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Abstract

We have created “encoding manifolds” to reveal the overall responses of a brain area to a variety of
stimuli. Encoding manifolds organize response properties globally: each point on an encoding manifold
is a neuron, and nearby neurons respond similarly to the stimulus ensemble in time. We previously
found, using a large stimulus ensemble including optic flows, that encoding manifolds for the retina
were highly clustered, with each cluster corresponding to a different ganglion cell type. In contrast,
the topology of the V1 manifold was continuous. Now, using responses of individual neurons from the
Allen Institute Visual Coding–Neuropixels dataset in the mouse, we infer encoding manifolds for V1 and
for five higher cortical visual areas (VISam, VISal, VISpm, VISlm, and VISrl). We show here that the
encoding manifold topology computed only from responses to various grating stimuli is also continuous,
not only for V1 but also for the higher visual areas, with smooth coordinates spanning it that include,
among others, orientation selectivity and firing-rate magnitude. Surprisingly, the encoding manifold
for gratings also provides information about natural scene responses. To investigate whether neurons
respond more strongly to gratings or natural scenes, we plot the log ratio of natural scene responses
to grating responses (mean firing rates) on the encoding manifold. This reveals a global coordinate
axis organizing neurons’ preferences between these two stimuli. This coordinate is orthogonal (i.e.,
uncorrelated) to that organizing firing rate magnitudes in VISp. Analyzing layer responses, a preference
for gratings is concentrated in layer 6, whereas preference for natural scenes tends to be higher in layers
2/3 and 4. We also find that preference for natural scenes dominates the responses of neurons that prefer
low (0.02 cpd) and high (0.32 cpd) spatial frequencies, rather than intermediate ones (0.04 to 0.16 cpd).
Conclusion: while gratings seem limited and natural scenes unconstrained, machine learning algorithms
can reveal subtle relationships between them beyond linear techniques.
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1 Introduction

Understanding how populations of neurons are organized to represent external stimuli is a core goal of sen-
sory neuroscience. This is made challenging by the fact that both artificial and sensory stimuli are typically
high dimensional as are the patterns of spiking activity that these stimuli produce across populations of neu-
rons. This presents a challenge to visualizing, let alone understanding, how complex stimuli are represented
by neural population activity. To overcome this challenge, we have recently developed encoding manifolds
to organize neurons according to their responses to an ensemble of visual stimuli [25]; these manifolds allow
visualizing how neural populations encode ensembles of stimuli. In the encoding manifold, each point is a
neuron, and nearby neurons respond similarly in time to members of the stimulus ensemble. The encoding
manifold differs from more standard applications of manifolds in neuroscience, in which each point on the
manifold is a stimulus (or a point along a trajectory) embedded in neural response coordinates (see, e.g.,
[16] for a review). This distinction is relevant as the latter approach emphasizes reading out the stimulus
(or movement trajectory) from the population response (i.e., decoding), while the former organizes neurons
according to their functional properties (i.e., encoding), which can drive hypotheses about cell types and
their anatomical and functional connectivity in a circuit.

One feature of encoding manifolds exploited in prior work [25] is they allow for comparing the topol-
ogy of sensory encoding at different stages of sensory processing. When comparing the encoding manifolds
between retina and V1 in mouse to an ensemble of artificial stimuli (drifting gratings) and more naturalistic
stimuli (flows), they were strikingly different: the encoding manifold inferred from retinal responses con-
sisted of largely separate clusters of neurons that corresponded to known retinal ganglion cell types. This
result served to lend credence to the encoding manifold as a useful approach for revealing underlying bio-
logical structure because the stimuli used to generate the manifold were distinct from those used to classify
the retinal ganglion cell types. The V1 manifold derived from responses to the same stimuli was much more
continuous than the retinal manifold, with neurons effectively carpeting stimulus/response space. Like the
retinal manifold, the structure of the V1 manifold was quite informative about the physiological organiza-
tion of V1. While no information about laminar position or putative excitatory versus putative inhibitory
neurons (inferred from spike waveforms) was used in its construction, these properties were not randomly
located across the manifold; rather, functional cell types were distributed in a complementary fashion across
different layers and in different regions.

This prior work raised several important questions: to what extent does the structure of the V1 encoding
manifold depend on the stimulus set? To what extent are the encoding manifolds of higher visual areas
similar to that observed in V1? Finally, can the encoding manifold reveal aspects of how natural scenes
are encoded by visual cortex? Fortunately, these three questions could be answered by utilizing the Allen
Institute’s large data set of visual cortical responses of V1 and higher cortical visual areas to a variety of
stimuli [62, 20, 21]. The stimulus set includes stationary gratings of a wide range of orientations, spatial
frequencies, and spatial phases, a set of a similar number of stationary natural images, and an ensemble
of moving gratings across a range of spatial frequencies and orientations (Fig. 1a,b). Using these data,
we have constructed encoding manifolds for each of the higher visual areas using only the responses to
static and drifting gratings. The resulting V1 encoding manifold was similar to that in our earlier work
despite substantive differences in the stimulus sets. Namely, both the present and previous manifolds were
continuous, with foci for different cortical layers and excitatory versus inhibitory cell types. The higher
visual areas also exhibited similar manifold structures. One major similarity among the manifolds generated
from each visual area was a preference for low spatial frequency gratings in layer 6, a layer that projects
back to sub-cortical structures and elsewhere [54]; cells in all other layers, across all visual areas, tended to
prefer natural scenes.

Further analysis of the natural scene responses using the encoding manifold revealed a particularly
interesting geometry. The resulting manifolds had a coordinate that ran from cells with strong to weak
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orientation and stimulus selectivity. However, those cells that responded better to natural images relative to
gratings formed a band in the manifold orthogonal to the orientation axis in VISp, which suggests that there
exist natural-scene preferring cells over the full range of selectivity for stimulus orientation. Furthermore,
these cells preferred either high or low rather than the intermediate spatial frequencies that were preferred
by the cells driven best by gratings. This structure was also present in each of the higher visual areas,
although the axes differed from VISp. These results further validate the use of encoding manifolds for
assaying the structure and topology of sensory coding across distinct stimulus ensembles and stages of
sensory processing.
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Fig. 1: Experimental setup, stimulus ensemble, and method. a, The high-order visual areas recorded at the Allen
Institute surround V1 in the mouse. The stimuli used include drifting gratings, flashed static gratings, and flashed
natural scenes. b, The ensemble of static spatial frequency gratings and c natural scenes from the Allen dataset. Note
that the spatial frequency contents of the natural scenes and flashed gratings are similar (d, e). f The encoding manifold
organizes neurons so that those nearby (on the manifold) respond similarly in time. It is inferred using a kernel that
evaluates similarity across the PSTH responses to an ensemble of spatial frequency gratings. Neurons i and k exhibit
similar activity patterns, and are close, while neurons i and j are different. This is illustrated by the underlying data
graph (see Methods) superimposed on the manifold. Part a modified from [21]; part f after [25].
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2 Results

We began by determining the extent to which the fundamental structure of the encoding manifold of mouse
primary visual cortex (VISp) generalizes from our prior visual stimulus set to that utilized by the Allen
Institute [5]. In previous work, we analyzed responses to drifting gratings and naturalistic ‘flow’ stimuli,
composed of points and line segments moving semi-coherently [24, 25]. However, the previous data were
limited to VISp and did not thoroughly examine how the structure of the encoding manifold depended on the
temporal frequency composition of the stimulus. The Allen Institute data set has several features that allow a
useful comparison (Fig. 1). First, it consists of measurements not only from VISp but also from five higher
cortical visual areas in mouse: VISam, VISal, VISpm, VISlm, VISrl (Fig. 1). Second, the stimulus set
contains drifting gratings presented at five temporal frequencies. Third, it contains static gratings presented
at multiple spatial frequencies (five), orientations (six), and phases (four) (Fig. 1b). Finally, the Allen
Institute dataset contains static images of natural scenes (Fig. 1c). Thus, we used the Allen Institute dataset
to generate and analyze encoding manifolds along the mouse cortical visual hierarchy.

2.1 The encoding manifold reveals novel relationships between stimulus selectivity and neu-
ronal subtypes

Encoding manifolds were calculated from the Allen Institute data using the responses to both drifting and
static gratings [25]. In brief, the encoding manifold arises from a machine learning algorithm that learns to
place individual neurons in a relatively low-dimensional space according to their similarity in stimulus selec-
tivity and response dynamics: neurons nearby on the manifold exhibit similar responses to similar stimuli.
Responses to the natural scene stimuli were not included in the calculations of the encoding manifolds.

Consistent with prior results [25], the encoding manifold of VISp was relatively smooth and continuous,
with neurons uniformly carpeting stimulus space (Fig 2a). Note that this topology is quite distinct from
the manifold produced by this analysis when applied to retinal responses [25]. Representative peri-stimulus
histograms (PSTHs) for preferred stimuli of 5 temporal frequencies are shown for a number of neurons; dif-
ferences in selectivity for stimulus orientation and in the temporal responses to drifting gratings are evident
across the manifold.

When individual VISp neurons (points) are colored on the manifold according to their preferred stimuli
and/or response features, clear gradients or geometries emerged (Fig. 2b,c). For example, a gradient in the
orientation selectivity index (OSI) of each cell was revealed by the manifold (Fig. 2b). This can be seen
directly in the example PSTHs (Fig. 2a) and is not surprising, given earlier reports [24][25]. However, not all
stimulus features were so well organized. Entropy, a measure of the range of stimuli for which the neurons
give good responses, exhibited generally lower values on one side of the manifold, but was distributed more
widely than OSI (Fig. 2c). Meanwhile, neurons were not particularly well organized with respect to their
spatial frequency preference (Fig. 2d), a point to which we shall return later.

Broadly, the organization of stimulus features across the manifold had a similar topology to that from our
previous studies that used distinct stimulus ensembles [24][25]. This suggests that the topology of the VISp
encoding manifold is not strongly dependent on the chosen stimulus set, provided that the set is sufficiently
diverse. Of course, we cannot rule out that other topological features (i.e., distinct clusters) might emerge
with yet-to-be tested stimuli.

The organization of features that were not used in the calculation of the manifold is more interesting.
Neurons were classified on the basis of their electrical waveforms as putative excitatory (broad-spiking) or
inhibitory (narrow-spiking). The putative excitatory neurons were concentrated on the right on this view of
the manifold, with a secondary concentration salient at the lower left, and were present at lower concen-
tration throughout the middle of the manifold (Fig. 2e). In contrast, the putative inhibitory neurons were
concentrated in the upper left corner and were also present at a lower concentration throughout the middle of
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the manifold; they were less well represented in the regions of the manifold in which the excitatory neurons
were concentrated (Fig. 2f). The encoding manifold recapitulates the well known observation that inhibitory
neurons tend to be less selective for stimulus orientation and to fire at higher rates than excitatory neurons
in mouse V1.

The encoding manifold for V1 also organized neurons according to cortical layers (Fig. 2g,h). Putative
excitatory cells in layer 2/3 were concentrated in the lower right, as are those in layer 4 though less tightly,
while excitatory cells in layer 6 were much more tightly concentrated in the upper right. It is known that
layer 6 excitatory cells tend to have low firing rates [73], which is confirmed by our manifolds. Such cells
in layer 5 have two foci of density: one together with those of layer 6, but more tightly focused, and another
in the salient concentration at the lower left. This bimodal distribution reveals that layer 5 contains (at least)
two populations of excitatory neurons with quite different response properties (cf. [39]). The distributions
of putative inhibitory cells in layers 5 and 6 along the top of the manifold toward the left are similar to each
other, whereas those in layers 2 and 4 are concentrated lower down except for a cluster at the very top left
corner. While the layers differ from one another in the distributions of both types of neurons, within each
layer these two major types of neurons are largely complementary. Again, we emphasize that these features
of the recording were not utilized in generating the encoding manifold, and thus they demonstrate the ability
of the manifold approach to reveal novel relationships between stimulus selectivity, response dynamics and
neuronal subtypes.

2.2 Encoding manifolds organize natural scene responses relative to gratings responses

A novel feature of the Allen Institute dataset relative to previous applications of the encoding manifold is
the inclusion of responses to natural scenes. This feature provided an opportunity to examine the topol-
ogy of neural responses to natural scenes relative to gratings. While we did not utilize the responses to
natural scenes in generating the encoding manifolds, we could display how neurons were organized on the
grating-derived manifold according to their responses to natural scenes [37]. Given the (perhaps) unbounded
variability of natural scenes [69, 46], it is difficult to imagine how to arrange them, so we began by simply
plotting the mean firing rate to natural scenes across the manifold (Fig. 3a). Surprisingly, the topology of the
natural scene responses, like that of the grating responses, varied smoothly across the manifold from right to
left (Fig 3b). Comparing the kinetics of the natural scene to grating responses in individual neurons reveals
similar dynamics (Fig. 3c,d), but some neurons exhibited larger responses to natural scenes (Fig. 3c), while
others responded more strongly to gratings (Fig. 3d).

It should be noted that the static grating stimuli can be said to tile the (static) stimulus space for grat-
ings, encompassing the relevant range of orientations and spatial frequencies so as to stimulate all grating-
responsive neurons well, regardless of the location of their receptive fields on the stimulus screen. Therefore,
the best response measured with these stimuli for each neuron is likely to be the near-optimal grating re-
sponse. However, the natural scenes are a small selection from all possible natural scenes and, since they
are flashed (not drifted), the responses to them presumably depend strongly on the location of each neuron’s
receptive field in the visual field.

Nevertheless, the comparable co-variation in the topologies of natural scenes to gratings in the manifolds
(Fig. 3a,b) inspired us to consider the ratio of each neuron’s responses to the two types of stimuli. This
comparison produced a striking result: the relative responses to natural scenes were organized along an axis
orthogonal to the the gradient of orientation selectivity on the manifold (Fig. 2b). Specifically, the average
response of each neuron to the 118 natural scenes (Fig. 1b) was compared to its average response to all the
static grating stimuli. Note that the two types of stimuli were presented identically, in separate blocks that
were interleaved between the repetitions of each block. The neurons preferring natural scenes (green) were
distributed along one side of the manifold while those preferring static gratings were more prevalent on the
other side (magenta). An alternative analysis compared the maximum response to any individual stimulus
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Fig. 2: The encoding manifold for V1 (VISp) computed from responses to drifting gratings. a, A projection
onto the first and fourth diffusion coordinates shows a smooth transition in ensemble PSTHs, from neurons sharply
tuned for orientation (right side) to those broadly tuned (left side), indicating a continuous topology. The mean PSTHs
for 10 different groups of neurons indicated on the manifold are arranged by temporal frequency from left to right
then top to bottom at 1, 2, 4, 8, and 15Hz. b, orientation selectivity index (OSI) varies smoothly and continuously
across the manifold, while c stimulus entropy and d preferred spatial frequency are not well organized. e, Putative
excitatory neurons are concentrated on the right, while f putative inhibitory neurons are concentrated on upper left.
The distributions of putative excitatory and inhibitory neurons across layer roughly follow this plan, although there
are significant differences in detail.
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from among the sets of 120 static gratings and 118 natural scenes; this is potentially a noisier measure of
selectivity than using the average responses to the entire stimulus set, but it reveals the same result: when
the manifold is colored by the ratio of each cell’s response to the best natural scene versus its response to
the best static grating, the picture is very similar (Fig. S1). This surprising topology across the manifold for
natural scenes (relative to gratings) is not a trivial consequence of differences in firing rates; the distributions
of average firing rates to static gratings and to natural scenes are similar (Fig. 3a,b).

Despite the marked difference in the two stimulus sets, a relationship between grating preferences and
natural scene preferences was revealed by the encoding manifold. We note that it has been notoriously
difficult to find any consistent characterization of natural scene responses in visual cortex [29, 28, 58, 62,
11, 80], especially when considering average responses [52]. Yet the encoding manifold has found an
organization whereby at any given range of grating preferences, there appears to be an ensemble of neurons
that display a range of preferences for gratings versus natural scenes.

2.3 Higher cortical areas exhibit a relationship between natural scenes and gratings similar
to VISp

We next computed encoding manifolds from responses to the same gratings for the 5 higher cortical visual
areas with the most data in the Allen Neuropixel database: VISam, VISal, VISpm, VISlm, and VISrl; see
Fig. 4. The manifolds from all areas were continuous in a manner similar to VISp and distinct from the retina
[25]. When the orientation selection index (OSI) and firing rate are plotted as functions on the manifolds,
they vary smoothly and similarly, as they did for VISp. Once again, high firing rates are organized with low
OSI, and conversely. However, spatial frequency preference does not vary smoothly for any of the higher
visual areas, suggesting it is not a well-organized feature in these diffusion coordinates. However, the ratio
of the firing rates elicited by flashed natural scenes versus flashed gratings does vary smoothly for all areas
(Fig. S2), a point to which we shall return in the Discussion.

We now focus our discussion on two of the areas VISpm and VISal, thought to be representative of the
two major (ventral and dorsal, respectively) higher cortical visual streams [30, 49], but see [45].

The responses of VISpm neurons to high spatial and low temporal frequencies suggest that it is for the
mouse a part of what is referred to in the primate as the “ventral stream” of higher cortical visual areas, which
lead to the inferior temporal lobe and are thought to participate in object recognition. The bias toward lower
temporal frequencies is indicated by the distribution of PSTHs shown (Fig. 5(a), especially toward to lower
portion). As mentioned above, OSI and firing rate are well-organized coordinates across this projection
of the manifold, as is the complementary distribution of excitatory vs inhibitory densities. Note how cells
with high OSI are on the left with a gradient to lower OSIs on the right. And again, as in VISp, there is a
complementary distribution of excitatory vs. inhibitory neuronal densities for each layer, with the inhibitory
neurons tending to align with higher firing rates. All of this confirms at a population level much of what was
known for VISpm at the individual cell level.

There are interesting differences in the layer concentrations. In VISpm, L2/3 has significantly different
concentrations of excitatory cells from L4, and L5 shows two populations of excitatory cells. L6, on the other
hand, is closer to L2 in distribution. We note that previous analyses of layer responses did not distinguish
cell types [75].

We next compared the relative responses of natural scenes (NS) to static gratings (SG) for VISpm (Figure
4a). As with VISp, a distributed organization was observed for the ratio of natural scene responses to grating
responses, but it is no longer orthogonal to orientation selectivity: unlike VISp, the main concentration
of SG-preferring cells overlaps with the most orientation-selective cells on the left side. Examining the
layer distribution, these grating-preferring cells tend toward L2/3 and L6. The inhibitory neurons exhibited
little preference for SG or NS, responding about equally to the two. These relationships held both when
comparing the mean response to all natural scenes compared to the mean response for gratings, or when
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comparing the maximum responses for both stimuli. The most curious feature of the layer distributions was
the bi-lobed distributions of L5 putative excitatory cells, suggesting that this layer contains two populations
of neurons with distinct responses.

We repeated this analysis for VISal (Fig. 6), an area that prefers higher temporal frequencies and lower
spatial frequencies, suggesting that it may function in the mouse like the “dorsal stream” areas in the primate
(cf. the PSTHs with those in Fig. 5). As expected, orientation selectivity was generally less precise than
in VISpm, however, there remains a clear gradient of OSIs across the manifold (Fig. 6(h)). Furthermore,
similar to VISpm, a gradient was present for neurons preferring natural scenes vs. gratings. About half the
cells, particularly those responding more strongly to natural scenes than to gratings, show little evidence of
orientation selectivity. The cells most selective for orientation form the left most border of the manifold,
similar to the low-entropy cells. In general, then, there is substantial similarity in functional organization
between VISpm and VISal, as has been reported previously, even though the projections from VISp are
largely segregated [40].

The distributions of putative excitatory and inhibitory cell types in the different cortical layers of VISal
are strikingly diverse (Fig. 6(k,l)). In general, within any one layer, the concentrations of excitatory and
inhibitory cells are largely but not fully complementary. Excitatory cells in layer 6 are distributed like the
cells that prefer gratings over natural scenes, whereas the layer 6 inhibitory cells are concentrated in the
upper right portion of the manifold, with few over most of its area. Layer 2/3 (L2 in the figure) is similar
to layer 6, but both cell type, and in particular the inhibitory cells, are more broadly distributed. Layer
4 excitatory cells extend into the center of the manifold, different from any of the other layers, and its
inhibitory cell distribution resembles that of layer 2/3. As in VISpm, layer 5 in VISal has the most unusual
distribution. Its excitatory cells are concentrated in two regions, one to the lower right, where most cells
prefer natural scenes, and one to the lower left, where cells strongly prefer gratings over natural scenes.
Layer 5 inhibitory cells also occupy a distinct region of the manifold, different from that of any other layer.
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Fig. 3: The encoding manifold inferred from gratings organizes the ratio of natural scene to static grating
responses. a, Neurons on the encoding manifold colored by log mean firing rate to all natural scenes and b log mean
firing rate to all static gratings. c, Firing rates as a function of time for 3 representative neurons that respond better to
static gratings than to natural scenes. d, Firing rates of 3 neurons that respond better to natural scenes than to static
gratings. e, Coloring each neuron on the encoding manifold by the ratio of its mean response to gratings vs. natural
scenes reveals a global organization: neurons “preferring” gratings are colored in magenta (toward top of manifold
in this projection) while neurons responding more strongly to natural scenes are colored in green. e.1–e.10 PSTHs
as in Fig. 2 and bar plots of firing rates to gratings and natural scenes are shown for representative neurons whose
positions are indicated on the manifold. Bar plots show the result is robust across both mean and max firing rates.
The top-to-bottom organization of natural scene preference is approximately orthogonal to firing rate and orientation
selectivity to drifting gratings (cf. Fig. 2). This organization is thus an emergent property of the encoding manifold; it
is not the individual firing rates that matter, but their ratio.

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.24.620089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620089
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 4: Encoding manifolds for 5 higher visual areas (HVAs) computed from grating responses. Rows indicate
the different HVAs and columns indicate features shown in color scales. In the first two columns points on the
manifolds are colored by orientation selection index (OSI) and log firing rate to drifitng gratings; note similarity of
organization of these properties. As in VISp (V1), preferred spatial frequency (third column) is not well organized
in the HVA manifolds, but preference for natural scenes vs. gratings (fourth column, log ratio of mean firing rates to
entire stimulus ensembles) is well organized. Unlike in VISp, neurons in the HVAs that prefer gratings tend to have
high orientation selectivity (OSI) and lower firing rates (FR).
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Fig. 5: The VISpm encoding manifold computed from grating responses. a The encoding manifold for the HVA
VISpm colored to indicate ratio of responses to natural scenes versus gratings is again continuous, varying from right
(preference for gratings) to left (preference for natural scenes). Details of responses of 9 representative neurons shown
as in Fig 3. b log mean firing rates to all driftng gratings. c orientation selectivity index (OSI) for responses to drifting
gratings d distribution of putative excitatory (broad-spiking) neurons. e distribution of putative inhibitory (narrow-
spiking) neurons. e distribution of putative excitatory neurons by layer. g distribution of putative inhibitory neurons
by layer.
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Fig. 6: The VISal manifold computed from responses to drifting gratings. All details as in Fig. 5.
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Fig. 7: Preference for natural scenes vs gratings differs across layers. a, Histograms of the distribution of ratios
(log mean firing rate) for layer 2/3 (top row) and layer 6 (bottom row) neurons in different visual cortical areas; µ
indicates the mean. In layer 2/3 (green histograms), the VISp histogram is shifted toward positive values, indicating a
significant preference for natural scenes; all other areas have histograms centered around approximately 0, indicating
no preference for natural scenes compared with gratings. By contrast, neurons in layer 6 (purple histograms) show a
significant preference for gratings in all areas (negative shift) except for VISrl. Two-tailed t-tests were performed to
determine if each distribution differed significantly from a normal distribution (same variance) centered at 0. Signif-
icance (p < 0.05) is indicated by ⋆. b, Summary of t-test statistics comparing the log ratio between natural scenes
(positive, red) and static gratings (negative, blue), per cortical layer across areas. Both the mean (left column) and
maximum firing rates (right) are shown on the grids. Curiously, a preference for gratings dominates in L6 across all
visual cortical areas, especially considering the average responses, while most neurons in other layers respond more
strongly to at least one natural scene, especially when considering the maximum response to any one stimulus of each
class.
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3 Discussion

Our algorithm for inferring the encoding manifold organizes large populations of neurons based on their
responses to an ensemble of stimuli, thereby incorporating both circuit and stimulus properties. Responses
to gratings collected by the Allen Institute confirmed the continuous topology of the encoding manifold
for VISp that we had found earlier using a different stimulus ensemble [25] and extended this topological
observation to higher visual areas. Operationally these findings confirm the robustness of our algorithms
to neurophysiological data recorded in a different laboratory. We discuss below two curious aspects of the
Allen data revealed by the encoding manifold.

3.1 Layer preferences

Others have observed differences in grating selectivity between visual areas [30, 49], and interpreted this as
a hint toward dorsal/ventral stream models [76, 68, 45]. Our encoding manifolds allowed us to refine the
population analysis to individual layers, where further, novel differences emerged. In VISp, for example,
the greatest concentrations of high orientation selectivity of putative excitatory cells were in layers 5 and 6.
In the hierarchy of visual cortical areas, the upper layers of lower areas project to layer 4 of higher higher
areas, the outputs of which go to the upper layers [62]. In VISal, however, the excitatory neurons of layer
2/3 lie in the regions of the manifold with high orientation selectivity, while those in L4 do not (Fig. 6(h,l)).
The same is true to a lesser extent in VISpm (Fig. 5(b,f)), whereas in the VISp manifold the L2/3 and L4
excitatory cells occupy a region with similar orientation selectivity (Fig. 2(g,h)). This is surprising if the
dominant feedforward projection from superficial layers of VISp is to layer 4 of the higher cortical visual
areas; one would expect the recipient L4 populations not to lose selectivity.

The deeper layers are also interesting, since they involve both cortical and sub-cortical projections [73].
Recall that projections to the dLGN may sharpen receptive fields in the mouse [12] and cat [53, 63, 8]),
while the cortico-cortical projection could be involved in generating endstopping and other surround effects
[22]. L5 also projects to the pulvinar [42], a projection that could be relevant to coordinating natural scene
responses [82, 10].

We observed, on our manifolds, that L5 and L6 are very similarly organized for inhibitory cell types, but
not for excitatory ones. In VISp, L5 exhibits two distinct population concentrations, one of which overlaps
almost completely with L6 in the region of highest orientation selectivity. In the higher visual areas, L5 in
the VISpm manifold is similarly organized in two clusters, although the overlap of the one cluster with L6
is less complete. On the other hand, the L5 cluster of high orientation selectivity is completely missing in
the VISal manifold, while the highly tuned L6 cluster remains. This difference between VISpm and VISal
is striking, and consistent with the anatomical observations above (cf. [40]).

The distributions of other properties by layer for VISam is in Fig. S3; for VISlm in Fig. S4; and for
VISrl in Fig. S5. Layer 5 in all three cases indicates a multi-lobed concentration distribution, one of which
remains consistent with the density of (putative) excitatory neurons in L6. Perhaps this reflects processing
involving the horizontal pathways within an area [2, 3, 79].

The preference for natural scenes vs. gratings also differs between cortical layers. Fig. 7 compares the
selectivity for natural scenes vs. gratings for the entire populations of the different cortical layers of the 6
areas. Histograms are shown of the log mean firing rate for neurons in layers 2 and 6. In these histograms
a shift above 0 indicates a preference for natural scenes, while a shift below 0 indicates a preference for
gratings. A two-tailed t-test was used to determine if the distribution differed significantly (p < 0.05) from
a normal distribution (same variance) centered at 0. In layer 2, only units in VISp show a preference for
natural scenes, while the others show no significant preference. In layer 6, however, almost all visual areas
show a preference for gratings.

These results are summarized graphically in Fig. 7b, with blue indicating a shift toward gratings and red
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toward natural scenes. The left column of each plot was made from the mean responses above; the preference
for gratings in layer 6 is clear from the blue squares. The right column was made from the maximum
response for each neuron to the best grating and the best natural scene, to illustrate a complementary norm.
In VISp, but not in the higher cortical visual areas, layers 2/3 and 4 have significantly stronger responses to
natural scenes in the mean sense. VISp granular and supragranular layers seem particularly tuned to some
generic feature of the natural scene images. When the responses to the best grating and the best natural
scene for each cell are considered, a highly significant majority of cells in layers 2/3, 4, and 5 of all areas
find a natural scene that drives them most strongly (except for area VISrl, where layer 5 is not significant).
In VISp, the maximum response of layer 6 cells still favors gratings, but in all other areas, neither stimulus
class drives the population significantly better. It is to be expected that there might exist one particularly
“exciting” piece of natural scene among the 118 used that will drive any neuron more strongly than the
gratings do. Surprisingly, however, that is typically not the case for layer 6 in any of the areas. Surround
suppression is thought to be lacking or nearly so in layer 6, at least in experiments done with anaesthesia
[61]; other experiments show surround feedback effects in layers 5 and 6 [38].

3.2 Natural scenes, spatial frequency, and “U”-shaped preferences

Natural scenes can be used to estimate receptive fields, since a large ensemble of them can approximate
a random stimulus set, but such an analysis does not inform about the processing of any individual nat-
ural scene [26]. Nevertheless, there is information beyond the RF in the neural population representation,
because it can be decoded [69]. An advantage of the encoding approach using diffusion geometry is that cer-
tain coordinates can identify subtle organizing trends for natural scenes. For the Allen dataset the diffusion
manifolds uncovered a relationship between natural scene responses relative to grating responses, not only
from VISp (Fig. 3) but also for the higher visual areas (Fig. 4). We now seek to understand the relationship
identified by the difference in the location on the encoding manifolds of the neurons preferring one versus
the other stimulus class.

A plausible place to start is with the selectivity to spatial frequencies (Fig. 8a). As expected from natural
scene statistics, there are more cells preferring lower spatial frequencies than higher ones, a predominance
consistent with optimal coding theory [59, 71, 64]. However the distribution of spatial frequency preference
is not well organized on the manifold (Fig. 2d). Moreover, the different spatial frequency bands need not be
taken as independent. Given the selectivity revealed by plotting the log ratio of mean firing rate to natural
scenes relative to static gratings on the manifold, as described previously, we next plotted this statistic as
a function of the spatial frequency preference for different neuronal groups, to check whether the relative
ratio would form a pattern. The result was a new invariant: a ”U”-shaped distribution, showing that cells
in the group preferring either low or high spatial frequencies had the largest responses to natural scenes,
while those preferring intermediate frequencies responded more vigorously to gratings (Fig. 8(b)). A t-
test was used to determine if the distribution differed significantly (p < 0.05) from a normal distribution
(same variance) centered at 0. Importantly this distribution held not only in VISp but also in all five of
the higher visual areas studied. To check whether it held at the population level and considering only
the grating responses, we combined the low- and high-frequency preferring cells together, versus those
preferring intermediate frequencies, and plotted this new statistic on the encoding manifold. The density of
high + low preferring cells complements beautifully the density for intermediate-preferring cells, and their
distributions over the manifold vary almost identically to the distributions of cells preferring natural scenes
versus gratings (Fig. 8g–i, and Fig. S6). To repeat: the population of natural scene preferring cells distribute
identically, on the manifold, to cells preferring high or low spatial frequencies.

How might this curious statistic be explained (cf. [80, 11])? One possibility is that it somehow has to
do with object content, or at least a proxy for it. Examining the statistics of image content is instructive
(Fig. 8(c–f). Low frequency filtering signals “where” an object might be, while high frequency signals
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“what” it might be made of. Such an identification of spatial frequency content with scene layout has long
been proposed [70, 56], and blobs do indeed matter at low frequencies [60]. But it is unlikely that simply
extracting filtered features is the complete story (e.g., [77]).

Object perception, figure/ground discrimination and hunting behavior [36, 67] are complex tasks, im-
plicating network effects across multiple visual areas [38], including feedback within and between them
[31, 33] and recurrence [41, 81]. A recent study [66] found direct low- and high-frequency dynamics in
natural scene viewing, extending classical results on dynamical frequency tuning [4, 14, 51, 74]. Since our
algorithm (see Methods in [25]) uses the full PSTH, it captures these dynamics—a possible signature of
coarse-to-fine processing [48, 35]—in the manifold inference process.

4 Summary and conclusions

We here applied the encoding manifold approach to an extensive dataset collected by the Allen Institute, and
were able to verify that the continuous topology of VISp agreed with an earlier assessment [25] obtained
using different stimuli, different electrodes, and done in a different laboratory. We further showed that the
higher visual areas in mouse shared this continuous topology, and elaborated population distributions across
layer and cell type. A distinct preference among layer 6 (putative) excitatory neurons for gratings held
across all areas, although only weakly so in VISrl.

Natural scenes have been among the most difficult stimuli to analyze, and the encoding manifold re-
vealed a unique invariant at the population level. Although the manifolds computed in this study were based
solely on static scenes, neglecting potential contributions of motion and navigation [47, 65, 27], a surprising
and consistent relationship emerged between the natural scene preferences of high- and low-spatial fre-
quency preferring cells compared to cells preferring intermediate frequencies. Classically, scene analysis
has been thought to proceed by a coarse-to-fine visual processing [34]. Perhaps while building biologically-
motivated perceptual systems, following this study one should consider coarse-and-fine processing.

Encoding manifolds capture similarity in the responses over time of neurons exposed to a wide range of
stimuli. They display neurons in relation to as many different stimulus features as one is able to illustrate.
No other procedure of which we are aware lets one simultaneously visualize how the neurons that respond
particularly well to one stimulus respond to many others. They disclose visually the relationships between,
for example in the present data, firing rate, selectivity for stimulus orientation, spatial and temporal frequen-
cies, cortical laminae, electrical waveform (related to excitatory versus inhibitory class), overall selectivity
(stimulus entropy), and preference for gratings versus natural scenes. This property should make encoding
manifolds widely useful in across biology when many relationships may be present but go unnoticed.
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Fig. 8: Natural scene statistics and neuronal preference on encoding manifold. a Distribution of numbers of units
preferring a given spatial frequency in all visual areas. As expected, it drops off with increasing spatial frequency,
although many cells prefer higher spatial frequencies; cf. Fig. 1d. b, Mean ± s.e.m. for log ratios of mean firing rates
of the neuronal populations in each area as a function of their preferred spatial frequency (see Methods). Neurons that
prefer low or high SF tend to respond more strongly to natural scenes, while those that prefer intermediate frequencies
respond more strongly to gratings. This U-shaped curve holds across all areas, and is perhaps surprising compared
with the plots above in a. c A natural image and its low-pass, intermediate-, and high-pass filtered versions, and d
associated spectra. e,f Two more natural images plus their filtered versions. g The different spatial frequency bands
perhaps provide some insight into the U-shape curves, suggesting a grouping of the low and high frequency content
signals separately from the intermediate ones. Here we show how the frequency representations associate with natural
scene preferences on the encoding manifold for V1 (VISp). Cells are now labeled according to their spatial frequency
preference for static grating stimuli, grouping 0.02+0.32 (extreme frequencies, in yellow) vs. 0.04+0.08+0.16 (inter-
mediate frequencies, in blue), agreeing with the natural scene ratios plotted on the encoding manifold in Fig. 3e. In
more detail, this composite plot can be decomposed into h the density over the data graph (see Methods) for prefer-
ence for extreme frequencies (left) and for intermediate frequencies (right). i The log ratios from Fig. 3e, here for
comparison with the distributions in h. For comparable plots in the higher visual areas, see Fig. S6.
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5 Methods

5.1 Dataset

The “Neuropixel” single neuron recording dataset shared by the Allen Institute includes recordings from
many cortical visual areas in alert wild type (C57BL6/J) mice Harris et al. [33]. Recording sites were
localized to specific cortical areas by reference to intrinsic signal imaging maps and to cortical layer by
transformation into the Allen Common Coordinate Framework. Details of all procedures are described at
links from [5].

To summarize, visual stimuli were were displayed on an LCD monitor at a resolution of 1920 × 1200
pixels at 60 Hz refresh rate. Stimuli were presented monocularly, and the monitor spanned 120◦ × 95◦ of
visual space prior to stimulus warping. Each monitor was gamma corrected and had a mean luminance of 50
cd/m2. To account for the close viewing angle of the mouse, a spherical warping was applied to all stimuli
to ensure that the apparent size, speed, and spatial frequency were constant across the monitor as seen from
the mouse’s perspective.

In our experiments, we analyzed responses to a subset of their “Brain Observatory 1.1” stimulus set,
including 40 different drifting gratings, 120 stationary gratings, and 118 natural scenes [7]. The drifting
gratings were shown at a spatial frequency of 0.04 cycle/deg, 80% contrast, 8 directions of motion (0, 45,
90, 135, 180, 225, 270, and 315 degrees) and 5 temporal frequencies (1, 2, 4, 8, and 15 Hz), with 15
repeats per condition. The stationary grating set, also presented at 80% contrast, consisted of 120 gratings
of 6 different orientations (0, 30, 60, 90, 120, and 150 degrees, clockwise from 0 = vertical), 5 spatial
frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycle/degree), and 4 phases (0, 0.25, 0.5, 0.75), each presented for
0.25 seconds with no intervening gray period. The natural scene stimuli consisted of 118 natural images
taken from the Berkeley Segmentation Dataset [50], the van Hateren Natural Image Dataset [72], and the
McGill Calibrated Colour Image Database [57]. The images were presented in grayscale and were contrast
normalized and resized to 1174 x 918 pixels. The images were presented in a random order for 0.25 seconds
each, with no intervening gray period.

5.1.1 Data preprocessing

As in Dyballa et al. [25], responses of a neuron to each stimulus were kernel-smoothed using the Improved
Sheather-Jones algorithm [13], using a bandwidth of 25 ms (typical value obtained for all visual areas when
using automatic bandwidth selection. The KDEpy Python implementation [55] was used.

Responses to the drifting gratings were tested for significance by performing a two-tailed Mann-Whitney
test comparing the mean activity during the second half of the ISI immediately preceding the stimulus versus
mean activity over any interval of the same length within the stimulus presentation. This strategy allowed
transient responses to be able to reach the same level of significance as sustained responses. Responses were
deemed significant if they had a p-value of at most 0.001.

5.2 Data analysis

5.2.1 Neural encoding manifolds

Neural encoding manifolds were constructed from the spikes elicited by drifting gratings in VISp and each
of 5 higher cortical visual areas using the procedure described in Dyballa et al. [25]. Briefly, it involves a
dimensionality reduction pipeline consisting of two main steps: applying a permuted non-negative tensor
factorization (pNTF) to a tensor built from the temporal responses of each neuron to each variation of grating
stimuli, followed by manifold inference using iterated adaptive neighborhoods (IAN) [23] in combination
with diffusion maps [19] to produce an embedding in which each point is a neuron. We briefly overview this
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material here for completeness; please refer to Dyballa et al. [25] for details and further discussion. Code is
available at https://github.com/dyballa/NeuralEncodingManifolds.

Tensor decomposition We organize the data as a 3-way tensor, NEURONS(1)× STIMULI(2)× RESPONSE

IN TIME(3). (For an introduction to tensors, see [78].) In standard notation [43]:

T̃ = [[X(1), X(2), X(3)]] ≡
R∑

r=1

v(1)r ◦ v(2)r ◦ v(3)r , (1)

where ◦ denotes vector outer product and the factors are collected into the factor matrices X(k), with indi-
vidual factors v(k)r as columns. A component is an associated set of factors, one from each tensor mode.

Factors are normalized by computing λr =
∏3

k=1 ∥v
(k)
r ∥, where r indexes the component and k the

factor mode. Collecting these scalars into a vector λ ∈ RR, we have:

T̃ = [[λ ; X(1), X(2), X(3)]] ≡
R∑

r=1

λrv
(1)
r ◦ v(2)r ◦ v(3)r . (2)

Since neuronal firing rates are non-negative, we adopt a non-negative tensor factorization (NTF) algorithm
[15] based on CP decomposition. This minimizes the squared reconstruction error [17]: minX(1),X(2),X(3)

1
2∥T−

T̃ ∥2 subject to the non-negativity constraint X(k) ≥ 0, k ∈ [1, 2, 3] [44, 17]. Non-negative tensor factoriza-
tion is further advantageous in the sense that it imposes a part-like decomposition [44, 17].

For implementation, we use a gradient-based direct optimization approach (OPT) [1] in the Tensor Tool-
box [9], modified to allow permutation of the response factors. This allowed us to exploit data limitations,
since two narrowly-tuned simple cells (for example) are similar except in their preferred orientations, effec-
tively collapsing the orientation-preference coordinate on the manifolds.

Because drifting and static gratings have different trial lengths, two tensors were constructed for each
cortical area: one containing the drifting grating responses (in which the stimulus mode consisted of the 5
temporal frequencies) and another for the static grating responses (in which the stimulus mode consisted of
the 5 spatial frequencies). The temporal mode was a concatenation of the various directions/orientations (8
directions of motion for the drifting gratings and 5 orientations at the optimal phase for the static gratings).
The responses of a neuron to each stimulus were kernel-smoothed using the Improved Sheather-Jones algo-
rithm [13], which does not assume normally distributed data; we used the KDEpy Python implementation[55]
and a bandwidth of 25 ms.

Neural encoding space. The first mode of each decomposition is a neural factor; together they can be
composed into a neural matrix (factors as columns). We interpret this as a linear space spanned by the
outer product of the other modes (stimulus and response) after vectorization and normalization. Thus, each
neuron can now be viewed as a function of its response to (weighted combinations of) the stimuli. The
number of tensor components — technically the dimension of the neural encoding space — is determined
by the “explained variance” condition discussed in Dyballa et al. [25], Methods.

Similarity kernel and diffusion maps. The data graph for manifold inference is built in the neural en-
coding space. Since neighborhoods may vary, we use the IAN kernel [23], a multiscale Gaussian kernel
that adapts to local geometry in a (relaxed) optimal fashion. The IAN weighted graph yields the similarity
matrix on which the diffusion maps algorithm [19, 18] is based. Diffusion maps are a nonlinear spectral
embedding method based on the eigendecomposition of the normalized graph Laplacian that tends to better
preserve the topology of the data [23]. The standard parameters α = 1 (Laplace-Beltrami approximation)
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and diffusion time t = 1 were used. The resulting diffusion coordinates are then used to embed the neurons
in (reduced) stimulus-response coordinates (see above).

Our figures show only a projection of the diffusion maps into two dimensions, while the intrinsic di-
mensionality was between 5 and 6 for all cortical areas; see [23] for computation details. Just as in principal
component analysis, where different coordinates — principal components — emphasize different aspects
of the data, so too do lower-dimensional projections of diffusion maps illustrate different features of orga-
nization. We chose the two-dimensional projections of the manifolds shown in the figures to emphasize
how they organize the properties such as orientation selectivity noted in the text. Other coordinates organize
different properties, such as temporal frequency preference.

Laminar and putative type densities around each neuron in a manifold were computed as the fraction of
adjacent nodes in the non-weighted IAN graph belonging to the same putative type and layer.

5.2.2 Natural scene vs. static grating selectivity ratio

Selectivity ratios for individual neurons were computed as the natural logarithm of the ratio between their
firing rate to natural scenes and their firing rate to static gratings. Thus a selectivity ratio of 0 means the neu-
ron produced exactly the same magnitude of response to both stimulus classes; and a positive (respectively,
negative) value indicates a stronger response to natural scenes (resp., static gratings). The magnitudes of re-
sponses to these two stimulus classes are readily comparable because both consist of static images presented
during the same time interval of 250 ms.

Following the methodology from the Allen Brain Observatory SDK [6], mean firing rates (FR) for each
stimulus class (namely, drifting gratings, static gratings, and natural scenes) were computed as the mean
number of spikes per second of stimulus presentation across all trials of the same stimulus, averaged across
all stimulus variations within the same class. For static gratings, variations mean different orientation (6),
spatial frequency (5), and phase (4); for natural scenes, variations mean each of 118 scenes used. We also
computed the maximum FR for a given stimulus class as the maximum trial-averaged FR across all stimulus
variations. Thus, two ratios were computed: one using the mean responses (“mean FR ratios”), and another
using the maximum responses (“max FR ratios”).

5.2.3 Additional metrics

We used precomputed stimulus metrics available from the Allen Brain Observatory SDK [6] for firing rates,
global orientation selectivity index (OSI), preferred spatial frequency (drifting gratings), and preferred phase
(static gratings) for each unit. In addition, a stimulus entropy index (Fig. 2c) was defined as 2H , where H
is the base-2 entropy of the vector containing the relative response magnitudes (divided by their sum) of a
neuron to the 5 temporal frequencies used in the drifting gratings experiments. It therefore ranges between
0 (case in which the neuron responds to a single stimulus) and 5 (when it responds with uniform magnitude
to all stimuli).

5.2.4 Natural scene filtering

Filtered versions of the natural scenes were created by first computing fast Fourier transforms of each image
using the FFT module in the Numpy Python library [32]. For the low-pass filtered version, the Fourier
domain was cropped with a disk of radius 0.04 cpd; for the band-pass version, an annulus with inner radius
0.04 cpd and outer radius 0.22 cpd; and for the high-pass version a disk with radius 0.22 cpd (see example
in Fig. S7).
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Fig. S1: Ratio distribution is robust to maximum firing rate. a, Log ratios of the maximum firing rate for all
natural scenes divided by the maximum firing rate over all static gratings are plotted on the VISp encoding manifold.
b, For comparison, an analogous plot using mean firing rates when computing log ratios (cf. Fig. 3 in main text).
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Fig. S2: Smooth property distributions across all visual areas. left Encoding manifolds colored by the ratio of
natural scene responses to static grating responses. middle Encoding manifolds colored by the density of putative
inhibitory and right putative excitatory neurons.
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Fig. S3: Laminar density across the VISam manifold.. Density of putative excitatory and inhibitory neurons by
layer. Note the distinctness of layer 2 vs layers 5 and 6 for excitatory neurons, and the multi-lobed density of inhibitory
neurons in layer 6.

Fig. S4: Laminar density across the VISlm manifold. Density of putative excitatory and inhibitory neurons by
layer. Note the similarity of layers 2 and 6 for putative excitatory neurons, and the distinctness of layer 4 for putative
inhibitory neurons.
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Fig. S5: Laminar density across the VISrl manifold. Like VISlm, there is a multi-lobed distribution of putative
excitatory neurons in layer 5, and similar agreement between layers 2 and 6.
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Fig. S6: Preference for extreme vs. intermediate frequencies. A grid of colored manifolds, in which each row is a
visual area and each column is (from left to right) the ratio of high and low spatial frequencies to intermediate ones;
the density of cells preferring high and low; the density of cells preferring intermediate spatial frequencies, and the log
ratio plot of mean firing rate to natural scenes (NS) by static gratings (SG). Corresponding plots for VISp are shown
in Fig. 8 g,h.
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Fig. S7: Filtering natural scenes. a, An example natural scene and b its corresponding spatial frequency spectrum
(azimuthal average), in cycles/degree (cpd) of visual angle. c, Images were filtered by cropping their spectra in
Fourier domain (see Methods). d Resulting filtered images and e their corresponding spectra (azimuthal averages)
after filtering was performed.
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