
Genome analysis

Viola: a structural variant signature extractor with

user-defined classifications

Itsuki Sugita1,2, Shohei Matsuyama2, Hiroki Dobashi2, Daisuke Komura 1,* and

Shumpei Ishikawa1,*

1Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan and
2Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 1138510, Japan

*To whom correspondence should be addressed.

Associate Editor: Peter Robinson

Received on April 3, 2021; revised on August 22, 2021; editorial decision on September 11, 2021; accepted on September 14, 2021

Abstract

Summary: Here, we present Viola, a Python package that provides structural variant (SV; large scale genome DNA
variations that can result in disease, e.g. cancer) signature analytical functions and utilities for custom SV classifica-
tion, merging multi-SV-caller output files and SV annotation. We demonstrate that Viola can extract biologically
meaningful SV signatures from publicly available SV data for cancer and we evaluate the computational time neces-
sary for annotation of the data.

Availability and implementation: Viola is available on pip (https://pypi.org/project/Viola-SV/) and the source code is
on GitHub (https://github.com/dermasugita/Viola-SV).

Contact: kdais-prm@m.u-tokyo.ac.jp or ishum-prm@m.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Somatic mutations in cancer are the cumulative result of
DNA aberrations caused by diverse mutational processes. Recently,
large scale studies of human cancer have revealed characteristic
patterns of mutation types, i.e. mutational signatures, arising from spe-
cific processes of single nucleotide variant formation. These studies
often provide theoretical explanations for known mutational processes
and their consequences, e.g. C>A substitutions and CC>TT alterations
caused by smoking and ultraviolet light exposure, respectively.

Structural variants (SVs) are another type of DNA mutation,
defined as events larger than 50 bp in size or involving multiple chro-
mosomes, occupying non-negligible proportions of mutations in can-
cer cells (Mills et al., 2011; Yi and Ju, 2018 ). Signature analysis of
SVs may potentially provide novel insights into carcinogenesis. The
development of high-throughput sequencing technologies and
powerful SV callers has improved the accuracy of SV event identifi-
cation. Several mechanisms of SV formation have also been identi-
fied (Yi and Ju, 2018). Therefore, research on SV signatures is
gradually becoming realistic.

To date, several attempts have been made to decompose SV pat-
terns into SV signatures, but an established method has yet to be
realized. Previous studies have mainly classified SVs according to
segment size and revealed an association between small tandem
duplications and BRCA1 mutations (Li et al., 2020; Nik-Zainal
et al., 2016). However, a consensus has not been achieved on a pre-
cise SV classification method.

SVs can be classified by metrics other than length. Li et al.
(2020) also used replication timing and common fragile sites (CFSs).
Interestingly, the biological meaningfulness of replication timing and
CFSs has been reported, e.g. the signatures of medium-sized (50–
500 kb) tandem duplications occurring at the site of late replication
timing have been associated with CDK12 driver mutations, whereas
CFS signatures have been associated with gastrointestinal cancer.
Other SV classification methods, such as microhomology and associ-
ation of transposons, have yet to be considered in detail; therefore,
further analysis is required to identify a suitable SV classification
method for signature analysis.

At present, very few tools are available for SV signature analysis.
To the best of our knowledge, pyCancerSig (Thutkawkorapin et al.,
2020), which is the first tool that can handle SVs for cancer mutation
signature analysis, is the only SV signature analysis tool currently
available. However, pyCancerSig has limitations in SV classifications
as it only supports traditional SV classes, i.e. deletion, duplication,
inversion and translocation, and length-based classification.

The time-consuming nature of parsing variant call format (VCF)
files is also an obstacle to SV analysis. VCF is the de facto standard for-
mat by which genetic variant data are recorded with high human read-
ability. However, from a data management perspective, VCF can be a
bottleneck for analysis owing to its complex structure. For SVs in par-
ticular, accurate interpretation of VCF records at the single nucleotide
level requires considerable learning costs. Difficulties with VCF inter-
pretation cannot be ignored because even 1 bp error in positioning SVs
can have critical consequences, e.g. in microhomology analysis.

VC The Author(s) 2021. Published by Oxford University Press. 540

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(2), 2022, 540–542

doi: 10.1093/bioinformatics/btab662

Advance Access Publication Date: 17 September 2021

Applications Note

https://orcid.org/0000-0002-0038-728X
https://pypi.org/project/Viola-SV/
https://github.com/dermasugita/Viola-SV
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/


Merging SV calls from different callers is also an issue in SV ana-
lysis. Precision of SV detection can be improved by merging the
results of multiple SV callers (Cameron et al., 2019; Kuzniar et al.,
2020); however, different SV callers use different ways to represent
VCF files, which makes integration challenging.

Here, we present Viola, a highly customizable and flexible
Python package that supports SV signature analysis with user-
defined SV classification, matrix-generation functions, and a file ex-
portation system that is compatible with external statistical utilities
and facilitates interpretation of results. Viola accepts VCF files from
four popular SV callers, namely Manta, Delly, Lumpy and Gridss,
and can also read BEDPE format (Cameron et al., 2017; Chen et al.,
2016; Layer et al., 2014; Rausch et al., 2012). Viola also provides an
intuitive VCF file manager for filtering, annotating, converting VCF
to BEDPE and multicaller merging.

2 Implementation

2.1 Data structure
Viola converts input SV data files, such as VCF and BEDPE files,
into our original Python classes. Instances of these classes store SV
data as a set of tidy rectangular tables linked via identifiers such as
SV ID output by the SV callers (Supplementary Fig. S1). These tables
follow the principles of tidy data, i.e. each SV record is a row, each
variable is a column and each type of observational unit is a table
(Wickham, 2014). Consequently, storage of multiple values in one
element is avoided, in contrast to the INFO and FORMAT columns
of a VCF file. Hence, a specific single value can be accessed by sim-
ply specifying the row and column of the table of interest; this pro-
vides freedom in data handling without the need for cumbersome
codes.

2.2 User interface
Viola is written in the Python programming language. Although it is
intended for use within Python scripts, some features are available
from the command line.

Viola supports SV signature analysis with user-defined SV classes
(Fig. 1A and Supplementary Fig. S1A and B). A simple feature ma-
trix based on traditional SV types and SV length, output by the SV
caller can be generated from the command line. Advanced uses such
as annotation, filtering and multicaller intersection, which are
required to generate a complex feature matrix, are supported within

Python scripts. In combination with these functions, it is possible to
define a wide variety of SV classes, such as ‘duplications located on
CFS sites’ and ‘deletions <50 kb in size, located on the early replica-
tion timing zones’. These operations can be implemented with sim-
ple syntax and are designed to refine the SV classification by trial
and error (Supplementary Fig. S2B).

From an internal data structure perspective, user-defined SV
classes are interpreted as new INFO entries of the VCF file. Hence,
users can output new VCF or BEDPE files with annotation of novel
SV classes as well as generating a signature-analysis-ready feature
matrix according to these additional SV classes.

Alongside signature analysis, Viola has the following features:

• Support of well-known SV callers including Manta, Delly,

Lumpy and Gridss. The notation has been unified as much as

possible to facilitate subsequent processing including merging

(Fig. 1B).
• Fast annotation methods that utilize the interval tree algorithm.

Source files in BED format are acceptable; thus, information such

as gene names, CFSs, replication timing and copy number can be

annotated if they can be expressed in BED format.
• An intuitive method for filtering SV records. In addition to filter-

ing for genomic coordinates and INFO fields, filtering for

FORMAT fields is possible.
• Estimations of the length and sequence of microhomology from

SV breakpoint positions. Where SV callers do not return micro-

homology information or publicly available SV data does not

contain such information, Viola can estimate microhomology

using the reference sequence.

The use of these characteristics is described in detail in the offi-
cial Viola documentation, which is available online (https://dermasu
gita.github.io/ViolaDocs/docs/html/index.html).

2.3 Custom SV classification overview
With Viola, any information in the INFO field of the VCF can be
used for SV classification. Many SV callers write the SV type and
length in the INFO field by default making it easy to classify by these
variables. For BEDPE files that do not define a field corresponding
to the INFO field in a VCF file, Viola will automatically generate
INFO fields such as SV length and type. Additionally, new INFO
fields can be added using BED file annotation and microhomology
prediction. BED files can be used to annotate genes, CFSs, replica-
tion timing, copy numbers, etc., which individually or in combin-
ation can be used to classify SVs.

For usability, two SV classifications are available as default set-
tings of the Viola function. One is a simple length-based classifica-
tion, and the other is the same classification as the analysis in
Section 2.5 (Supplementary Table S1A and B).

2.4 VCF merging strategy
Viola provides multicaller merging systems. SVs from the different
callers will be merged into a single SV when the following conditions
are satisfied: (i) the genomic coordinates of multiple SV break-ends
are close to each other based on the user-specified criteria (proxim-
ity-based or confidence interval-based criteria as described below).
(ii) The strands of the SV break-ends are concordant. (iii) The SVs
overlap each other at least 1 bp. The latter two conditions are
included to avoid merging discordant SV types and small non-
overlapping SVs.

Currently, two criteria for genomic coordinates evaluation have
been implemented: proximity-based and confidence interval-based
criteria. The former uses the representative genomic coordinates,
e.g. POS field and END entry of INFO field. Multiple SV records
within a user-defined threshold will be merged. The latter employs
confidence intervals reported by SV callers on the CIPOS and
CIEND entries of the INFO field. The multiple SV records will be

Fig. 1. Visualization of the data flow in the main analysis scenarios. (A) Process of

feature matrix generation from multiple samples. (B) Overview of VCF merging

system

Viola 541

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://dermasugita.github.io/ViolaDocs/docs/html/index.html
https://dermasugita.github.io/ViolaDocs/docs/html/index.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data


considered a single event when their confidence intervals share at
least 1 bp of genomic coordinates.

2.5 Application
2.5.1 Matrix generation with simple code

We ran Viola to generate an SV feature matrix using public BEDPE
files reported in a PCAWG study (Li et al., 2020). First, we down-
loaded 2748 BEDPE files from the ICGC data portal (https://dcc.icg-
c.org/releases/PCAWG/consensus_sv) and used Viola to read 2605
of these files that were not empty as a MultiBedpe instance. Second,
the instance was successfully annotated by CFSs and replication tim-
ing BED files that we built according to the PCAWG study. We
defined 25 SV classes according to CFSs, replication timing and SV
length and then generated a 2605� 25 feature matrix. These opera-
tions were written in only 11 lines of the Python code, excluding
code for custom SV definitions (Supplementary Fig. S2A). The ma-
trix generated here can be easily reproduced by following the tutor-
ial in the Viola official document.

2.5.2 Signature extraction analysis

We extracted nine SV signatures from the generated matrix using a
function of Viola that simultaneously performs non-negative matrix
factorization and cluster stability evaluation (Supplementary Figs S3
and S4). Several signatures, including the signatures of CFSs, small
deletions (<50 kb) and small duplications (<50 kb), were compar-
able to those in the PCAWG study (Li et al., 2020). We further
explored the association between each of the nine signatures and
driver mutations of three well-known DNA repair genes: BRCA1,
BRCA2 and CDK12 (Supplementary Table S2). These genes
were significantly associated with the small duplication signature,
small deletion signature and medium–large duplication signature,
as expected from previous studies (Li et al., 2020; Menghi et al.,
2018; Nik-Zainal et al., 2016; Popova et al., 2016) (Supplementary
Table S1).

2.5.3 Multicaller VCF merging

We synthesized VCF files mimicking outputs from Manta, Delly,
Lumpy and Gridss. These files shared several SVs recorded with
errors within 100 bp. In addition, they were designed as the confi-
dence intervals of shared SV break-ends overlapped each other. Four
VCF files were merged by Viola with two methods, proximity-based
and confidence interval-based criteria, which the user can select.

First, we tested proximity-based merging with 100 bp specified
as the option for proximity. SV events located within 100 bp were
given the same ID. We removed SV records called by only a single
SV caller. All shared SVs were merged as expected and successfully
exported as a VCF file (Supplementary Data S1).

Second, we examined confidence interval-based merging. When
SV events that their confidence intervals shared the genomic coordi-
nates at least 1 bp, they were merged and given the same ID. SV
records supported by a single SV caller were filtered out. The
obtained VCF file was the same as expected.

2.5.4 Annotation performance

We tested the performance of the annotations on 2605 BEDPE files
using 18 lines of CFS BED files. In total, 618 492 break-ends were
annotated according to whether each was present or absent on the
CFS. On average, this took 7.5 min to complete using a single thread
on an Ubuntu x86_64 server (Intel Core i7-8700K CPU at
3.70 GHz).

3 Future works

Although Viola provides useful functions for SV data manipulation,
especially SV signature analysis, further enhancements would make
the software more meaningful, covering a wider range of research
questions. First, functions for handling more complex SV events,
such as chromothripsis and chromoplexy that result from multiple

DNA damage occurring in a single event, could be desirable (Li
et al., 2020; Stephens et al., 2011). Such features may lead to the dis-
covery of new SV signatures and the elucidation of the mechanistic
basis of SV formation. Second, a more detailed annotation system
would facilitate a more specific characterization of each SV event,
because the current version of Viola does not support annotation
with nucleotide sequence-level analysis, e.g. the frameshift status of
affected genes or the impact of putative fusion genes, with the excep-
tion of microhomology inference. Such a detailed annotation system
would facilitate a more specific characterization of each SV event.
Finally, more types of SV callers need to be supported including
those for long-read sequencing technology.

4 Conclusion

We developed Viola, a tool for SV signature analysis that allows
highly customizable SV classification. This tool also overcomes the
difficulty of parsing current VCF files as well as the problem of dif-
ferent notations derived from different callers. Viola will help stimu-
late cancer genome research to better understand the biological
significance of SVs.

Acknowledgements

We thank Enago (www.enago.jp) for the English language review.

Funding

This work was supported by AMED P-CREATE [JP20cm0106551 to S.I.].

Conflict of interest: none declared.

References

Cameron,D.L. et al. (2017) GRIDSS: sensitive and specific genomic rearrange-

ment detection using positional de Bruijn graph assembly. Genome Res., 27,

2050–2060.

Cameron,D.L. et al. (2019) Comprehensive evaluation and characterisation of

short read general-purpose structural variant calling software. Nat.

Commun., 10, 3240.

Chen,X. et al. (2016) Manta: rapid detection of structural variants and indels

for germline and cancer sequencing applications. Bioinformatics, 32,

1220–1222.

Kuzniar,A. et al. (2020) sv-callers: a highly portable parallel workflow for structural

variant detection in whole-genome sequence data. PeerJ, 8, e8214.

Layer,R.M. et al. (2014) LUMPY: a probabilistic framework for structural

variant discovery. Genome Biol., 15, R84.

Li,Y. et al.; PCAWG Consortium (2020) Patterns of somatic structural vari-

ation in human cancer genomes. Nature, 578, 112–121.

Menghi,F. et al. (2018) The tandem duplicator phenotype is a prevalent

genome-wide cancer configuration driven by distinct gene mutations.

Cancer Cell, 34, 197–210.e5.

Mills,R.E. et al.; 1000 Genomes Project (2011) Mapping copy number vari-

ation by population-scale genome sequencing. Nature, 470, 59–65.

Nik-Zainal,S. et al. (2016) Landscape of somatic mutations in 560 breast can-

cer whole-genome sequences. Nature, 534, 47–54.

Popova,T. et al. (2016) Ovarian cancers harboring inactivating mutations in

CDK12 display a distinct genomic instability pattern characterized by large

tandem duplications. Cancer Res., 76, 1882–1891.

Rausch,T. et al. (2012) DELLY: structural variant discovery by integrated

paired-end and split-read analysis. Bioinformatics, 28, i333–i339.

Stephens,P.J. et al. (2011) Massive genomic rearrangement acquired in a single

catastrophic event during cancer development. Cell, 144, 27–40.

Thutkawkorapin,J. et al. (2020) pyCancerSig: subclassifying human cancer

with comprehensive single nucleotide, structural and microsatellite muta-

tional signature deconstruction from whole genome sequencing. BMC

Bioinformatics, 21, 128.

Wickham,H. (2014) Tidy data. J. Stat. Softw., 59, 1–23.

Yi,K., and Ju,Y.S. (2018) Patterns and mechanisms of structural variations in

human cancer. Exp. Mol. Med., 50, 1–11. 10.1038/s12276-018-0112-3

30089796.

542 I.Sugita et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab662#supplementary-data
http://www.enago.jp

