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Understanding HIV-1 transmission dynamics is relevant to both screening and inter-
vention strategies of HIV-1 infection. Commonly, HIV-1 transmission chains are
determined based on sequence similarity assessed either directly from a sequence
alignment or by inferring a phylogenetic tree. This review is aimed at both nonexperts
interested in understanding and interpreting studies of HIV-1 transmission, and experts
interested in finding the most appropriate cluster definition for a specific dataset and
research question. We start by introducing the concepts and methodologies of how
HIV-1 transmission clusters usually have been defined. We then present the results of a
systematic review of 105 HIV-1 molecular epidemiology studies summarizing the most
common methods and definitions in the literature. Finally, we offer our perspectives on
how HIV-1 transmission clusters can be defined and provide some guidance based on
examples from real life datasets.
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Introduction

The classification and clustering of biological organisms
and entities has been fundamental to understanding their
origins, relationships and evolution [1,2]. Mechanisms of
reproductive isolation prevent animals and plants of
different species from producing fertile offspring, thereby
maintaining species integrity over time, such that
biological diversity typically falls into discrete categories
or clusters [3]. Reproductive isolation mechanisms are
absent or less distinct for viruses. Combined with high
mutation rate and ability to adapt swiftly to environ-
mental changes, the genetic diversity of many viruses,
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such as the HIV-1, exists in much more of a continuum.
This makes the definition of discrete clusters at the inter-
host and intra-host level particularly challenging [4,5].
However, the rapid evolution leaves measurable foot-
prints in viral genomes that can be associated with
transmission dynamics and epidemiology. An HIV-1
transmission cluster can be described as a set of HIV-1
sequences that are aggregated in a nonrandom manner
linked to their epidemiology. Over the last two decades,
evolutionary theory and sequence analysis have con-
tributed significantly to our understanding of HIV-1
epidemiology, for example by providing information
about the time and geographical location of HIV-1
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origins [6,7]. Detailed analyses of viral sequences can
provide useful information about HIV-1 epidemics by
identifying transmission linkages and by elucidating
differences in transmission within and between popu-
lations [6,8]. Well characterized transmission chains have
been compared with sequence-based phylogenies and are
often in close agreement [9–14].

Phylogenetic analysis has been used successfully to
identify and dissect HIV-1 transmission clusters. When
combined with detailed epidemiological and clinical data,
the results of such analyses can be of public health
relevance, for example by identifying how virus lineages
are restricted to, or mix among, different demographic
and behavioural subgroups [15–21]. Typically, each HIV-
1-infected individual under study is sampled once and
represented by a single HIV-1 sequence obtained by bulk
Sanger sequencing. The sequences are used to construct a
bifurcating evolutionary tree (a phylogeny) in which each
virus sequence (taxon) is positioned at a tree tip. Pairs of
tree branches share a node that represents the most recent
common ancestor (MRCA) of the taxa that have
descended from that node. Individuals that share a
MRCA are usually considered to be epidemiologically
linked, that is to represent a transmission cluster. The
lengths of the tree branches usually represent the genetic
relatedness between the different ancestors and their
descendants. Genetic distances can be linked to time by
assuming a so-called molecular clock model [22]. Early
molecular clock models assumed that all phylogeny
branches evolved at the same rate. However, a constant
evolutionary rate is often unrealistic and alternative more
flexible molecular clock models have been developed
[23–26]. In essence, phylogenetic inference relies on an
alignment of genetic sequences, an underlying substi-
tution model to model the process of evolutionary
sequence change, an approach or algorithm for inferring
the tree, and some measure of statistical support for the
relationships given in the tree.

The selection of an appropriate definition for a
‘transmission cluster’, that is a shared MRCA, is complex
and needs to take into account both the research question
and characteristics of the sequence data, such as the
selected genomic region, sequence length, the range of
sample collection dates, the distribution of sampling
locations, the mode of transmission, the diversity of the
genetic variants sampled (within and between HIV-1
subtypes and circulating recombinant forms), the
number of sequences, the proportion of the population
under study that is sampled, and the degree to which
sampling is representative [27]. Hence, it is not surprising
that there is no clear consensus on how transmission
clusters should be defined. Nevertheless, there is a need
for a common strategy among researchers for determin-
ing appropriate cluster definitions for typical datasets
and research questions. A common rationale would
contribute to a better understanding of the HIV-1
pandemic by increasing the comparability between
studies [28,29].
Genetic distance, tree building algorithms
and node support

Pairwise genetic distances can be either calculated directly
from the sequences (the so-called p-distance, or Ham-
ming distance, which equals the observed number of
nucleotide differences between two sequences) or
computed using a nucleotide substitution model (the
expected genetic distance, or so-called d-distance). If
genetic distances are computed as the sum of the branch
length between two tips in a tree, then they are known as
patristic distances [30]. Simple p-distances do not employ
a substitution model that describes the evolutionary
process and therefore do not account for multiple changes
or back mutations at the same site. Consequently, they
typically underestimate the true genetic distance between
two sequences [31].

Pairwise genetic distances within a transmission cluster of
more than two sequences can be summarized in different
ways, for example by using the mean, median or the
maximum pairwise distance [29,32,33]. Another
approach is to associate a sequence to a specific cluster
if the distance from that sequence to any other sequence
in that cluster is lower than a threshold value –
irrespective of the distances to other sequences in the
cluster [18,34]. There are advantages and disadvantages to
the different approaches, for example the maximum
genetic distance has been suggested to be less sensitive to
cluster size than cluster definitions relying on mean
genetic distances in which one or a few ‘unlinked’
sequences may be erratically included in large clusters
because they have minimal influence on the mean
distance [35]. Moreover, maximum genetic distance
approaches are fast to compute and has been suggested to
correlate with time of the MRCA of clusters in molecular
clock phylogenies [33].

Both maximum-likelihood and Bayesian tree building
approaches use probability models to evaluate the relative
plausibility of different phylogenetic topologies, whereas
the neighbour-joining approach uses a deterministic tree-
building algorithm that generates only a single phyloge-
netic topology (Table 1 and described in detail in [31]).
Traditionally, statistical node support for the relationships
in a phylogenetic tree has been evaluated by a statistical
technique called bootstrapping [36]. During phylogenetic
bootstrapping, site positions in the original alignment are
randomly resampled with replacement to produce a set of
pseudo-replicate alignments. The tree building approach
is then applied to each of these alignments. Clusters of
related taxa that are present in a low percentage of the
bootstrap trees are weakly supported and vice versa.
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Table 1. Components of HIV-1 transmission cluster definitions
based on phylogenetic node support.

Phylogenetic tree reconstruction (examples of commonly used
methods)
Neighbour-joining
Maximum-likelihood
Bayesian

Substitution model (examples of commonly used substitution models)
Jukes–Cantor (JC)
Tamura–Nei (TN)
General time reversible (GTR)

Node support tests (examples of commonly used tests)
Bootstrap test
Approximate likelihood-ratio test (aLRT)
Zero-branch length test

PubMed search results 
(506 articles) 

Published between 
2005 and 2016 
(403 articles) 

Title reviews 
(227 articles) 

Abstract reviews 
(120 articles) 

Published <=2005 
(103 articles) 

Ineligible by title review 
(176 articles) 

Ineligible by abstract review 
(107 articles) 

Ineligible by full text review 
(12 articles) 
However, the exact interpretation of bootstrap values is
difficult. Higher values are of course better, but what is a
reasonable cut-off? It has been suggested that bootstrap
values of more than 70% indicate strong support for a
group, based on the conclusion that bootstrap supports
are conservative measurements [37]. Two other types of
statistical tests, that are substantially faster than the
bootstrap approach, are the approximate likelihood-ratio
test and the zero-branch length test [38–40]. In essence,
these test whether each branch in a tree is significantly
greater than zero or not (i.e. if the branch exist), and cut-
off probabilities of more than 0.9 have been suggested to
be conservative and correspond relatively well to
bootstrap values more than 70% [39–41].

Instead of relying on one ‘best tree’ or a set of bootstrap
pseudo-replicates, Bayesian phylogenetic approaches use
Markov chain Monte Carlo sampling to infer a full
posterior probability distribution of plausible trees, which
should contain all the different tree topologies that are
well supported by the data. This set of trees can be used to
produce a consensus tree [called a maximum clade
credibility (MCC) tree] in which each branch and cluster
has an associated probability. In an MCC tree, this
probability is the proportion of trees in the posterior
probability distribution in which the cluster of interest
exists. Bayesian posterior probabilities have been
suggested to be a generally less biased predictor of
phylogenetic accuracy than bootstrapping [42].
Full text reviews 
(105 articles) 

Full text unavailable 
(3 articles) 

Fig. 1. Flow chart showing results from the literature search
and inclusion of articles considered in the review. We
employed the PubMed search engine (http://www.ncbi.nlm.
nih.gov/pubmed) for the literature search strategy. Previous
reviews and opinions, strictly methodological articles, simu-
lation work, case studies and non-English papers were
excluded from the final full text review.
Systematic literature review

We systematically reviewed the scientific literature of
HIV-1 molecular epidemiology with the aim to explore
current definitions of HIV-1 transmission clusters.
Preliminary explorative analyses showed that both the
majority of available HIV-1 sequences in Genbank (77%),
and HIV-1 transmission network studies (80%) were
published after 2005. We therefore limited our review to
HIV-1 specific literature published between 2005
and 2016.
A literature search of the PubMed database (http://
www.ncbi.nlm.nih.gov/pubmed) was undertaken on 11
April 2016 using the following search and mesh terms:
[‘2005’(PDAT): ‘2016’(PDAT)] & (hiv OR ‘human
immunodeficiency virus’) & transmission & (cluster�OR
network�) & (molecular OR phylogenetic). Previous
reviews and opinions were excluded from this review as
our aim was to explore cluster definitions used in primary
research studies (Fig. 1). Strictly methodological,
simulation and case studies were excluded for similar
reasons. Non-English articles were excluded for simpli-
city (in total 18 articles). Two researchers (A.H. and J.E.)
independently assessed the eligibility of articles from the
literature search. The articles were manually screened,
first by title, then by abstract, to assess relevance based on
our eligibility criteria. Any discordance between the two
reviewers in the list of shortlisted publications was flagged,
and discussions held until a consensus on eligibility was
reached. Shortlisted articles were imported into EndNote
X7 (Thomas Reuters, Philadelphia, Pennsylvania, USA)
for further management, and duplicate articles were

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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Table 2. Three main types of cluster definition.

Pure phylogenetic transmission cluster definitions based solely on
phylogenetic node support

Pure distance-based transmission cluster definitions based solely on
pairwise genetic distances

Combined transmission cluster definitions based on both
phylogenetic node support and pairwise genetic distances
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deleted. After screening, 105 articles remained for full text
review [12,17,18,20,33,43–142]. The articles were
stratified into three main categories based on the
approach that was used to define transmission clusters
(Tables 2 and 3).

The most common approach was to use a pure
phylogenetic definition (50% of the articles), followed
by the combined approach (43%) and the pure distance-
based approach (7%). No clear difference in study aims
was found among the three approaches. Among the seven
articles that relied purely on a distance-based cluster
definition, the most common approach was to use the
Tamura–Nei substitution model, whereas the general
time reversible (GTR) model was most popular in
phylogenetic-based and combined cluster definitions
(Table 3) [143]. Some studies employed more than one
tree building methodology. However, the most common
was maximum-likelihood (used in 67% of the 98 studies
that used a pure or combined phylogenetic cluster
definition), followed by neighbour-joining (46%) and
Bayesian tree building methodology (28%). Bootstrap-
ping was the most commonly used statistics for branch
support with the most common cut-off being 0.9. Studies
defining HIV-1 transmission clusters by distance-based
methodologies most often used a threshold of 0.015
substitutions/site (Table 3).

Analysis of publication year suggested that the interest in
performing cluster analyses of HIV-1 sequence data
increased through time, with 17 articles published
between 2005 and 2010 compared with 88 articles
published between 2011 and 2016. There was a tendency
towards increased popularity of the combined approach
during the latter period, compared with the pure
phylogenetic approach that was previously more popular
(Fig. 2). Analysis of future publications will be required to
determine whether this is a random fluctuation or a true
shift in the most popular approach. The median number
of analysed sequences was greatest in articles employing
pure distance-based cluster definitions (2747 sequences)
and lowest in articles employing pure phylogenetic cluster
definitions (219 sequences, Table 3).

The average number of analysed HIV-1 sequences per
study increased from 41 to 5389 sequences between 2005
and 2015 (Fig. 2). Phylogenetic analysis can be associated
with high computational burden, in particular for large
sequence datasets. It is possible that the increasing number
of available HIV-1 sequences have favoured the generally
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Fig. 2. Number of articles stratified by strategy of HIV-1 transmission cluster determination in relation to availability and
number of analysed sequences during the study period. The articles were reviewed for strategy of HIV-1 transmission cluster
determination. The lines represent moving averages (per 2 year average) over the study period. The articles were stratified into
three categories based on cluster definitions (solid lines): phylogenetic (blue), distance-based (red) and distance-based &
phylogenetic (green). The average number of analysed HIV-1 sequences per study is indicated by a dashed purple line. 1The
cumulative number of HIV-1 sequences submitted to Genbank is indicated by bars (data collected from the Los Alamos HIV
Sequence Database, https://www.hiv.lanl.gov/content/sequence /HIV/mainpage.html).
faster and less parameter-rich distance-based methods in
analysis of large sequence datasets (i.e. datasets with
several thousands of sequences). Most articles (98 of 105)
focused on sequences from a single country, and half of
those represented studies in European countries. Only 8%
of the studies focused on the African countries.
Considering that approximately 70% of all HIV-1
infected individuals live in Africa, this highlights the
need of additional studies from the African continent
[144]. This is further emphasized by the fact that HIV-1
epidemics in MSM populations in Africa have been
recognized only in the last 10 years [145].

All 105 articles based their analyses on sequences produced
by Sanger sequencing. The most commonly analysed HIV-
1 genetic region was the polymerase gene ( pol), and the
sequence length was generally around 1000 nucleotides
(Table 3). This is likely because pol is used for routine testing
of antiretroviral resistance and is the most common HIV-1
genetic sequence that is available in public databases.
Although it has been argued that pol has some limitations in
giving high enough phylogenetic resolution, it has been
used extensively in studies of HIV-1 molecular epidemiol-
ogyand has been reported to contain sufficient information
for analyses of HIV-1 transmission [10,32,132].

Taken together, the literature review showed that the
most common phylogenetic methodology was a maxi-
mum likelihood approach that uses a substitution model
GTR with transmission clusters defined by tree nodes
with bootstrap support values of more than 90%.
Real-life examples

Analyses of datasets with high coverage [when a large
fraction (>30%) of the total number of infected
individuals in a population is represented in the dataset]
and longitudinal sampling over extensive periods of time
(>10 years) – sometimes comprising sequences from
more than one country – can be challenging. It is
therefore important to carefully consider the main study
aim before determining the cluster definition [28].

To explore and exemplify the effects of different genetic
distance thresholds, we performed a comparative analysis of
two previously described transmission clusters with
different topologies and sequence sampling durations
[41]. Both clusters contain HIV-1 pol sequences that have
diverged more than 4.5% (0.045 substitutions per site,
Fig. 3). Consider, for example, the relatively long and
statistically well supported branch that divides the Danish
MSM cluster in two (highlighted by an arrow in Fig. 3a).
The length of this branch could be due to: (1) no
transmissions of this viral strain for a few years, or (2)
unsampled transmissionsof this viral strain.However, in this
particular example, 57% of all newly detected HIV-1
infections in Denmark were sequenced during the study
period. Hence, it is perhaps unlikely that the 41 more
terminally located Danish sequences would not stem from
the same epidemiological introduction as the 14 more
basally placed Danish sequences. In addition, the branch
ancestral to this cluster was both well supported and rela-
tively long, further supporting this scenario [41].Moreover,
a large numberof non-Danish reference sequences selected
by genetic similarity (from both Genbank and a large
nonpublic sequence database representing surveillance
programmes in most European countries) were analysed
together with the Danish sequences to maximize the
chances of picking up non-Danish links in the original
report of this transmission cluster [41,146].

Another example that illustrates the effects of a relatively
small distance-based threshold is presented in Fig. 3b.

https://www.hiv.lanl.gov/content/sequence%20/HIV/mainpage.html
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Distance Threshold: 1.5%
Number of clusters = 4
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(a)

(b) Stem to Swedish IDU outbreak Stem to Swedish IDU outbreak

Fig. 3. Comparison between phylogenetic cluster definitions employing a branch support criteria with or without different
distance thresholds. Statistically supported branches are indicated with an asterisk (estimates �0.90, as determined by
approximate likelihood ratio test with the Shimodaira–Hasegawa-like procedure) [40]. The scale bar indicates the genetic
distance in substitutions per site and applies to both panels. Branches highlighted in colour represent sequences found in clusters
according to respective cluster definition (as detailed for each tree in the figure). All examples of clusters are defined by a threshold
of maximum pairwise distance in substitutions per site between any sequence pair in a cluster. Clusters (a) and (b) were cut out of
larger phylogenies analysed in an extensive multinational HIV-1 transmission study with an overall coverage of more than 50% of
newly HIV-1 infected individuals in the studied region [41]. (a) Transmission cluster of HIV-1 subtype B infected Danish MSM. The
16.2% distance threshold is the level in which all sequences will be included in the cluster. The relatively long and statistically
supported branch dividing the Danish MSM cluster in two parts discussed in the main text are indicated by an arrow. (b)
Transmission cluster of HIV-1 CRF01_AE infected Finnish intravenous drug users.
This cluster represents a set of late presenters from a well
characterized Finnish HIV-1 outbreak among intrave-
nous drug users (IDUs) in 1998–1999 and is linked to a
large Swedish IDU outbreak that occurred 2005–2007
(as established by epidemiological data and discussed in
previous publications) [41,108,147]. The longer terminal
branches (i.e. higher diversity) observed in this Finnish
cluster reflects the fact that these individuals were infected
by HIV-1 several years before being sampled (it is likely
that the majority of patients were infected during the
outbreak in 1998–1999, but the sampling period of the
Finnish dataset in this study started first 2003). The
Finnish cluster would be reduced to a small cluster of two
sequences if the most commonly used distance-based
threshold of 1.5% was employed (Table 3 and Fig. 3b).
Thus, too small distance-based thresholds may reduce
large and long-lived transmission clusters to multiple
smaller subclusters. The same principle applies to the
Danish MSM cluster discussed above, in which a lower
genetic distance threshold would result in several smaller
independent, more recent, and potentially active clusters/
transmission pairs, instead of the larger cluster as identified
by a higher genetic threshold (Fig. 3a). These examples
highlight the continuous evolution of HIV-1, which
results in an increasing divergence from a founder strain
(e.g. the MRCA of a transmission cluster).

Moreover, if the main aim of a study is to determine the
number of active transmission clusters, it may be
important to also consider nongenetic epidemiological
information (e.g. known date of infection or Recent
Infection Testing Algorithms) and the social context of
the population(s) under study [148,149]. In contrast, a
higher distance threshold results in only one or a few
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larger transmission clusters, implying long-standing and
continuous HIV-1 transmission problems in this popu-
lation. If the aim is to identify both long-lasting and active
transmission chains, a stepwise procedure may be useful. A
higher threshold couldbe applied in thefirst step to identify
long-lasting clusters; in a second step, these clusters could
then be stratified into active and nonactive clusters based on
the existence of subclusters as defined by a lower threshold.
This could be particularly useful in datasets that cover a
large proportion of the infected population. An alternative
sequence-based approach that might reduce the risk of
including transmission clusters with important missing
links is one that determine clusters using the maximum
length of internal branches, instead of mean, median or
maximum pairwise genetic distances.
Tools for identification of HIV-1
transmission clusters

Several tools and software have been developed for the
identification of transmission clusters from HIV-1
sequence data [29,35,150–154]. Two popular and freely
available tools are PhyloPart (https://sourceforge.net/
projects/phylopart/) and Cluster Picker (http://hiv.
bio.ed.ac.uk/software.html) [29,35]. Both rely on a
predetermined phylogenetic tree and allow the user to
determine thresholds for either genetic distance, phylo-
genetic branch support or both. The main difference is
that PhyloPart uses a distance threshold that is a user-
specified percentile of median pairwise distances, whereas
Cluster Picker employs a user-specified maximum
pairwise distance threshold. In contrast to PhyloPart
and Cluster Picker, the recently developed ‘Gap
Procedure’ does not depend on a phylogenetic tree
[150]. Instead, pairwise distances are estimated directly
from the sequence alignment and sorted by size to identify
relatively larger ‘gaps’ between subsets or aggregations of
similar distance estimates. By this procedure, the authors
argue that there is no requirement for a user-defined and
potentially poorly justified a-priori threshold to identify
clusters.

Jacka et al. [154] recently used sampling collection dates to
infer molecular clock phylogenies and then defined
clusters based on lineages existing at a particular point in
time (the analysis can be done by the freely available
software ClusterByTime). This definition is clearly
related to distance-based cluster definitions, because
under a strict clock the genetic distance is linearly
proportional to time. If rates of evolution vary among
lineages, one could argue that time is superior to genetic
distance since the same schedule of transmission events
would result in clusters with significantly different levels
of genetic distance. Further developments also allow for
the addition of discrete and continuous traits linked
to viral sequences and infections. For example,
phylogeographic and Markov jump models can be used
to infer the directionality and number of transitions
between different traits (e.g. geographic locations or
transmission groups) [6,155–157]. Finally, more complex
cluster definitions based on simultaneous analysis of
epidemiological information and viral sequence data have
also been proposed to improve the reconstruction of
accurate HIV-1 transmission networks [151,152].
Future research directions

When we assessed studies that have analysed sequence
datasets covering a relatively large proportion of the
infected population at national or regional scales, it
became clear that there is no common strategy to define
transmission clusters [12,33,41,45,77,78,131,136,158].
The increasing number of available HIV-1 sequences
will make it increasingly difficult to infer phylogenetic
trees to determine transmission clusters. A future
challenge will therefore be to estimate the level of
sequence coverage (i.e. the fraction of the total number of
infected individuals in a population) at which the current
methods of determining branch support becomes
impractical or even uninformative.

Recent developments in sequencing strategies have not
only resulted in an increased number of sequences, but
also in a wide variety in the quality and accuracy of viral
sequences submitted to public databases. Next-gener-
ation sequencing (NGS) is superior to Sanger sequencing
in detecting low-level variants, but some NGS method-
ologies suffer from relatively higher error rates and one of
the major challenges has been to distinguish technical and
analytical errors from true viral diversity [159]. Eshleman
et al. [160] analysed HIV-1 sequences from eight index-
partner pairs with unlinked HIV-1 sequences (as
previously determined by analysis of bulk Sanger
sequences) and reported that one of the eight couples
in fact was linked when the virus populations were
reanalysed by NGS. This indicates that although the
correspondence between Sanger and NGS sequences
generally seems high, there may be occasions in which
bulk Sanger sequences will not adequately represent the
entire virus population within an individual. In our
literature review, none of the studies used NGS sequences
to study HIV-1 transmission dynamics in a geographic
region or country. However, with the increasing number
of NGS sequences generated in recent years, there will be
a need to study both the impact of analysing Sanger versus
NGS sequences on a larger population-based scale and
the effects of combining both types of sequences in the
same analysis of transmission clusters.

The HIV-1 evolutionary dynamics and population
genetic forces differ substantially between intra-host
and inter-host levels, and by transmission route. Another
topic that needs further investigation is therefore how the

https://sourceforge.net/projects/phylopart/
https://sourceforge.net/projects/phylopart/
http://hiv.bio.ed.ac.uk/software.html
http://hiv.bio.ed.ac.uk/software.html
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inclusion of several sequences per patient (either long-
itudinally collected or multiple clonal sequences from one
time-point) impacts the identification of transmission
clusters in large sequence datasets [161]. Similarly, further
studies are needed on the effects of mixing sequences
from individuals infected through different transmission
routes. An outbreak among IDUs can for example look
very different compared with a transmission cluster with
sequences predominantly from MSM or heterosexuals
[41,162]. It has been suggested that such differences may
be linked to rapid HIV-1 transmissions and lack of
transmission bottlenecks in IDU outbreaks [162].
Conclusion and selecting an appropriate
cluster definition

HIV-1 infected patients are connected by transmission
history and HIV-1 populations accumulate genetic
distance over time. Therefore, the genetic distances in
a transmission cluster will depend on how long ago it was
established. The most suitable definition of an HIV-1
transmission cluster will depend on the hypothesis being
tested and the composition of the HIV-1 sequence dataset
under study. Consequently, no single method or cut-off
will suit all research purposes. However, an approach that
combines a genetic distance threshold with a phyloge-
netic branch support seems to fit most hypotheses and
datasets. Moreover, and as exemplified in Fig. 3, loosely
set genetic threshold (e.g. larger than the commonly used
thresholds of 1.5 or 4.5%) allows inclusion of clusters that
span longer time periods. This seems appropriate for
datasets with high-sequence coverage of populations
followed over long-time periods if the main aim is to
understand the long-standing transmission dynamics. A
higher threshold will, however, increase the likelihood of
including transmission clusters with missing links (i.e.
unsampled sequences), and a stricter genetic threshold or
a molecular clock analysis may be more appropriate when
the aim is to determine recent and epidemiologically
active transmission clusters (recently formed clusters have
a higher likelihood of still being active).

Studies of viral transmission based on sequence data can
provide critical information that would be difficult to
obtain through traditional epidemiological methodology
and will likely be an increasingly important component in
population-based surveillance of infectious diseases.
Further developments of accessible and flexible software
will be important in future analyses of the increasing
number of publicly available HIV-1 sequences and to
compare results between studies.
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