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Abstract: The synthesis of tertiary alkyl fluorides through
a formal radical deoxyfluorination process is described

herein. This light-mediated, catalyst-free methodology is
fast and broadly applicable allowing for the preparation of

C@F bonds from (hetero)benzylic, propargylic, and non-ac-
tivated tertiary alcohol derivatives. Preliminary mechanistic

studies support that the key step of the reaction is the

single-electron oxidation of cesium oxalates—which are
readily available from the corresponding tertiary alco-

hols—with in situ generated TEDA2++C (TEDA: N-(chloro-
methyl)triethylenediamine), a radical cation derived from

SelectfluorS.

Nucleophilic deoxyfluorination reactions constitute one of the
main strategies for the construction of aliphatic C@F bonds.[1]

Historically, DAST (diethylaminosulfur trifluoride) has been the
primary deoxyfluorination reagent;[2] nevertheless, due to its

intrinsic reactivity it suffers from limited functional-group toler-
ance. This has prompted the development of milder and more
effective deoxyfluorination reagents, such as PyFluor by

Doyle,[3] or PhenoFluor[4] and AlkylFluor by Ritter.[5] However,
given that these reagents react through SN2 pathways they are
ineffective with sterically congested tertiary and neopentyl al-
cohols. A radical approach might be able to overcome these

limitations and complement the existing nucleophilic strat-
egies. Indeed, during the preparation of this manuscript formal

radical deoxychlorination and deoxyfluorination processes,
using cesium oxalates and an iridium-based photocatalyst,
were reported by Reisman, Brioche, and MacMillan.[6]

SelectfluorS is an air stable, commercially available and inex-
pensive reagent, which can behave as a two-electron oxidant

or as an electrophilic fluorine source in fluorination reactions.[7]

Moreover, it can also participate in radical processes, either

through single-electron oxidations of metal catalysts, or as a

fluorine-transfer reagent to alkyl radicals.[8] In these radical re-
actions, TEDA2++C (TEDA: N-(chloromethyl)triethylenediamine) is

generated after the electron or fluorine-transfer step. This is a
highly reactive species that displays reactivity that is not com-

monly associated with SelectfluorS, for example, it can act as a
selective hydrogen-atom transfer (HAT) catalyst to activate sp3

C@H bonds[9] or as an aminating reagent to build C@N bonds

(Figure 1 A).[10] However, there is another reactivity pathway of-
fered by TEDA2++C that remains greatly underexplored, that is,

its use as a single-electron oxidant.[11] The main challenge to
exploit the latter reactivity is that, given the opportunity,

Figure 1. Reactivity of SelectfluorS, TEDA2++C and proposed transformation.
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TEDA2++C would readily react through either of the aforemen-
tioned pathways or through unproductive single-electron oxi-

dations to generate TEDA++. If TEDA2++C can be harnessed as a
single-electron oxidant to selectively oxidize given organic

molecules, it might be possible to open the door for new and
interesting reactivity to be explored.

Light-mediated methodologies have become popular strat-
egies to initiate radical reactions, because they allow for a mild

and controlled generation of open-shell species.[12] Therefore,
we wondered if it could be possible to access TEDA2++C using
visible light, and then have it selectively react with a suitable
radical precursor, for example, oxalate salts, which can be read-
ily accessed from the corresponding alcohols,[13] to achieve the

formal deoxyfluorination of tertiary alcohols under very mild
conditions (Figure 1 B).

Cesium oxalate 1 presents three possible reactive sites to-

wards TEDA2++C : a) an oxalate anion, b) an activated benzylic C@
H bond, and c) an aryl moiety. TEDA2++C has been shown to

engage in HAT reactions with benzylic C@H bonds,[9a, b, d–g] as
well as to undergo radical addition to aryl groups to form C@N

bonds. Therefore, 1 was chosen as substrate for the optimiza-
tion studies. Initially, 1 and SelectfluorS, were irradiated with a

32 W blue LED (lmax = 440 nm) in a 1:1 mixture of 1,4-dioxane/

H2O, inside an EvoluChemQ PhotoRedOx Box for 16 h. Analysis
of the reaction mixture by 19F NMR, using trifluorotoluene as

internal standard, revealed that the desired tertiary fluoride (2)
was formed in 70 % yield. No products derived from either

benzylic C@H abstraction or radical addition of TEDA2++C to the
phenyl group were observed. Next, we proceeded to optimize

the reaction conditions (Table 1).[14] First, the irradiation time

was reduced to 2.5 h without affecting the outcome of the re-

action. Control experiments in the absence of light, at 30 8C

and 50 8C, failed to deliver the desired product, showing that
irradiation is crucial for the reaction to proceed, whereas a sol-

vent screen revealed that with a 1:1 mixture of acetone/H2O, 2
was obtained in 79 % yield in only 1 h.

The scope of the methodology was then explored using the
optimized conditions (Scheme 1). Tertiary fluoride 2 was isolat-

ed in 74 % yield. Product 4, bearing a primary chloride, was iso-
lated in high yield (81 %). Tertiary fluoride 5, derived from 1-

adamantol and bearing a benzylic amide was obtained in 57 %
yield. Exocyclic fluorinated piperidine derivatives, with N-Ts (6 ;
Ts: p-toluenesulfonyl) or N-Boc (7; BOC: tert-butoxycarbonyl)
protecting groups, were obtained in 91 and 41 % yield, respec-
tively, whereas endocyclic fluorinated derivatives 8 and 9 were
isolated in moderate yields. Smaller 4- or 5-membered ring sys-

tems, such as 10 and 11, as well as internal alkynes (12) were
also tolerated affording the desired products in moderate to
good yields. Furthermore, mestanolone-derived product 11[15]

showcases the improved functional-group tolerance of our
protocol, because if DAST would be used in this reaction, the

carbonyl group would be converted to the corresponding
gem-difluoride species. Substrates derived from b-amino alco-

hols also were readily fluorinated using our methodology (13–

14). Substrate 14, derived from enantiomerically pure l-phenyl-
alanine, was obtained with complete stereoretention.[16] When

a gram-scale reaction was performed with this substrate, 14
was isolated in 75 % yield after 3 h of irradiation. Basic hetero-

cycles, such as pyrimidines (15) pyridines (16) or pyrazines
(17 a) were also tolerated (55, 64, and 25 % yield, respectively).

Interestingly, the reaction with the pyrazine derivative afforded

the fused bicyclic molecule 17 b as the main product in 56 %
yield. The formation of 17 b can be readily explained by gener-

ation of the corresponding tertiary radical followed by radical
cyclization and subsequent re-aromatization by oxidation with

SelectfluorS. The reaction with an electron rich p-methoxy sub-
stituted oxalate failed to provide the desired product (3). This

presumably suggests a competition during an electron transfer

event, where TEDA2++C oxidizes the electron-rich aromatic ring
rather than the oxalate anion. To test this hypothesis, the stan-

dard reaction using 1 was run in the presence of 1 equiv of
anisole and, as expected, 2 was obtained in a diminished 24 %

yield.
Cyclic (hetero)benzylic fluorides are key building blocks in

agrochemicals and pharmaceuticals,[17] because the incorpora-

tion of fluorine atoms can increase the metabolic stability of
benzylic centers.[18] Benzylic tetrahydropyran derivative 18 was

obtained in 66 % yield, whereas piperidine derivatives 19–21,
bearing phenyl and p-chloro substituents, were isolated in

good yields (52–74 %). Heterobenzylic piperidine 22, bearing a
3-pyridinyl substituent was also successfully obtained (52 %).

However, compound 23 bearing a 2-pyridinyl substituent was
only obtained in 15 % yield. Sterically congested tertiary ben-
zylic fluoride 24 was obtained in 48 % yield.

Tertiary propargylic fluorides are notoriously challenging to
prepare using nucleophilic deoxyfluorination strategies, due to

competing elimination processes and 1,2-alkyl shifts.[19] In
2015, Cordier reported an elegant approach towards the

formal deoxyfluorination of secondary/tertiary terminal propar-

gylic fluorides using a Cu catalyst and Et3N·3 HF as fluoride
source.[20] However, this methodology was completely ineffec-

tive for the synthesis of internal propargylic fluoride deriva-
tives. Gratifyingly, tertiary internal propargylic fluorides 25 and

26 were also accessed with our methodology.

Table 1. Selected results from the optimization of the reaction condi-
tions.[a]

Entry Solvent Change from conditions Time
[h]

Yield
[%][b]

1 1,4-dioxane:H2O none 2.5 72
2 1,4-dioxane:H2O no hn 2.5 0
3 1,4-dioxane:H2O no hn, 50 8C 2.5 4
4 acetone:H2O none 1 79

[a] Reaction conditions: 1 (0.10 mmol), SelectfluorS (0.25 mmol), solvent
(ratio 1:1, 0.1 m), irradiated with Blue LEDs (32 W, lmax = 440 nm), under N2

atmosphere. [b] 19F NMR yields using trifluorotoluene as internal stan-
dard.
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The selectivity of the reaction towards tertiary alcohols was
also investigated (Scheme 2). Initially, the reaction was con-

ducted in the presence of secondary oxalates, both benzylic
and aliphatic, as well as a primary oxalate. In all cases, tertiary

fluoride 2 was the main product of the reaction and only 10 %
of the secondary fluorinated products were observed. In con-

trast, when the reaction was carried out in the presence of a
primary oxalate, 2 was the only fluorinated product. When the

reactions were carried in the absence of 1, similar yields were

observed for the secondary oxalates, whereas no fluorinated
products were observed with the primary species. Increasing

the reaction temperatures did not increase the yields to syn-
thetically useful values.

Preliminary mechanistic studies were conducted to shed
some light on the reaction pathway. First, the radical nature of

the process was examined.[14] When the reaction was per-

formed in the presence of TEMPO as radical scavenger (1 or
3 equiv), no fluorinated products were observed. These results,
in combination with the formation of 17 b as byproduct when
the reaction was performed with the pyrazine-derived oxalate,

strongly suggest that the process is radical in nature. This was
further confirmed by measuring the quantum yield of the reac-

tion (F = 2185.4), which showed that a very efficient radical

chain mechanism is in operation.[14] Two possible pathways can
be envisioned for the initiation step (Scheme 3):

Path A: Generation of TEDA2++C through an electron donor–ac-
ceptor (EDA) complex : electrostatic interactions might favor the

formation of an EDA-complex[21] between SelectfluorS and the
corresponding oxalate derivative.[22] Subsequent excitation of

this species, followed by SET, would result in the formation of

an acyloxy radical which, upon double decarboxylation, would
afford the desired tertiary radical species. The latter would

engage in a fluorine-transfer process with a second molecule
of SelectfluorS to deliver the desired tertiary fluoride and

TEDA2++C, which would act as a chain carrier, by oxidizing a new
oxalate molecule, thus further promoting the reaction.

Scheme 1. Scope of the reaction. Reaction conditions: Cesium oxalate
(0.5 mmol), SelectfluorS (1.25 mmol), acetone (2.5 mL), H2O (2.5 mL), irradia-
tion with 32 W blue LEDs (lmax = 440 nm) under N2 atmosphere for 2 h.
Yields of isolated material. [a] Average of 2 runs. [b] Using 1 equiv of anisole
as additive. [c] NMR yield. [d] 2.4 mmol of cesium oxalate, 3 h irradiation.

Scheme 2. Selectivity of the reaction. 19F NMR yields using trifluorotoluene
as internal standard.
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Path B: Generation of TEDA2++C through direct irradiation of Se-

lectfluorS : Lei[23] and Jin[24] have independently shown that it is
possible to access TEDA2++C by direct irradiation of SelectfluorS

with blue LEDs and exploit it as a HAT catalyst. In this scenario,

it is proposed that irradiation of SelectfluorS results in the ho-
molytic cleavage of the N@F bond, generating TEDA2++C which

can engage in a selective single-electron oxidation of the oxa-
late species. Subsequent decarboxylation and fluorine-transfer

events would regenerate TEDA2++C and afford the desired ter-
tiary fluorides through a radical-chain mechanism.

The UV/Vis spectra of SelectfluorS, 1, and the reaction mix-

ture were measured.[14] Although no absorption bands were
observed above l= 325 nm in the spectra of both SelectfluorS

and 1, an absorption band was observed starting at approxi-
mately l= 410 nm in the spectrum of the reaction mixture.

Furthermore, when UV/Vis spectra were recorded with increas-
ing concentrations of SelectfluorS versus 1 (from 0.5 to

2.5 equiv), an increase in absorption was observed, suggesting

the formation of an EDA-complex.[14, 25] There is a better over-
lap between the absorption spectrum of the reaction mixture
and the emission spectrum of blue LEDs with lmax = 405 nm
than with the blue LEDs with lmax = 440 nm.[14] Therefore, to
further test the influence of light on the transformation, we
followed the standard reaction under different wavelengths of

irradiation (lmax = 365, 405, and 440 nm).[14] These studies re-
vealed that regardless of the lmax of irradiation, all reactions
reached completion after 30 min. However, at shorter reaction

times the highest yields were observed when blue LEDs with
lmax = 405 nm were employed. At this wavelength of irradia-

tion, the reaction likely proceeds through pathway A
(Scheme 3). Light ON/OFF experiments confirmed that the re-

action only proceeds when irradiated, thus further confirming

the crucial role of the light in the reaction.[14]

In conclusion, a light-mediated, catalyst-free, mild, and gen-

eral strategy to tackle the challenging deoxyfluorination of ter-
tiary alcohols has been developed. Preliminary mechanistic in-

vestigations support the proposed radical-chain mechanism, in
which the key species TEDA2++C is likely generated through irra-

diation of an EDA-complex between SelectfluorS and the cor-

responding oxalate.
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