝑓

2

𝐿2(𝑇ℎ − 𝑇𝑐)2

)
,

𝜆2 =
𝑅𝐷𝑇0
𝑘𝑓𝐶0

(
𝑐ℎ − 𝑐𝑐
𝑇ℎ − 𝑇𝑐

)2
,

𝜆3 =
𝑅𝐷

𝑘𝑓

(
𝑐ℎ − 𝑐𝑐
𝑇ℎ − 𝑇𝑐

)
,

are called as irreversibility distribution ratio. Here, 𝑅 is the gas con-

stant.

The average entropy generation due to heat transfer (𝑆𝜃,𝑎𝑣𝑔), fluid 
friction (𝑆𝜓,𝑎𝑣𝑔), magnetic field (𝑆𝑚,𝑎𝑣𝑔) and due to diffusion (𝑆𝑑,𝑎𝑣𝑔)
are obtained by integrating the local entropy generation by the system 
volume

𝑆𝜃,𝑎𝑣𝑔 = ∫
𝑉

𝑆𝜃𝑑𝑉 , 𝑆𝜓,𝑎𝑣𝑔 = ∫
𝑉

𝑆𝜓𝑑𝑉 ,

𝑆𝑚,𝑎𝑣𝑔 = ∫
𝑉

𝑆𝑚𝑑𝑉 , 𝑆𝑑,𝑎𝑣𝑔 = ∫
𝑉

𝑆𝑑𝑑𝑉 .

𝑆𝑡,𝑎𝑣𝑔 = 𝑆𝜃,𝑎𝑣𝑔 + 𝑆𝜓,𝑎𝑣𝑔 +𝑆𝑚,𝑎𝑣𝑔 + 𝑆𝑑,𝑎𝑣𝑔.

4. Methodology

4.1. Numerical method

The stream function (𝜓) and vorticity (𝜔) in non-dimensional form 
are given by:

𝑈 = 𝜕𝜓
𝜕𝑌
, 𝑉 = − 𝜕𝜓

𝜕𝑋
and 𝜔 = 𝜕𝑉

𝜕𝑋
− 𝜕𝑈
𝜕𝑌
, (13)

which gives a single equation

𝜕2𝜓

𝜕𝑋2 + 𝜕
2𝜓

𝜕𝑌 2 = −𝜔. (14)

Using eq. (13) and eliminating pressure term from eq. (7) and (8), we 
get

𝑄1

(
𝜕2𝜔

𝜕𝑋2 + 𝜕
2𝜔

𝜕𝑌 2

)
−
(
𝑈
𝜕𝜔

𝜕𝑋
+ 𝑉 𝜕𝜔

𝜕𝑌

)
+𝑄2𝑅𝑎𝑃𝑟

(
𝜕𝜃

𝜕𝑋
−𝑁 𝜕𝐶

𝜕𝑋

)
+𝑄3𝐻𝑎

2𝑃𝑟
𝜕𝑈

𝜕𝑌
= 0 (15)

where 𝑄1 =
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
, 𝑄2 =

(𝜌𝛽)𝑛𝑓
𝜌𝑛𝑓 𝛽𝑓

and 𝑄3 =
𝜎𝑛𝑓 𝜌𝑓

𝜎𝑓 𝜌𝑛𝑓
.

The presence of wavy upper wall make it difficult to impose the 
wavy boundary on rectangular grids. Thus, transformation is required 
to convert the irregular physical domain (X,Y) into a regular (square) 
computational domain (𝜉, 𝜂), see Fig. 2. In this study we have consid-

ered the following algebraic relations

𝜉 =𝑋 𝜂 = 𝑌 ∕(1 + 𝑎𝑠𝑖𝑛𝑛𝜋𝑋). (16)

The upper sinusoidal boundary 𝑌 = 𝐹 (𝑋) is transformed into the 
straight line 𝜂 = 1 using the above transformation.
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The equations can be evaluated in 𝜉 − 𝜂 domain using the following 
relationship

⎛⎜⎜⎝
𝜕𝜉

𝜕𝑋

𝜕𝜉

𝜕𝑌

𝜕𝜂

𝜕𝑋

𝜕𝜂

𝜕𝑌

⎞⎟⎟⎠ = 1
𝐽

⎛⎜⎜⎝
𝜕𝑌

𝜕𝜂
− 𝜕𝑋
𝜕𝜂

− 𝜕𝑌
𝜕𝜉

𝜕𝑋

𝜕𝜉

⎞⎟⎟⎠
where,

𝐽 = 𝜕(𝑋,𝑌 )
𝜕(𝜉, 𝜂)

=
||||||
𝜕𝑋

𝜕𝜉

𝜕𝑋

𝜕𝜂

𝜕𝑌

𝜕𝜉

𝜕𝑌

𝜕𝜂

||||||
is the Jacobian of the transformation.

Taking into account transformation (16) and chain rule of differ-

entiation, the governing eqs. (9), (10), (12) and (15) are respectively 
transformed as:

𝑎3
𝜕2𝜃

𝜕𝜉2
+ 𝑒3

𝜕2𝜃

𝜕𝜉𝜕𝜂
+ 𝑏3

𝜕2𝜃

𝜕𝜂2
+ 𝑐3

𝜕𝜃

𝜕𝜉
+ 𝑑3

𝜕𝜃

𝜕𝜂
= 0 (17)

𝑎4
𝜕2𝐶

𝜕𝜉2
+ 𝑒4

𝜕2𝐶

𝜕𝜉𝜕𝜂
+ 𝑏4

𝜕2𝐶

𝜕𝜂2
+ 𝑐4

𝜕𝐶

𝜕𝜉
+ 𝑑4

𝜕𝐶

𝜕𝜂
= 0 (18)

𝑎1
𝜕2𝜓

𝜕𝜉2
+ 𝑒1

𝜕2𝜓

𝜕𝜉𝜕𝜂
+ 𝑏1

𝜕2𝜓

𝜕𝜂2
+ 𝑐1

𝜕𝜓

𝜕𝜉
+ 𝑑1

𝜕𝜓

𝜕𝜂
= −𝜔 (19)

𝑎2
𝜕2𝜔

𝜕𝜉2
+ 𝑒2

𝜕2𝜔

𝜕𝜉𝜕𝜂
+ 𝑏2

𝜕2𝜔

𝜕𝜂2
+ 𝑐2

𝜕𝜔

𝜕𝜉
+ 𝑑2

𝜕𝜔

𝜕𝜂
+𝑄3𝐻𝑎

2𝑃𝑟

(
1
𝐽

𝜕𝑈

𝜕𝜂

)
+𝑄2𝑅𝑎𝑃𝑟

[(
𝜕𝜃

𝜕𝜉
+
𝑒1
2
𝜕𝜃

𝜕𝜂

)
−𝑁

(
𝜕𝐶

𝜕𝜉
+
𝑒1
2
𝜕𝐶

𝜕𝜂

)]
= 0 (20)

where

𝑈 = 1
𝐽

𝜕𝜓

𝜕𝜂
and 𝑉 = − 𝜕𝜓

𝜕𝜉
−
𝑒1
2
𝜕𝜓

𝜕𝜂
. (21)

Here,

𝑎1 =
1
𝐽 2 (𝑥

2
𝜂
+ 𝑦2

𝜂
), 𝑏1 = 1

𝐽 2 (𝑥
2
𝜉
+ 𝑦2

𝜉
), 𝑒1 = −2

𝐽 2 (𝑦𝜂𝑦𝜉 + 𝑥𝜂𝑥𝜉),

𝑐1 =
1
𝐽 3

[
−𝑦𝜂((𝑥2𝜂 + 𝑦

2
𝜂
)𝑥𝜉𝜉 − 2(𝑦𝜂𝑦𝜉 + 𝑥𝜂𝑥𝜉)𝑥𝜉𝜂 + (𝑥2

𝜉
+ 𝑦2

𝜉
)𝑥𝜂𝜂)

]
+

1
𝐽 3

[
𝑥𝜂((𝑥2𝜂 + 𝑦

2
𝜂
)𝑦𝜉𝜉 − 2(𝑦𝜂𝑦𝜉 + 𝑥𝜂𝑥𝜉)𝑦𝜉𝜂 + (𝑥2

𝜉
+ 𝑦2

𝜉
)𝑦𝜂𝜂)

]
,

𝑑1 =
1
𝐽 3

[
−𝑦𝜉((𝑥2𝜂 + 𝑦

2
𝜂
)𝑥𝜉𝜉 − 2(𝑦𝜂𝑦𝜉 + 𝑥𝜂𝑥𝜉)𝑥𝜉𝜂 + (𝑥2

𝜉
+ 𝑦2

𝜉
)𝑥𝜂𝜂)

]
+

1
𝐽 3

[
−𝑥𝜉((𝑥2𝜂 + 𝑦

2
𝜂
)𝑦𝜉𝜉 − 2(𝑦𝜂𝑦𝜉 + 𝑥𝜂𝑥𝜉)𝑦𝜉𝜂 + (𝑥2

𝜉
+ 𝑦2

𝜉
)𝑦𝜂𝜂)

]
,

𝑎2 = 𝑎1𝑄1, 𝑏2 = 𝑏1𝑄1, 𝑒2 = 𝑒1𝑄1,

𝑐2 = − 1
𝐽
(𝑢𝑦𝜂 − 𝑣𝑥𝜂) + 𝑐1𝑄1, 𝑑2 = − 1

𝐽
(−𝑢𝑦𝜉 + 𝑣𝑥𝜉) + 𝑑1𝑄1

𝑎3 = 𝑎1
𝛼𝑛𝑓

𝛼𝑓
, 𝑏3 = 𝑏1

𝛼𝑛𝑓

𝛼𝑓
, 𝑒3 = 𝑒1

𝛼𝑛𝑓

𝛼𝑓
,

𝑐3 = − 1
𝐽
(𝑢𝑦𝜂 − 𝑣𝑥𝜂) + 𝑐1

𝛼𝑛𝑓

𝛼𝑓
, 𝑑3 = − 1

𝐽
(−𝑢𝑦𝜉 + 𝑣𝑥𝜉) + 𝑑1

𝛼𝑛𝑓

𝛼𝑓

𝑎4 = 𝑎1
1
𝐿𝑒
, 𝑏4 = 𝑏1

1
𝐿𝑒
, 𝑒4 = 𝑒1

1
𝐿𝑒
,

𝑐4 = − 1
𝐽
(𝑢𝑦𝜂 − 𝑣𝑥𝜂) + 𝑐1

1
𝐿𝑒
, 𝑑4 = − 1

𝐽
(−𝑢𝑦𝜉 + 𝑣𝑥𝜉) + 𝑑1

1
𝐿𝑒
.

Substituting 𝜔 from eq. (19) and writing in (20), we get the follow-

ing biharmonic equation in stream function-velocity formulation

𝑎2
𝜕4𝜓

𝜕𝜉4
+ 2𝑒2

𝜕4𝜓

𝜕𝜉3𝜕𝜂
+ 𝑇1

𝜕4𝜓

𝜕𝜉2𝜕𝜂2
+ 2𝑒2𝑏1

𝜕4𝜓

𝜕𝜉𝜕𝜂3
+

𝑏1𝑏2
𝜕4𝜓

𝜕𝜂4
+ 𝑐2

𝜕3𝜓

𝜕𝜉3
+ 𝑇2

𝜕3𝜓

𝜕𝜉2𝜕𝜂
+ 𝑇3

𝜕3𝜓

𝜕𝜉𝜕𝜂2
+ 𝑇4

𝜕3𝜓

𝜕𝜂3
+

𝑇5
𝜕2𝜓

𝜕𝜉𝜕𝜂
+ 𝑇6

𝜕2𝜓

𝜕𝜂2
+ 𝑇7

𝜕𝜓

𝜕𝜂
−𝑄3𝐻𝑎

2𝑃𝑟

(
1
𝐽

𝜕𝑈

𝜕𝜂

)
−𝑄2𝑅𝑎𝑃𝑟

[(
𝜕𝜃 +

𝑒1 𝜕𝜃
)
−𝑁

(
𝜕𝐶 +

𝑒1 𝜕𝐶
)]

= 0. (22)

𝜕𝜉 2 𝜕𝜂 𝜕𝜉 2 𝜕𝜂

5

Here,

𝑇1 = 𝑎2𝑏1 + 𝑒1𝑒2 + 𝑎1𝑏2,

𝑇2 = 2𝑎2𝑒1𝜉 + 𝑎2𝑑1 + 𝑎1𝜉𝑒2 + 𝑒1𝜂𝑒2 + 𝑒2𝑐1 + 2𝑏2𝑎1𝜂 + 𝑐2𝑒1 + 𝑑2𝑎1,

𝑇3 = 2𝑎2𝑏1𝜉 + 𝑒2𝑒1𝜉 + 𝑒2𝑏1𝜂 + 𝑒2𝑑1 + 2𝑏2𝑒1𝜂 + 𝑏2𝑐1 + 𝑐2𝑏1 + 𝑑2𝑒1,

𝑇4 = 𝑒2𝑏1𝜉 + 2𝑏1𝜂𝑏2 + 𝑏2𝑑1 + 𝑑2𝑏1,

𝑇5 = 𝑒1𝜉𝜉𝑎2 + 2𝑑1𝜉𝑎2 + 𝑒1𝜉𝜂𝑒2 + 𝑐1𝜉𝑒2 + 𝑑1𝜂𝑒2 + 𝑒1𝜂𝜂𝑏2 + 2𝑐1𝜂𝑏2 + 𝑒1𝜉𝑐2

+𝑐2𝑑1 + 𝑑2𝑒1𝜂 + 𝑑2𝑐1,

𝑇6 = 𝑏1𝜉𝜉𝑎2 + 𝑏1𝜉𝜂𝑒2 + 𝑑1𝜉𝑒2 + 𝑏1𝜂𝜂𝑏2 + 2𝑑1𝜂𝑏2 + 𝑏1𝜉𝑐2 + 𝑏1𝜂𝑑2 + 𝑑1𝑑2,

𝑇7 = 𝑑1𝜉𝜉𝑎2 + 𝑑1𝜉𝜂𝑒2 + 𝑑1𝜂𝜂𝑏2 + 𝑑1𝜉𝑒2 + 𝑑1𝜂𝑑2.

The transformed eqs. (22), (17) and (18) are then discretized using 
second order central difference scheme and can be written in matrix 
form as

A𝜓 = 𝑓
(
𝑅𝑎,𝑃 𝑟,𝑈,𝑉 ,

𝜕𝜃

𝜕𝜉
,
𝜕𝜃

𝜕𝜂
,
𝜕𝐶

𝜕𝜉
,
𝜕𝐶

𝜕𝜂
,
𝜕𝜓

𝜕𝜉
,
𝜕𝜓

𝜕𝜂

)
(23)

B𝜃 = 0 (24)

S𝐶 = 0 (25)

where the coefficient matrix A, B and S are of order 𝑚𝑛 and 𝜓 and 𝑓
are 𝑚𝑛-component vectors for a grid of size 𝑚 × 𝑛.

The discretization of any function Φ (such as 𝜓, 𝜃, 𝐶 etc.) having 
𝑑 as the step length on a uniform rectangular mesh in the transformed 
domain, are given as:

𝜕Φ
𝜕𝜉

= 1
2𝑑

(Φ𝑖+1,𝑗 −Φ𝑖−1,𝑗 ) +𝑂(𝑑2),
𝜕Φ
𝜕𝜂

= 1
2𝑑

(Φ𝑖,𝑗+1 −Φ𝑖,𝑗−1) +𝑂(𝑑2),

𝜕2Φ
𝜕𝜉2

= 1
𝑑2

(Φ𝑖+1,𝑗 − 2Φ𝑖,𝑗 +Φ𝑖−1,𝑗 ) +𝑂(𝑑2),

𝜕2Φ
𝜕𝜂2

= 1
𝑑2

(Φ𝑖,𝑗+1 − 2Φ𝑖,𝑗 +Φ𝑖,𝑗−1) +𝑂(𝑑2),

𝜕3Φ
𝜕𝜉3

= 1
𝑑2

[(Φ𝜉 )𝑖+1,𝑗 − 2(Φ𝜉 )𝑖,𝑗 + (Φ𝜉)𝑖−1,𝑗 ] +𝑂(𝑑2),

𝜕3Φ
𝜕𝜉2𝜕𝜂

= 1
2𝑑3

(2Φ𝑖,𝑗−1 − 2Φ𝑖,𝑗+1 −Φ𝑖−1,𝑗−1 −Φ𝑖+1,𝑗−1 +Φ𝑖+1,𝑗+1

+Φ𝑖−1,𝑗+1) +𝑂(𝑑2),

𝜕3Φ
𝜕𝜉𝜕𝜂2

= 1
2𝑑3

[2Φ𝑖−1,𝑗 − 2Φ𝑖+1,𝑗 −Φ𝑖−1,𝑗−1 +Φ𝑖+1,𝑗−1 +Φ𝑖+1,𝑗+1

−Φ𝑖−1,𝑗+1] +𝑂(𝑑2),

𝜕3Φ
𝜕𝜂3

= 1
𝑑2

[(Φ𝜂)𝑖,𝑗+1 − 2(Φ𝜂)𝑖,𝑗 + (Φ𝜂)𝑖,𝑗−1] +𝑂(𝑑2),

𝜕4Φ
𝜕𝜉4

= 6
𝑑4

[𝑑((Φ𝜉 )𝑖+1,𝑗 − (Φ𝜉)𝑖−1,𝑗 ) − 2(Φ𝑖+1,𝑗 − 2Φ𝑖,𝑗 +Φ𝑖−1,𝑗 )] +𝑂(𝑑2),

𝜕4Φ
𝜕𝜂4

= 6
𝑑4

[𝑑((Φ𝜂)𝑖,𝑗+1 − (Φ𝜂)𝑖,𝑗−1) − 2(Φ𝑖,𝑗+1 − 2Φ𝑖,𝑗 +Φ𝑖,𝑗−1)] +𝑂(𝑑2),

𝜕4Φ
𝜕𝜉3𝜕𝜂

= 1
2𝑑3

[2(Φ𝜉 )𝑖,𝑗−1 − 2(Φ𝜉 )𝑖,𝑗+1 − (Φ𝜉)𝑖−1,𝑗−1 − (Φ𝜉)𝑖+1,𝑗−1

+(Φ𝜉 )𝑖+1,𝑗+1 + (Φ𝜉 )𝑖−1,𝑗+1] +𝑂(𝑑2),

𝜕4Φ
𝜕𝜉𝜕𝜂3

= 1
2𝑑3

[2(Φ𝜂)𝑖−1,𝑗 − 2(Φ𝜂)𝑖+1,𝑗 − (Φ𝜂)𝑖−1,𝑗−1 + (Φ𝜂)𝑖+1,𝑗−1

+(Φ𝜂)𝑖+1,𝑗+1 − (Φ𝜂)𝑖−1,𝑗+1] +𝑂(𝑑2),

𝜕4Φ
𝜕𝜉2𝜕𝜂2

= 1
𝑑4

[4Φ𝑖,𝑗 − 2(Φ𝑖−1,𝑗 +Φ𝑖+1,𝑗 +Φ𝑖,𝑗−1 +Φ𝑖,𝑗+1) +Φ𝑖−1,𝑗−1

+Φ𝑖+1,𝑗−1 +Φ𝑖+1,𝑗+1 +Φ𝑖−1,𝑗+1] +𝑂(𝑑2).

Eqs. (23), (24) and (25) are solved by using Bi-CGStab method. De-

tailed explanation of the used numerical scheme is presented by [40, 
41]. The tri diagonal system
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Fig. 3. (a), (b) Comparison of present results with Mahapatra et al. [3] and (c) Ghasemi et al. [16].
Table 3

Grid independence test for |𝜓|𝑚𝑎𝑥 at 𝜙 = 0.1, 𝑁 = −2 and 𝑛 = 3.

Grid size

𝑅𝑎 𝐻𝑎 21 × 21 41 × 41 81 × 81 161 × 161

103 30 0.0970 0.1072 0.1072 0.1071
105 0 15.0811 15.8212 16.2611 16.2212

(
𝜕𝜓

𝜕𝜉

)
𝑖+1,𝑗

+ 4
(
𝜕𝜓

𝜕𝜉

)
𝑖,𝑗

+
(
𝜕𝜓

𝜕𝜉

)
𝑖−1,𝑗

= 3
𝑑
(𝜓𝑖+1,𝑗 −𝜓𝑖−1,𝑗 ), (26)(

𝜕𝜓

𝜕𝜂

)
𝑖,𝑗+1

+ 4
(
𝜕𝜓

𝜕𝜂

)
𝑖,𝑗

+
(
𝜕𝜓

𝜕𝜂

)
𝑖,𝑗−1

= 3
𝑑
(𝜓𝑖,𝑗+1 −𝜓𝑖,𝑗−1), (27)

which arises from the fourth order finite difference approximation of 
𝜕𝜓∕𝜕𝜉 and 𝜕𝜓∕𝜕𝜂 is solved by using Thomas algorithm to get 𝜕𝜓∕𝜕𝜉
and 𝜕𝜓∕𝜕𝜂. After obtaining 𝜕𝜓∕𝜕𝜉 and 𝜕𝜓∕𝜕𝜂 we compute 𝑈 and 𝑉
from eq. (21).

The convergence criterion is that the difference of values of all the 
variables between two consecutive iterations is less than 0.5 × 10−6.

4.2. Code validation

The present results have been authenticated successfully with the 
results of Mahapatra et al. [3] in a square enclosure maintained at 
different temperatures and concentrations and shown in Fig. 3(a) and 
3(b). The average Nusselt number and average Sherwood number at 
the lower wall were compared when 𝑃𝑟 = 0.7, 𝐿𝑒 = 2.0 and 𝑁 = −1.0
for various values of Rayleigh number. Fig. 3 (a) and 3(b) illustrate 
good agreement with the data of the authors. The second test was per-

formed to compare our work with the work of Ghasemi et al. [16] for 
natural convection in a 𝐴𝑙2𝑂3-water nanofluid filled square enclosure 
having adiabatic horizontal walls and isothermal vertical walls main-

tained at different temperatures at 𝑃𝑟 = 6.2, 𝜙 = 0.02 and 𝑅𝑎 = 105. 
Fig. 3(c) shows a good agreement for different values of Hartmann num-

ber, and therefore, we get the confidence of the present numerical code.

4.3. Grid independence test

Grid independence study is displayed in Table 3 for different grid 
sizes 21 ×21, 41 ×41, 81 ×81, 161 ×161 for (a) 𝑅𝑎 = 103, 𝐻𝑎 = 30 and (b) 
𝑅𝑎 = 105, 𝐻𝑎 = 0, 𝜙 = 0.1 𝑁 = −2 and 𝑛 = 3. The result shows insignif-

icant change for grid size of 81 × 81 and higher. Hence for the present 
study the grid size of 81 × 81 is chosen for all computations.

5. Results & Discussion

In this paper, we have considered Magnetohydrodynamic double-

diffusive natural convection of 𝐴𝑙2𝑂3-water nanofluid in a wavy enclo-

sure. The enclosure is discretely heated and concentrated from lower 
wall and the rest walls are kept at comparatively less temperature and 
concentration. The influence of different physical parameters such as 
Rayleigh number, undulation number, volume fraction of nanoparticles, 
Hartmann number, buoyancy ratio are examined in terms of stream-

lines, isotherms, isoconcentrations, entropy generation, average Nusselt 
number and average Sherwood number.
6

5.1. Effects of Rayleigh number

Fig. 4 shows the influence of Rayleigh number on streamlines, 
isotherms and isoconcentrations for three different values of the 
Rayleigh numbers, viz. 𝑅𝑎 = 103, 104 and 105 when 𝑁 = −2, 𝑛 = 3, 
𝐻𝑎 = 30 and 𝜙 = 0.1. Due to the temperature difference, the fluid rises 
from the middle of the bottom wall and falls along the sides of the cold 
vertical walls forming counter-rotating vortices within the enclosure. 
At low 𝑅𝑎(= 103), the strength of stream function is weak due to con-

duction mode of heat transfer. The enhancement in 𝑅𝑎 escalates the 
buoyant force and consequently the magnitude of stream function in-

creases, as can be seen from Fig. 4. However, rise in 𝑅𝑎 does not effect 
the shape of the circulating vortices but the center of rotation changes 
from oval to slightly tilted oval and is found to be displaced from bot-

tom to core region of the enclosure. As the heat source is placed in the 
middle of the lower wall, temperature and concentration patterns are 
parallel near the discrete heat source at low 𝑅𝑎 which signifies con-

duction dominant flow. Maximum heat transfer occurs at the center of 
the cavity. Significant change in isotherms and isoconcentrations are 
observed with the enhancement in 𝑅𝑎. Isotherm and isoconcentration 
contours become distorted due to enhanced convection effect at high 
𝑅𝑎 and show similar behavior due to similar energy and mass equa-

tion. However, isoconcentration lines are found to be more distorted as 
compared to isothermal lines resulting in higher mass transfer.

5.2. Effects of Hartmann number

Fig. 5 demonstrates the effect of magnetic field on streamlines, 
isotherms and isoconcentrations considering other parameters fixed. 
In absence of magnetic field (𝐻𝑎 = 0) the value of stream function, |𝜓|𝑚𝑎𝑥 = 16.26 which shows stronger convection effect. It is observed 
that even though the pattern of streamlines are same, the strength of 
stream function decreases with the augmentation of Lorentz forces due 
to weak flow under the influence of magnetic field, as can be seen from 
Fig. 5. The temperature and concentration distribution shows signifi-

cant effect with rise in 𝐻𝑎. The isotherm and isoconcentration contours 
generate plume like distributions in the interior enclosure in the ab-

sence of magnetic field (𝐻𝑎 = 0) indicating strong convection effect. 
Thermal and solutal boundary layer are found to be highly compressed 
near the walls and empty at the center of the enclosure. The plumes 
diminishes, becomes parallel and gathered adjacent to the horizontal 
wall with the increase in 𝐻𝑎(= 60) tending to inhibit the convection ef-

fect due to presence of Lorentz force. It is observed that the presence 
of strong magnetic field leads to intensification of conductive mode of 
heat transfer not convective mode of heat transfer.

5.3. Effects of buoyancy ratio

The impact of buoyancy ratio (𝑁) on streamlines, isotherms and 
isoconcentrations is displayed in Fig. 6. The buoyancy ratio can be de-

fined as the ratio of solutal buoyancy to thermal buoyancy forces and 
it measures correspondingly the significance of thermal and mass diffu-

sion in the buoyancy-driven flow. It is observed that the flow is effected 
by the concentration gradient for 𝑁 = −2, causing domination of solu-

tal buoyancy force over thermal buoyancy force. This tends to increase 
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Fig. 4. Streamlines, Isotherms and Isoconcentrations for different 𝑅𝑎 at 𝐻𝑎 = 30, 𝑁 = −2, 𝑛 = 3 and 𝜙 = 0.1.

Fig. 5. Streamlines, Isotherms and Isoconcentrations for different 𝐻𝑎 at 𝑅𝑎 = 105 , 𝑁 = −2, 𝑛 = 3 and 𝜙 = 0.1.
7
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Fig. 6. Streamlines, Isotherms and Isoconcentrations for different Buoyancy ratios (𝑁) at 𝑅𝑎 = 105 , 𝐻𝑎 = 30, 𝑛 = 3 and 𝜙 = 0.1.
in flow strength and can be considered as aiding flow as can be seen 
in Fig. 6. The contours of temperature and concentration are found 
to be skewed in the core of the enclosure. However, isoconcentration 
contours are more distorted than isotherm contours signifying higher 
mass transfer. When the buoyancy ratio increases, taking positive val-

ues (𝑁 = 2), the thermal and solutal buoyancy forces oppose each other 
and tries to counterbalance each others effect. The fluid then starts to 
flow in completely reverse direction forming opposing flow that leads 
to decrease in flow strength. It is found that the flow is more intense in 
the middle of the enclosure. Also the temperature and concentration 
pattern becomes parallel to the horizontal wall resulting in conduc-

tion mode of heat transfer. The isoconcentration contours show similar 
behavior as that of isotherm due to similar energy and mass transfer 
equation.

5.4. Effects of nanoparticle volume fraction

Influence of nanoparticle volume fractions on streamlines, isotherms 
and isoconcentrations is illustrated in Fig. 7, by keeping other param-

eters constant. The fluid covers the entire enclosure in case of pure 
fluid (𝜙 = 0.0). Addition of nanoparticles increases the fluid viscosity 
and thermal conductivity by increasing the viscous force effect and 
buoyancy force effect respectively. The strength of flow field attenu-

ates with rise in 𝜙 due to larger viscous effect that slows down the 
fluid movement. The conductive heat transfer enhances with the addi-

tion of nanoparticles in the base fluid. It is noticed that the effect is 
more pronounced in isotherm and isoconcentration contours as com-

pared to streamlines and they are almost similar near the active part 
i.e. near the middle part of the bottom wall. Rise in 𝜙 leads to deforma-

tion of the thermal and solutal boundary layer at the heated surface 
and the isotherm and isoconcentration contours become linear. The 
thickness of the plumes that emerges from the discrete heat source is 
more for clear water as compared to nanofluid (𝜙 = 0.2). Moreover, 
the presence of magnetic field tends to drop the convection effect as 
8

the contours become less curved and flattened. Due to high thermal 
conductivity of nanoparticles, conductive mode of heat transfer domi-

nates.

5.5. Effects of undulation number 𝑛

Fig. 8 exposes the streamlines, isotherms and isoconcentrations for 
various values of the undulation number 𝑛(= 0 − 5) by keeping other 
parameters fixed. The fluid flow intensity gets weaken and the eye of 
circulation becomes tilted by increasing the number of waves that leads 
to intense cooling of the enclosure. Distortion of the streamlines are 
found due to the presence of wavy wall. It is also observed that the heat 
rises from the middle portion of the lower wall due to discrete heating 
of that portion while the rest lower wall are kept adiabatic. Increase 
in 𝑛 has less significant effect at the core region than at the region 
adjacent to the upper wall. For 𝑛 = 0 (absence of wave), the isotherm 
and isoconcentration contours are found to be less bent, whereas with 
the increase of 𝑛, the contours form sinusoidal wave near the wavy 
wall. The isotherm and isoconcentration contours of low temperature 
are found near the vertical and top wavy wall whereas contours of high 
temperature are found near the lower wall.

5.6. Entropy generation

The effect of Rayleigh number on 𝑆𝜃,𝑎𝑣𝑔 , 𝑆𝜓,𝑎𝑣𝑔 , 𝑆𝑚,𝑎𝑣𝑔 and 𝑆𝑑,𝑎𝑣𝑔 is 
depicted by Fig. 9. 𝑆𝜃,𝑎𝑣𝑔 for nanofluid (𝜙 = 0.2) is found to be high at 
low 𝑅𝑎 = 103 compared to pure fluid (𝜙 = 0.0). With the increase of 𝑅𝑎
entropy generation due to heat transfer, fluid friction, magnetic field 
and diffusion increases and is found to be high for pure fluid (𝜙 = 0.0) 
at high 𝑅𝑎 = 105. The influence of Hartmann number is displayed in 
Fig. 10. It is observed that 𝑆𝜃,𝑎𝑣𝑔 , 𝑆𝜓,𝑎𝑣𝑔 and 𝑆𝑑,𝑎𝑣𝑔 declines with an 
augmentation in 𝐻𝑎 due to the presence of Lorentz force. It is worthy 
noticed that 𝑆𝑚,𝑎𝑣𝑔 rises with 𝐻𝑎. Fig. 11 illustrates the effect of Buoy-

ancy ratio on 𝑆𝜃,𝑎𝑣𝑔 , 𝑆𝜓,𝑎𝑣𝑔 , 𝑆𝑚,𝑎𝑣𝑔 and 𝑆𝑑,𝑎𝑣𝑔 . It is determined that the
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Fig. 7. Streamlines, Isotherms and Isoconcentrations for different volume fraction of nanoparticles (𝜙) at 𝑅𝑎 = 105 , 𝐻𝑎 = 30, 𝑛 = 3 and 𝑁 = −2.

Fig. 8. Streamlines, Isotherms and Isoconcentrations for different undulation numbers (𝑛) at 𝑅𝑎 = 105 , 𝐻𝑎 = 30, 𝑁 = −2 and 𝜙 = 0.1.
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Fig. 9. (a) Entropy generation due to heat transfer (𝑆𝜃,𝑎𝑣𝑔 ), (b) entropy generation due to fluid friction (𝑆𝜓,𝑎𝑣𝑔), (c) entropy generation due to magnetic effect (𝑆𝑚,𝑎𝑣𝑔 )
and (d) entropy generation due to diffusion (𝑆𝑑,𝑎𝑣𝑔 ) for different 𝑅𝑎 with 𝐻𝑎 = 30, 𝑁 = −2 and 𝑛 = 3.

Fig. 10. (a) Entropy generation due to heat transfer (𝑆𝜃,𝑎𝑣𝑔), (b) entropy generation due to fluid friction (𝑆𝜓,𝑎𝑣𝑔), (c) entropy generation due to magnetic effect (𝑆𝑚,𝑎𝑣𝑔)
and (d) entropy generation due to diffusion (𝑆𝑑,𝑎𝑣𝑔 ) for different 𝐻𝑎 with 𝑅𝑎 = 105 , 𝑁 = −2 and 𝑛 = 3.
average entropy generation due to all attenuates with rise in 𝑁 for both 
pure fluid and nanofluid and found to be higher for pure fluid (𝜙 = 0.0). 
Fig. 12 depicts the influence of undulation number on entropy genera-

tion. Rise in undulation number causes decrease in entropy generation. 
Fig. 13 shows the influence of considered parameters on total entropy 
generation. It is clear from Figure that 𝑆𝑡,𝑎𝑣𝑔 rises with an augmenta-

tion in 𝑅𝑎 and declines with rise in 𝑁 , 𝐻𝑎 and 𝑛. Also, 𝑆𝑡,𝑎𝑣𝑔 drops 
with increase of volume fraction of nanoparticles. Rise in 𝜙 enhances 
the thermal conductivity that consequently enhances the temperature 
10
and concentration gradient that leads to reduction in entropy genera-

tion.

5.7. Heat and mass transfer rates: average Nusselt and Sherwood numbers

The heat and mass transfer rate is determined using the average Nus-

selt and Sherwood numbers respectively. From Fig. 14(a) and (b), it can 
be seen that irrespective of other parameters, the increase in 𝑅𝑎 esca-

lates 𝑁𝑢𝑎𝑣𝑔 and 𝑆ℎ𝑎𝑣𝑔 due to enhanced convection and consequently 
heat and mass transfer are increasing function of Rayleigh number. In-
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Fig. 11. (a) Entropy generation due to heat transfer (𝑆𝜃,𝑎𝑣𝑔), (b) entropy generation due to fluid friction (𝑆𝜓,𝑎𝑣𝑔), (c) entropy generation due to magnetic effect (𝑆𝑚,𝑎𝑣𝑔)
and (d) entropy generation due to diffusion (𝑆𝑑,𝑎𝑣𝑔 ) for different 𝑁 with 𝑅𝑎 = 105 , 𝐻𝑎 = 30 and 𝑛 = 3.

Fig. 12. (a) Entropy generation due to heat transfer (𝑆𝜃,𝑎𝑣𝑔), (b) entropy generation due to fluid friction (𝑆𝜓,𝑎𝑣𝑔), (c) entropy generation due to magnetic effect (𝑆𝑚,𝑎𝑣𝑔)
and (d) entropy generation due to diffusion (𝑆𝑑,𝑎𝑣𝑔 ) for different 𝑛 with 𝑅𝑎 = 105 , 𝐻𝑎 = 30 and 𝑁 = −2.
fluence of Hartmann number on Average Nusselt number and Sherwood 
number is plotted in Fig. 14(c) and (d). 𝑁𝑢𝑎𝑣𝑔 and 𝑆ℎ𝑎𝑣𝑔 attenuates 
with enhancement of 𝐻𝑎 as the presence of strong magnetic field in-

tensifies the conduction mechanism and consequently reduces the heat 
and mass transfer rate. The rate of heat and mass transfer are affected 
by buoyancy ratio in such a way that values of 𝑁𝑢𝑎𝑣𝑔 and 𝑆ℎ𝑎𝑣𝑔 at 
(𝑁 = 2) are always less than the corresponding values at (𝑁 = −2), as 
presented in Fig. 15(a) and (b). Heat and mass transfer rate decreases 
with increasing undulation number and the maximum value is attained 
for 𝑛 = 1, as shown in Fig. 15(c) and (d). It is clear that the addition 
11
of nanoparticles in presence of magnetic field improves the heat and 
mass transfer rate and hence increases the 𝑁𝑢𝑎𝑣𝑔 and 𝑆ℎ𝑎𝑣𝑔 . The ef-

fect is found to be more pronounced in case of low 𝑅𝑎 than at high 
𝑅𝑎.

6. Conclusions

The present work is done to investigate heat and mass trans-

fer in a wavy enclosure discretely heated and concentrated from the 
lower wall and filled with nanofluid. The upper and the vertical walls 
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Fig. 13. Variation of total entropy generation (𝑆𝑡,𝑎𝑣𝑔) for different (a) 𝑅𝑎, (b) 𝐻𝑎, (c) 𝑁 and (d) 𝑛.

Fig. 14. Variation of average Nusselt number and Sherwood number for different 𝑅𝑎 ((a) and (b)) and 𝐻𝑎 ((c) and (d)).
are maintained cold while the remaining part of the lower wall are 
considered to be adiabatic. This work is analyzed on the basis of 
various parameters and obtained results can be summarized as fol-

lows:

• The flow strength augments with an amplification in 𝑅𝑎 and

declines with rise in buoyancy ratio, Hartmann number, undula-

tion number and volume fraction of nanoparticles.

• Convection mode increases with rise of Rayleigh number but it at-

tenuates with rise of Lorentz forces.

• The behavior of the fluid streamlines, isotherms, and iso-concen-

trations within the enclosure is found to be strongly dependent 
upon the considered parameters.
12
• The average Nusselt number and Sherwood number increases with 
increase in 𝑅𝑎 and attenuates with increase in Hartmann number 
and nanofluid volume fraction.

• Increase in undulation number and buoyancy ratio decreases the 
performance of heat and mass transfer rate. The fluid flows in re-

versed direction when 𝑁 is positive resulting in lower heat and 
mass transfer rate due to the opposing gradients, and fluid rotates 
in an anticlockwise direction.

• The addition of Al2O3 nanoparticle leads to attenuation of con-

vective flow and is found to be most effective in enhancing the 
performance of heat and mass transfer rates.

• The enhancement of Rayleigh number increases the total entropy 
generation, while the enhancement of buoyancy ratio, undulation 
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Fig. 15. Variation of average Nusselt number and Sherwood number for different 𝑁 ((a) and (b)) and 𝑛 ((c) and (d)).
number and Hartmann number decreases the total entropy genera-

tion.

Declarations

Author contribution statement

Rujda Parveen: Conceived and designed the analysis; Analyzed and 
interpreted the data; Wrote the paper. T.R. Mahapatra: Conceived and 
designed the analysis; Wrote the paper.

Funding statement

Rujda Parveen was supported by Department of Science and Tech-

nology (DST) INSPIRE (No: DST/INSPIRE Fellowship/[IF170617]), In-

dia. T.R. Mahapatra was supported by (SAP-I) Refs.: F.510/3/DRS-

III/2015 under UGC, New Delhi, India.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] J.W. Lee, J.M. Hyun, Double-diffusive convection in a rectangle with opposing hori-

zontal temperature and concentration gradients, Int. J. Heat Mass Transf. 33 (1990) 
1619–1632.

[2] K. Ghorayeb, A. Mojtabi, Double diffusive convection in a vertical rectangular cav-

ity, Phys. Fluids (1994-Present) 9 (1997) 2339–2348.

[3] T.R. Mahapatra, Dulal Pal, Sabyasachi Mondal, Effects of buoyancy ratio on double-

diffusive natural convection in a lid-driven cavity, Int. J. Heat Mass Transf. 57 
(2013) 771–785.

[4] J. Buongiorno, et al., A benchmark study on the thermal conductivity of nanofluids, 
J. Appl. Phys. 106 (2009) 1.

[5] O. Manca, Y. Jaluria, D. Poulikakos, Heat transfer in nanofluids, Adv. Mech. Eng. 
2010 (2010) 380826.

[6] M. Sheikholeslami, D.D. Ganji, Nanofluid convective heat transfer using semi ana-

lytical and numerical approaches: a review, J. Taiwan Inst. Chem. Eng. 65 (2016) 
43–77.
13
[7] T. Grosan, M.A. Sheremet, I. Pop, Heat transfer enhancement in cavities filled with 
nanofluids, in: A.A. Minea (Ed.), Advances in Heat Transfer Fluids: From Numerical 
to Experimental Techniques, CRC Press, Taylor and Francis, 2017, pp. 267–284.

[8] T.G. Myers, H. Ribera, V. Cregan, Does mathematics contribute to the nanofluid 
debate?, Int. J. Heat Mass Transf. 111 (2017) 279–288.

[9] K.F.V. Wong, O.D. Leon, Applications of nanofluids: current and future, Adv. Mech. 
Eng. 2010 (2010) 1–11.

[10] O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the appli-

cations of nanofluids in solar energy, Int. J. Heat Mass Transf. 57 (2013) 582–594.

[11] S.K. Das, S.U.S. Choi, W. Yu, Y. Pradeep, Nanofluids: Science and Technology, Wiley, 
New Jersey, 2008.

[12] Javad Abolfazli Esfahani, Vahid Bordbar, Double diffusive natural convection heat 
transfer enhancement in a square enclosure using nanofluids, J. Nanotechnol. Eng. 
Med. 2 (2) (2011).

[13] S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain, Double diffusive natural convection 
in a partially heated enclosure using nanofluid, Heat Transf. Asian Res. 41 (2012) 
484–497.

[14] Rehena Nasrin, M.A. Alim, Modeling of double diffusive buoyant flow in a solar 
collector with water-CuO nanofluid, Heat Transf. Asian Res. 42 (3) (2013) 212–229.

[15] Sheng Chen, Bo Yang, Xiao, Chuguang Zheng, Analysis of entropy generation in 
double-diffusive natural convection of nanofluid, Int. J. Heat Mass Transf. 87 (2015) 
447–463.

[16] B. Ghasemi, S.M. Aminossadati, A. Raisi, Magnetic field effect on natural convection 
in a nanofluid-filled square enclosure, Int. J. Therm. Sci. 50 (2011) 1748–1756.

[17] M.A. Teamah, Numerical simulation of double diffusive natural convection in rect-

angular enclosure in the presences of magnetic field and heat source, Int. J. Therm. 
Sci. 47 (2008) 237–248.

[18] Mohamed A. Teamah, Ali I. Shehata, Magnetohydrodynamic double diffusive natu-

ral convection in trapezoidal cavities, Alex. Eng. J. 55 (2016) 1037–1046.

[19] M.M. Rahman, R. Saidur, N.A. Rahim, Conjugated effect of joule heating and 
magneto-hydrodynamic on double-diffusive mixed convection in a horizontal chan-

nel with an open cavity, Int. J. Heat Mass Transf. 54 (2011) 3201–3213.

[20] T.R. Mahapatra, Bikash C. Saha, Dulal Pal, Magnetohydrodynamic double-diffusive 
natural convection for nanofluid within a trapezoidal enclosure, Comput. Appl. 
Math. 37 (5) (2018) 6132–6151.

[21] B. Calcagni, F. Marsili, M. Paroncini, Natural convective heat transfer in square 
enclosures heated from below, Appl. Therm. Eng. 25 (2005) 2522–2531.

[22] F. Oueslati, B. Ben-Beya, T. Lili, Double-diffusive natural convection and entropy 
generation in an enclosure of aspect ratio 4 with partial vertical heating and salting 
sources, Alex. Eng. J. 52 (2013) 605–625.

[23] P. Kandaswamy, S. Malliga Sundari, N. Nithyadevi, Magnetoconvection in an en-

closure with partially active vertical walls, Int. J. Heat Mass Transf. 51 (2008) 
1946–1954.

[24] Hakan F. Oztop, Eiyad Abu-Nada, Numerical study of natural convection in par-

tially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow 
29 (2008) 1326–1336.

[25] S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localised heat 
source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B, Fluids 28 
(2009) 630–640.

http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib8E296A067A37563370DED05F5A3BF3ECs1


R. Parveen, T.R. Mahapatra Heliyon 5 (2019) e02496
[26] A.J. Chamkha, H. Al-Naser, Hydromagnetic double-diffusive convection in a rectan-

gular enclosure with uniform side heat and mass fluxes and opposing temperature 
and concentration gradients, Int. J. Therm. Sci. 41 (2002) 936–948.

[27] C. Cho, Heat transfer and entropy generation of natural convection in nanofluid-

filled square cavity with partially-heated wavy surface, Int. J. Heat Mass Transf. 77 
(2014) 818–827.

[28] M.A. Teamah, Numerical simulation of double diffusive natural convection in rect-

angular enclosure in the presences of magnetic field and heat source, Int. J. Therm. 
Sci. 47 (2008) 237–248.

[29] S. Noorshahi, C.A. Hall, E.K. Glakpe, Natural convection in a corrugated enclosure 
with mixed boundary conditions, J. Sol. Energy Eng. 118 (1996) 50–57.

[30] S. Parvin, R. Nasrin, M.A. Alim, Heat transfer and entropy generation through 
nanofluid filled direct absorption solar collector, Int. J. Heat Mass Transf. 71 (2014) 
386–395.

[31] M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Soheil Soleimani, Natural convec-

tion heat transfer in a cavity with sinusoidal wall filled with CuO-water nanofluid 
in presence of magnetic field, J. Taiwan Inst. Chem. Eng. 45 (1) (2014) 40–49.

[32] Muhammad N. Hasan, Sumon Sahab, Suvash C. Saha, Effects of corrugation fre-

quency and aspect ratio on natural convection within an enclosure having sinusoidal

corrugation over a heated top surface, Int. Commun. Heat Mass Transf. 39 (2012) 
368–377.

[33] M.A. Sheremet, I. Pop, N. Bachokd, Effect of thermal dispersion on transient natural 
convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ 
nanofluid model, Int. J. Heat Mass Transf. 92 (2016) 1053–1060.

[34] Shenoy, M. Sheremet, I. Pop, Convective Flow and Heat Transfer from Wavy Sur-

faces: Viscous Fluids, Porous Media and Nanofluids, CRC Press, New York, 2016.

[35] B. Rathish Kumar, S. Krishna Murthy, Soret and Dufour effects on double-diffusive 
free convection from a corrugated vertical surface in a non-Darcy porous medium, 
Transp. Porous Media 85 (1) (2010) 117–130.

[36] Salam Hadi Hussain, Analysis of heatlines and entropy generation during double-

diffusive MHD natural convection within a tilted sinusoidal corrugated porous en-

closure, Int. J. Eng. Sci. Technol. 19 (2016) 926–945.

[37] Mohammad Mostafa Gholizadeh, Rasoul Nikbakhti, Javad Khodakhah, Amirmahdi 
Ghasemi, Numerical study of double diffusive buoyancy forces induced natural con-

vection in a trapezoidal enclosure partially heated from the right sidewall, Alex. 
Eng. J. 55 (2016) 779–795.

[38] H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. 
Phys. 20 (1952) 571–581.

[39] J.C. Maxwell, A Treatise on Electricity and Magnetism, II, Oxford University Press, 
Cambridge, UK, 1873.

[40] M.M. Gupta, J.C. Kalita, A new paradigm for solving Navier-Stokes equation: 
streamfunction-vorticity formulation, J. Comput. Phys. 207 (2005) 52–68.

[41] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Society for In-

dustrial and Applied Mathematics (SIAM), Philadelphia, 1995.
14

http://refhub.elsevier.com/S2405-8440(19)36156-0/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibE369853DF766FA44E1ED0FF613F563BDs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibE369853DF766FA44E1ED0FF613F563BDs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1C383CD30B7C298AB50293ADFECB7B18s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1C383CD30B7C298AB50293ADFECB7B18s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib1C383CD30B7C298AB50293ADFECB7B18s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA5771BCE93E200C36F7CD9DFD0E5DEAAs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibA5771BCE93E200C36F7CD9DFD0E5DEAAs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibD645920E395FEDAD7BBBED0ECA3FE2E0s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bibD645920E395FEDAD7BBBED0ECA3FE2E0s1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2405-8440(19)36156-0/bib3416A75F4CEA9109507CACD8E2F2AEFCs1

	Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nano...
	1 Introduction
	2 Model
	3 Theory/Calculation
	3.1 Thermo-physical properties of nanofluid
	3.2 Governing equations
	3.3 Nusselt number and Sherwood number
	3.4 Entropy generation

	4 Methodology
	4.1 Numerical method
	4.2 Code validation
	4.3 Grid independence test

	5 Results & Discussion
	5.1 Effects of Rayleigh number
	5.2 Effects of Hartmann number
	5.3 Effects of buoyancy ratio
	5.4 Effects of nanoparticle volume fraction
	5.5 Effects of undulation number n
	5.6 Entropy generation
	5.7 Heat and mass transfer rates: average Nusselt and Sherwood numbers

	6 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


