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Mitophagy plays a vital role in the selective elimination of dysfunctional and

unwantedmitochondria. As a receptor ofmitophagy, FUN14 domain containing

1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in

the mitochondria fission, the clearance of unfolded protein, iron metabolism in

mitochondria, and the crosstalk between mitochondria and endoplasmic

reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is

associated with the progression of ischemic disease, cancer, and metabolic

disease. In this review, we systematically examine the recent advancements in

FUNDC1 and the implications of this protein in health and disease.
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1 Introduction

Mitochondria regarded as the direct descendants of a bacterial endosymbiont are

symbiotic with the host cell (Gray et al., 1999). To the best of our knowledge,

approximately 99% of proteins used for maintaining mitochondrial function are

regulated by nuclear genes, while only 13 proteins are coded by mitochondria (Song

et al., 2021). Apart from providing energy for the host cell, mitochondria can sequester

hazardous substances by creating an isolated space in cells (Song and Dorn, 2015).

Furthermore, mitochondria are vulnerable when they participant in generating reactive

oxygen species (ROS), iron metabolism, and lipid oxidation. Accumulation of damaged

and superfluous mitochondria are detrimental to cells and organs (Liu et al., 2014; Zorov

et al., 2014), suggesting that the process of clearance of mitochondria should not be

overlooked.

Mitophagy that responsible for the selective elimination of dysfunctional and

unwanted mitochondria was observed for the first time under electron microscopy by

glucagon-stimulated stem cell activation (Deter and De Duve, 1967; Hirota et al., 2015).

The past few years have witnessed an explosion in our understanding of mitophagy, which

preserves mitochondrial function and cell homeostasis under diverse (patho-)
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physiological conditions such as hypoxia, starvation, and

exposed cold stimulus (Hirota et al., 2015; Liu et al., 2021a).

The molecular mechanisms of mitophagy include PTEN

induced putative kinase 1 (PINK1)-Parkin pathway and

receptor-mediated pathway. PINK1-Parkin partnership mainly

modulates the turnover of depolarized mitochondria (Springer

and Macleod, 2016). When the mitochondrial membrane

potential decreases, PINK1 firstly accumulates in the

mitochondrial outer membrane, and then recruits Parkin,

which is an E3 ubiquitin ligase, to the mitochondrial outer

membrane, leading to the ubiquitination of various proteins

in the mitochondrial outer membrane (Yoshii et al., 2011).

Simultaneously, the autophagy receptor optineurin, which

binds to light chain 3 (LC3), is recruited to ubiquitinated

mitochondria and located to the outer membrane surface by

phosphorylation of TANK-binding kinase 1. And then, the

damaged mitochondria are engulfed into autophagy

precursors, which are ultimately degraded by the conserved

lysosomal pathway (Evans and Holzbaur, 2020).

Mitophagy receptors include BCL2 interacting protein three

like (BNIP3L/NIX) and FUNDC1. FUNDC1mainly participates

in the regulation of mitochondrial homeostasis under hypoxic

(Liu et al., 2012a). Missed or mutated FUNDC1may promote the

progression of human disease. For example, the loss of

FUNDC1 leads to mitochondrial fragmentation, and fails to

repair infarcted hearts during the differentiation of cardiac

progenitor cells (Lampert et al., 2019). Geng Guangfeng and

his colleagues found that intervening FUNDC1 could

simultaneously improve renal anemia and renal fibrosis (Geng

et al., 2021). Moreover, Lei Liu and his colleagues gave a detailed

description of the role of FUNDC1-mediated mitophagy in

cardiovascular diseases (Liu et al., 2021b). Instances of disease

ranging from ischemic disease to cancer, as well as metabolic

related disease, could also be influenced by FUNDC1. Thus, this

review aims to delineate the timely advancement of

FUNDC1 and its role in human disease.

2 The structure of FUNDC1

FUNDC1 is one of the paralogous subfamilies of

FUN14 domain-containing protein family which is present

in eukaryotes, archaea, and bacteria (Wu et al., 2017a).

Human FUNDC1 is widely expressed in the body,

especially in the heart (Zhang et al., 2017). It contains

155 amino acids and is mainly located in the outer

membrane of mitochondria. Furthermore, FUNDC1 has

three transmembrane regions, the N-terminal is exposed

to the cytoplasm. The exposed part includes a LC3-

interacting region (LIR, Y18-E-V-L21) which can bind to

LC3 to regulate the occurrence of mitophagy (Liu et al.,

2012a; Wu et al., 2017a). Eleven lysine residues sites such as

K70 and K119, which are included in the transmembrane

region of FUNDC1, can bind to optic atrophy 1 (OPA1) and

MARCH5, respectively (Chen et al., 2017a; Wu et al., 2017a).

3 The regulatory proteins of FUNDC1-
mediated mitophagy

The mRNA level of FUNDC1 is downregulated under

hypoxia condition (Wu et al., 2017a), but the specific

transcriptional regulators of FUNDC1 are not deeply

understood. As a nuclear transcription factor, nuclear

transcription factor 1(NRF1) can participate in the activation

of mitochondrial genes and transcription and translation of

mtRNA (Carraway et al., 2010). After being activated by the

peroxisome proliferator-activated receptor gamma coactivator

1alpha (PGC1α) and acetaldehyde dehydrogenase 2 (ALDH2),

NRF1 can directly bind to 5’ promoter of FUNDC1, upregulating

the level of FUNDC1, and further promoting mitophagy and

mitochondrial biogenesis to maintain the normal function of

mitochondria and cells (Li et al., 2020; Liu et al., 2021a).

Moreover, FOXO3a that is a member of the fork head box

class O (FOXO) family that are widely expressed transcription

factors can regulate a variety of cellular physiological processes

by targeting effector genes (Liu et al., 2018) and activate

FUNDC1 to promote the occurrence of mitophagy in ISO-

induced myocardial hypertrophy model (Liu et al., 2021c).

In normal condition, the LIR region of FUNDC1 is

phosphorylated at Y18 and S13 sites by Src and CK2 kinase,

respectively, to maintain inactivation. However, under long-term

hypoxia condition, FUNDC1 is dephosphorylated at Y18 and

S13 due to the inactivation of Src and CK2 kinase, leading to the

occurrence of mitophagy (Liu et al., 2012a; Chen et al., 2014;

Zhou et al., 2018a). MARCH5, an E3 ubiquitin ligase, is an

important regulator of FUNDC1-mediated mitophagy.

Interaction between MARCH5 and FUNDC1 means a

crosstalk between ubiquitin- and mitophagy. Chen et al.

(2017a), Chen et al. (2017b) suggested that MARCH5 homo-

oligomers were disassembled under the early stage of hypoxia,

and then MARCH5 bound to K119 site of FUNDC1, thereby

making FUNDC1 ubiquitinated and degraded, which inhibiting

mitophagy and avoiding improper clearness of undamaged

mitochondria. As a negative factor for FUNDC1, micro-137

can directly target to FUNDC1 and then inhibit mitophagy

(Li et al., 2014).

Phosphoglycerate mutase family member 5 (PGAM5) exists

in the inner membrane of mitochondria and protects

PINK1 from degradation. After being stimulated by carbonyl

cyanide m-chlorophenyl hydrazine in models, PINK1 can

migrate from the inner membrane to the outer membrane

under the protection of PGAM5 and bind with Parkin to

complete the subsequent mitophagy process. The loss of

PGAM5 affects the occurrence of PINK1-mediated mitophagy

(Lu et al., 2014). Similarly, PGAM5 is important to regulate
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FUNDC1-mediated mitophagy. Under normal condition, BCL2-

like 1 (BCL2L1/Bcl-xL) binds to PGAM5 to inhibit the activation

of PGAM5. While under hypoxia condition, BCL2L1 is

hydrolyzed, and PGAM5 is released. Activated

PGAM5 dephosphorylates FUNDC1 at S13 and promotes the

interaction between FUNDC1 and LC3, thereby inducing

mitophagy (Wu et al., 2014a; Kuang et al., 2016; Biswal et al.,

2018). In addition, FUNDC1 is phosphorylated by unc-51 like

autophagy activating kinase 1 (ULK1) at S17 site under hypoxic

condition (Wu et al., 2014b). Wang Li and his colleagues found

that mitophagy that was activated via ULK1-FUNDC1 pathway

could prevent nerve cells from apoptosis (Wang et al., 2018).

Specific details of factors are shown in Figure 1.

4 FUNDC1-mediated mitochondrial
events

4.1 Mitochondrial fission

Mitochondrial fission is strictly monitored in cells that can

produce healthy mitochondria and induce mitophagy through

the ROS produced by the division (Archer, 2013; Song and Dorn,

2015). It also participates in cytochrome C-mediated apoptosis

pathologically (Cassidy-Stone et al., 2008). Dynamin-related

protein 1 (DRP1, also known as DNM1L), which is recruited

to the outer membrane of mitochondria, is essential to drive

mitochondrial fission (Cerveny et al., 2007). In addition, as a

dynamin-like guanosine triphosphatase, OPA1, which can be

found as long-OPA1(L-OPA1) and short-OPA1(S-OPA1)

forms, is located in the inner membrane of mitochondria and

is vital for balancing mitochondrial fusion and fission (Wai et al.,

2015). Seminal findings from ChenMing and colleagues depicted

a new molecular mechanism of mitochondria fission, which

depended on the interaction between FUNDC1 and DNM1L,

OPA1. Under normal condition, FUNDC1 interacted with

OPA1 at the site K70. But OPA1 could be cleaved or

degraded by yeast mitochondrial escape 1-like (YME1L) and

OMA1 under mitochondrial stress condition. Then

FUNDC1 and OPA1 separated, dephosphorylated

FUNDC1 recruited DNM1L toward mitochondria, thus

promoting mitochondrial fission (Chen et al., 2016).

Mitochondria-associated ER membranes (MAMs) are

critical for the occurrence of mitochondrial fission. Under

hypoxia condition, FUNDC1 is accumulated at MAMs by

interacting with calnexin. As mitophagy proceeds, the

association between FUNDC1 and calnexin becomes

attenuated, and FUNDC1 recruits DRP1 toward mitochondria

to complete mitochondrial fission (Wu et al., 2016a; Wu et al.,

2016b). Mitochondrial fission and mitophagy are closely

relevant. They seemed to be a continuous process, just as van

der Bliek AM described in his paper (van der Bliek, 2016).

Ubiquitin-specific peptidase 19 (USP19), identified as a

deubiquitylase, is also an important regulator involved in

MAMs-mediated mitochondrial fission (Volkmar et al., 2016).

Under hypoxia condition, USP19 is recruited to ER, which is

mainly responsible for removing the ubiquitin chain from

FUNDC1. Then deubiquitinated FUNDC1 is stabilized at

MAMs and recruits DRP1 toward the contact site to finish

mitochondria fission (Chai et al., 2021). Under hypoxia

FIGURE 1
Diagram of possible structure and regulatory proteins of FUNDC1. The illustration was created by Figdraw (www.Figdraw.com).
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condition, why does FUNDC1 interact with calnexin and then

dissociate? Does this process recruit USP19 to MAMs or recruit

DRP1 to mitochondria to interact with FUNDC1? Is USP19 able

to interact with calnexin? How do MARCH5 and

USP19 coordinate the ubiquitinated fate of FUNDC1? There

are still no clear answers to these questions. Mitochondrial fission

is vital for mitophagy. In order to get a better understanding of

mitophagy, it is necessary to conduct in-depth research on the

upstream (Chakrabarti and Higgs, 2021). Therefore, the

molecular mechanism of FUNDC1-mediated mitochondrial

fission and mitophagy is worthy of further study.

4.2 Iron homeostasis in mitochondria

Iron is an essential component to maintain cellular

metabolism and is crucial for the normal function of

mitochondria because it participates in the electron transport

chain (Huang et al., 2011; Dietz et al., 2021). Moreover,

mitochondria as machineries where iron-sulfur clusters (ISCs)

are assembled and exported are necessary for modulating iron

metabolism in cells (Paul and Lill, 2015). Relative drugs are being

exploited for treating human disease. For example,

mitochondrially targeted deferoxamine (mitoDFO) impairs

mitochondrial respiration and biogenesis of [Fe-S] clusters/

heme in cancer cells, thereby suppressing the proliferation and

migration of cancer cells (Sandoval-Acuña et al., 2021).

As a fundamental process in the cell, iron metabolism is closely

related to mitophagy. Chiang et al. (2021) suggested that in the

frataxin knockout mouse, mitophagy was enhanced when iron was

accumulated in mitochondria, resulting in the dysfunction of

mitochondria. But in pathogenic yeast Candida glabrata cells,

mitophagy is also enhanced under iron-depletion condition (Nagi

et al., 2016). The result of SchiaviAlfonso andhis colleagues’ studywas

similar that iron depletion could inducemitophagy and then extended

C. elegans lifespan (Schiavi et al., 2015). The studies mentioned above

suggest that either iron deficiency or iron overload has an impact on

mitophagy.WuHao and his colleagues found that if themachinery of

ISCs was disrupted, iron regulatory proteins 1 (IRP1) would suppress

the translation of Bcl-xL, causing PGAM5 separate from Bcl-xL,

finally initiating FUNDC1-mediated mitophagy (Wu et al., 2020). Pei

Zhaohui and his colleagues discovered that under short-term high fat

intake, the deficiency of FUNDC1 induced metabolic and cardiac

dysfunction through ferroptosis regulated by specificity protein 1

(SP1) -acyl-CoA synthetase long-chain family member 4 (ACLS4)

axis (Pei et al., 2021). In short, the relationship between FUNDC1 and

iron metabolism is close in cells.

4.3 Clearance of unfolded protein

Damaged or excess proteins can promote proteotoxic effects

if they are not removed in time (Song, 2019). FUNDC1-mediated

mitophagy is involved in the clearance of damaged proteins

collaborating with ubiquitination. Under stress condition,

FUNDC1 interacts with HSC70 belonging to the

HSP70 family, which is a member of the heat shock protein

(HSP)family (Hartl and Hayer-Hartl, 2002; Liu et al., 2012b),

transporting misfolded proteins to mitochondria matrix, and the

proteins are degraded in the presence of LonP1, which is a AAA

protease. The formation of mitochondrion-associated protein

aggregates (MAPAs) is triggered when the misfolded proteins are

over-accumulation in the mitochondrial matrix. Then FUNDC1-

FIS1-mediated mitophagy is activated to promote the clearance

of unfolded proteins. If massive unfolded proteins are not timely

disposed, cells will finally become senescent. Li et al. (2019a), Li

et al. (2019b) pointed out that FUNDC1-LonP1 axis also played

an important role in maintaining mitochondrial reprogramming

and cellular plasticity in cancer cells (Cappellini et al., 2020).

Wang Yue’s study confirmed that the coordination between

FUNDC1-mediated mitophagy and unfolded proteins could

attenuate inflammation-mediated myocardial injury in septic

cardiomyopathy (Wang et al., 2021a).

4.4 Interaction with other organelles

The mitochondria generally maintain a relationship with

other organelles in the cells. Such interactions could offer

some forms of benefit. FUNDC1 plays a key role in the

crosstalk between mitochondria and other organelles.

4.4.1 Endoplasmic reticulum
The most typical membrane contact site is the interaction

between mitochondria and ER, known as mitochondria-

associated ER membranes (MAMs) or mitochondria-ER

contacts (MERCs), it maintains the homeostasis of Ca2+ level

and lipid metabolism in two organelles (Rowland and Voeltz,

2012; Giacomello and Pellegrini, 2016). FUNDC1-mediated

MAMs are involved in the transportation of calcium. Calcium

is transported to mitochondria from ER through the inositol

1,4,5-triphosphate receptor (IP3R)-glucose regulated protein 75

(Grp75)-voltage-dependent anion channel (VDAC) complex,

FUNDC1 which interacts with IP3R2 is responsible for

facilitating MAMs stabilization. The cAMP-responsive element

binding protein (CREB) is phosphorylated at S133 site due to

mitochondrial retrograde calcium signal, which inducing CREB

nuclear translocation, and then the transcription of fission one

protein (FIS1) is activated. Subsequently, enhanced

FIS1 promotes both mitochondrial fission and mitophagy

(Wu et al., 2017b; Muñoz and Zorzano, 2017), as shown in

Figure 2. Moreover, it has been suggested that FUNDC1 may

maintain mitochondrial calcium homeostasis via the interaction

between FUNDC1 and receptor subunit of human SCF (SKP1/

cullin/F-box protein) ubiquitin ligase complex (FBXL2) (Ren

et al., 2020).
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FUNDC1-dependent MAMs are involved in the

development of multiple diseases. For example, diabetes

mellitus inhibits the activity of AMP-activated protein kinase

(AMPK), which promotes the formation of FUNDC1-mediated

MAMs, and then inducing mitochondrial dysfunction, leading to

cardiomyopathy (Wu et al., 2019a). AMPK-FUNDC1-MAMs

axis is also involved in the development of diabetic nephropathy

(DN) (Wei et al., 2020). Excessive Ca2+ releasing from ER into

mitochondria leads to cardiac damage and heart failure when

FUNDC1 interacts with IP3R2 (63). Moreover, if the formation

of FUNDC1-mediated MAMs is disrupted under angiogenic

condition, the level of serum response factor (SRF) and

vascular endothelial growth factor 2 (VEGFR2) will be

downregulated due to the dyshomeostasis of Ca2+, which

reducing the VEGF-induced angiogenesis (Wang et al.,

2021b), as shown in Figure 2. Some studies documented that

FUNDC1-mediated mitophagy could improve cerebral ischemia

via inhibiting NLRP3 inflammasome. And the level of

NLRP3 would be increased when FUNDC1 was knocked out,

then inflammatory response was exacerbated, lung cells were

further injured (Pan et al., 2021; Zheng et al., 2021). Furthermore,

the activation of NLRP3 inflammasome compromises the

recovery of HFD-induced vascular impairment (Elshaer et al.,

2017; Mohamed et al., 2020). Considering that FUNDC1 can

regulate NLRP3, and FUNDC1-mediated MAMs can promote

angiogenesis, whether there is a link between FUNDC1-mediated

MAMs and NLRP3 is worthy of mention. MAMs may be

potential drug targets. For example, capsaicin improves DN

via activating transient receptor potential cation channel

subfamily V member 1 (TRPV1). The molecular mechanism

is that AMPK is activated by transient Ca2+ level due to the

activation of TRPV1, causing the reduction of FUNDC1, which

downregulates the formation of MAMs (Wei et al., 2020).

4.4.2 Lysosome
Mitochondria and lysosome are important organelles to

maintain cell homeostasis. Their dysfunction or interaction

disorders are related to neurodegeneration and other human

diseases (Audano et al., 2018; English and Hughes, 2019). The

role of mitochondria-lysosome contacts in the function of

mitochondria and lysosome has received increased attention

in recent years. Apart from regulating mitochondrial fission,

Wong et al. (2018) discovered that the morphology of lysosome

would be impaired if the mitochondria-lysosome contact could

not untether.

Rab7 is a small G protein belonging to the Rab family and is

present on the lysosome, ER, and mitochondrial membranes

(Jimenez-Orgaz et al., 2018). It is mainly involved in membrane

trafficking (Progida et al., 2010). Furthermore, Rab7 is involved

in regulatingmitochondria-lysosome contact (Wong et al., 2018).

Activated Rab7 maintains mitochondrial-lysosome contact,

while inactivated Rab7 makes mitochondrial-lysosome contact

dissociated. The activation of Rab7 is regulated by TBC1D15,

which belongs to the TBC (Tre-2/Bub2/Cdc16) domain family

and function as a GTPase-activating protein (GAP) for Rab

GTPases (Chen et al., 2017c; Wong et al., 2018).

TBC1D15 could be recruited to mitochondria by FIS1 (Onoue

et al., 2013). And then, TBC1D15 makes Rab7-GTP translate to

Rab7-GDP, which cannot bind to the lysosome, ultimately

promoting the dissociation between mitochondria and

FIGURE 2
FUNDC1 mediated crosstalk among mitochondria and other organelles. The illustration was created by Figdraw (www.Figdraw.com).
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lysosome (Wong et al., 2018). Autophagy is inhibited in a variety

of diseases, but the formation of autophagosomes is normal or

even enhanced. If there are not enough or normal functional

lysosome to receive autophagosomes, autophagosomes will not

be degraded and may lead to cytotoxicity (Cuervo, 2011). In view

of that, Yu Wenjun and his colleagues proved that TBC1D15/

FIS1/Rab7 pathway exerted protective effects on the function and

morphology of infarct heart via untethering mitochondria-

lysosome contact (Yu et al., 2020).

TBC1D15 could modulate autophagosome biogenesis via

interacting with LC3/GABARAP family members (Yamano

et al., 2014). And FIS1 regulates mitochondrial fission by

recruiting lysosome toward mitochondria and is primarily

involved in the clearance of damaged mitochondria (Kleele

et al., 2021). Moreover, FUNDC1 can sense the inner

mitochondrial stress via interacting with OPA1(38) and

increase the level of Ca2+ in mitochondria, which is a sensor

that promotes transcription of FIS1(64). Whether these proteins

can coordinate fission and mitophagy and whether these

processes could happen continuously, the mechanisms in

integrating these processes are unclear. Thus, further in-depth

studies are needed to explore whether the FUNDC1/FIS1/

TBC1D15/Rab7 pathway participates in regulating

mitochondria-lysosome contact, as shown in Figure 2.

5 FUNDC1 and diseases

5.1 Ischemia-reperfusion (I/R) injury

Ischemic disease, which has high disability and mortality,

especially heart and brain ischemia, occurs when blood vessels

are blocked (Zhang et al., 2021). Although reperfusion is

necessary to recover cell function, it can also provoke

activation of deleterious processes to impair cell function

(Kalogeris et al., 2016). Numerous studies demonstrated that

mitophagy played a vital role in the physiopathology and

treatment of I/R injury. The details are shown in Figure 3.

Platelet reactivity is related to mitochondrial mass and

function, and it is crucial for I/R injury (Zhang et al., 2017;

Davizon-Castillo et al., 2019). There are two studies to clarify the

relationship between mitochondria and platelet. Zhou et al.

(2017a) pointed out that the level of peroxisome proliferator-

activated receptor γ (PPARγ) was downregulated in platelets

under I/R injury condition, and then FUDNC1-mediated

mitophagy was activated. Subsequently, the platelet was

activated, which promoting the block of microcirculation,

finally causing cardiomyocyte death, excessive inflammation

response, and heart dysfunction. According to the report,

melatonin can reverse heart injury via promoting the level of

PPARγ, PPARγ-FUNDC1-mitophagy pathway could be an

essential strategy for treating I/R injury. Coincidentally, Zhang

et al. (2016), Zhang et al. (2017) used conditional knockout mice

specifically lacking FUNDC1 in their platelets and found that

hypoxic preconditioning had a cardioprotective effect because

hypoxic induced mitophagy causing extensive mitochondrial

degradation in platelets, and then compromising the

activation of platelet, reducing the I/R injury. It seems that

mitophagy could upregulate or downregulate the activity of

platelet under different conditions. It is unclear whether the

contradictory results are due to inconsistent intervention

methods in the two experiments or whether they suggest

other pathways other than FUNDC1- mediated mitophagy

affecting platelet activity.

From the perspective of cardiac ischemia studies, it is

generally believed that the regulation of mitophagy may be a

potential therapy for cardioprotective effect. Zhou Hao and his

colleagues’ study revolved around nuclear receptor subfamily

four group A member 1 (NR4A1) and FUNDC1. Increased

NR4A1 was observed in cardiac I/R model, upregulated

FIGURE 3
The role of FUNDC1 in I/R injury.
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NR4A1 induced FUNDC1 phosphorylation via activating CK2α,
increased CK2α was harmful for mitochondria, and then

mitophagy was suppressed, ultimately impairing cardiac

function. Moreover, Zhou et al., (2018a), Zhou et al. (2018b)

explored the relationship between NR4A1 and FUNDC1 in

alcohol-related liver disease (ARLD). They revealed that

NR4A1 was increased after alcohol treatment, upregulated

NR4A1 could promote the disassociation of DNA-dependent

protein kinase catalytic subunit (DNA-PKcs) and Ku80.

Subsequently, disassociated DNA-PKcs bound to p53,

activated p53 promoted the upregulation of CK2. Same results

as the cardiac I/R model, FUNDC1-mediated mitophagy was

suppressed, ultimately leading to the progression of ARLD (Zhou

et al., 2019).

Mammalian STE20-like kinase 1 (Mst1) which is a negative

regulator of cardiac function is upregulated in acute I/R injury

model, inhibits MAPK-ERK-CREB pathway, consequently

suppresses the level of FUNDC1, thus FUNDC1-mediated

mitophagy is defective (Yu et al., 2019). Receptor-interacting

protein kinase 3 (Ripk3) is another factor to damage cardiac

function. Upregulated Ripk3 can interact with FUNDC1,

inhibiting mitophagy, leading to caspase9-mediated apoptosis

(Zhou et al., 2017b). The level of polo-like kinase 1 (PLK1) is

downregulated in cardiac I/R injury model, but overexpression of

PLK1 can relieve myocardial damage via p-AMPK/FUNDC1-

mediated mitophagy (Mao et al., 2021). Pigment epithelial-

derived factor is a protective factor for acute myocardial

infarction. Under hypoxia condition, it can interact with

PEDF-R, and then active PKC-α through increasing the level

of palmitic acid and diacylglycerol. The activated PKC-α can

promote FUNDC1-mediated mitophagy, which depends on

ULK1 pathway, thus protecting cardiomyocytes (Li et al.,

2018). In addition to myocardial ischemia, ULK1-FUNDC1-

mediated mitophagy is also the mechanism of renoprotection

using ischemia preconditioning in ischemic acute kidney injury

(Wang et al., 2020).

mTORC1-ULK1-FUNDC1-mitophagy is an important axis

to reduce ischemic injury. Electroacupuncture can not only

attenuate myocardial ischemia-reperfusion injury but also

cerebral ischemia-reperfusion injury via mitophagy inhibited

by mTORC1-ULK1-FUNDC1 pathway (Mao et al., 2020; Xiao

et al., 2020; Tian et al., 2021). By contrast, Cai Ying and his

colleagues investigated that tissue-type plasminogen activator

(tPA) was decreased in cerebral I/R model, causing

FUNDC1 degraded and mitophagy inhibited, while exogenous

tPA, which could induce FUNDC1-mediated mitophagy via

phosphorylating AMPK, could reduce I/R injury (Cai et al.,

2021).

Furthermore, FUNDC1-mediated mitophagy is also an

underlying physiopathology mechanism in intestinal I/R

injury. Li Shaoqin revealed that NOD-like receptor X1

(NLRX1) was decreased in intestinal I/R model, and the

phosphorylation of FUNDC1 was enhanced. Thus,

FUNDC1 could not interact with non-neuronal SNAP25-like

protein homolog one and 2 (NIPSNAP one and 2), resulting in

the suppression of mitophagy, ultimately contributing to

intestinal morphological damage (Li et al., 2021).

5.2 Cancers

High level of FUNDC1 promotes oxidative bioenergetics and

supports tumor cell proliferation and growth (Cappellini et al.,

2020). It might be an independent prognostic factor for overall

survival and disease-free survival in patients with cervical cancer

(Hou et al., 2017). Hydrogen peroxide is a regulator to increase

the level of FUNDC1 in laryngeal cancer cells, mainly through

activating ERK1/2 (Hui et al., 2019). Furthermore, FUNDC1-

involved MAMs can promote calcium transport to cytoplasm,

making nuclear factor of activated T cells 1 (NFATC1)

dephosphorylated, and then Bmi1 polycomb ring finger

oncogene (BMI1) is upregulated, thus promoting the

progression of breast cancer (Wu et al., 2019b).

FUNDC1 promotes the growth of hepatocellular carcinoma

(HCC) tissues in the late stage of the disease (Li et al., 2019c),

and the high level of FUNDC1 might also be a risk factor for

HCC patients. However, Li Wenhui found that FUNDC1-

mediated mitophagy partially inhibited the release of mtRNA

and mtROS produced by damaged mitochondria, thereby

preventing inflammasome hyperactivated, suppressing the

initiation of HCC in early-stage (Li et al., 2019c). These

inconsistent results might be interpreted using the dynamic

function of autophagy. Micro-137 is a protective factor for

breast cancer because it can target FUNDC1 to inhibit the

occurrence of mitophagy (Hu et al., 2020).

5.3 Metabolic-related diseases

Mitochondria are energy factories, participating in the

occurrence of multiple metabolic-related events. In recent

years, mitophagy, which is regarded as the key mechanism for

mitochondrial quality control and function, has received

increased attention in metabolic-related diseases.

Like the global knockout mice, Wu Hao’s study showed that

severe mitochondrial abnormality, aggregated inflammation,

obesity phenotypes, and insulin resistance phenotypes were

observed when animals were fed high fat diet in the adipose

tissue specific FUNDC1 knockout mice model. The mechanism

is mainly related to the accumulated ROS in damaged

mitochondria, because ROS can activate MAPK, which leads

to white adipose tissue insulin resistance and systematic insulin

resistance induced by elevated tumor necrosis factor (TNF),

interleukin 6 (IL6) and downregulated adiponectin gene

(ADIPOQ) (Wu et al., 2019c). However, in skeletal-muscle

specific FUNDC1 knockout mice, the obesity and systemic
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insulin resistance induced by high-fat diet are improved. Fu et al.

(2018) argued that FUNDC1 deficiency in skeletal muscle could

evoke a retrograde response in muscle that promoted the

thermogenic remodeling of adipose tissue through increasing

the level of fibroblast growth factor 21(FGF21). The two

seemingly contradictory results above suggest that

FUNDC1 in mitochondria of diverse tissues may have

different physiological roles, and FUNDC1 may also play

other roles besides mediating mitophagy. It seems to be worth

further investigating the phenotypes of mice in which

FUNDC1 is knocked out simultaneously in skeletal muscle

and adipose tissue.

6 Conclusion

FUNDC1 is a crucial molecule which contains multiple sites

performing different functions. FUNDC1 is mainly involved in

mitophagy. On this basis, it is also involved in promoting

mitochondrial division, maintaining iron homeostasis in cells,

removing unfolded proteins, and maintaining cell functions

through interacting with endoplasmic reticulum or

lysosome.(as shown in Figure 4). Further investigation of the

mechanism of the crosstalk are still needed to help combat

human diseases. FUNDC1 is involved in the physiological and

pathological processes of I/R injury, cancers, and metabolic-

related diseases. It seems clear that targeting FUNDC1 is a

potential therapeutic option for numerous diseases related to

mitochondria abnormality, although there are currently few

small molecule drugs targeting FUNDC1.
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