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Abstract

Background: Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into several
cell types, including cartilage, fat, and bone. As a common progenitor, MSC differentiation has to be tightly
regulated to maintain the balance of their differentiation commitment. It has been reported that the decision
process of MSCs into fat and bone cells is competing and reciprocal. Several factors have been suggested as critical
factors that affect adipo-osteogenic decision, including melatonin and smad4. Yes-associated protein (YAP) is an
important effector protein in the Hippo signaling pathway that acts as a transcriptional regulator by activating the
transcription of the genes involved in cell proliferation and anti-apoptosis. The non-canonical role of YAP in
regulating bone homeostasis by promoting osteogenesis and suppressing adipogenesis was recently demonstrated
in a mouse model. However, it is unclear whether YAP is also crucial for modulating human MSC differentiation to
fat and bone.

Methods: The expression level of YAP during MSC differentiation was modulated using pharmaceutical molecule
and genetic experiments through gain- and loss-of-function approaches.

Results: We demonstrated for the first time that YAP has a non-canonical role in regulating the balance of adipo-
osteogenic differentiation of human MSCs. The result from synchrotron radiation-based Fourier transform infrared

cell research.

(FTIR) microspectroscopy showed unique metabolic fingerprints generated from YAP-targeted differentiated cells
that were clearly distinguished from non-manipulated control.

Conclusions: These results, thus, identify YAP as an important effector protein that regulates human MSC
differentiation to fat and bone and suggests the use of FTIR microspectroscopy as a promising technique in stem
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Background

Mesenchymal stem cells/stromal cells (MSCs) are a spe-
cialized population of progenitor cells that can be isolated
from various adult or fetal tissues and membranes [1].
Due to their hypoimmunogenic or immune privilege,
MSCs have been used in regenerative therapy, especially
for transplantation across major histocompatibility bar-
riers [2, 3]. MSCs are multipotent stem cells that are able
to differentiate into several cell types, including osteo-
blasts, chondrocytes, adipocytes, and hematopoietic stem
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cell-supportive stroma. As a common progenitor, MSCs
have to maintain a delicate balance for their differentiation
commitment, especially for differentiation to fat and bone
[4]. It has been demonstrated that bone induction factors,
such as RUNX family transcription factor 2 (Runx2), in-
hibit adipogenesis, whereas peroxisome proliferator-
activated receptor y (PPARYy) stimulated adipogenesis and
inhibited osteogenesis [5]. Bone loss has also been
observed in obese mice, rats, and humans [6-8]. Several
external cues contribute to the bias of adipo-osteogenic
differentiation of MSCs, including chemical [9, 10],
physical [11, 12], and biological factors, such as aging/me-
tabolism [13]. These factors trigger different signaling
pathways and activate various transcription factors that
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guide MSCs to commit to their differentiation fate [14].
The factors affecting the adipo-osteogenic decision of
MSC:s are reviewed in detail elsewhere [4].

It was recently observed that activation of the beta-1 ad-
renergic signaling pathway by dobutamine hydrochloride
(DH), a beta-1 adrenergic agonist, contributes to postmeno-
pausal and age-related bone loss, while blocking of beta-1
adrenergic signaling showed favorable effects on bone turn-
over [15]. However, the insight molecular mechanism for
these phenomena has not been described. Bao and col-
leagues showed that DH is able to attenuate yes-associated
protein (YAP), which is a transcriptional coactivator that is
negatively regulated by the Hippo signaling pathway, by
inhibiting its nuclear translocation [16]. YAP and transcrip-
tional co-activator with PDZ-binding motif (TAZ), also
known as WW domain-containing transcriptional regulator
1 (WWTR1), were recently suggested as key regulators of
bone homeostasis in mice by promoting osteogenesis and
suppressing adipogenesis via the Smad4 or beta-catenin sig-
naling pathway [17-19]. However, whether or not YAP
plays a role in controlling the adipo-osteogenic balance of
human MSCs has never been reported.

Lysophosphatidic acid (LPA) is a phospholipid deriva-
tive that can act as a signaling molecule to activate G
protein-coupled receptors that are known to regulate
cell proliferation and migration. Recent experiments sug-
gested that the Hippo-YAP/TAZ signaling pathway is a
downstream target of LPA for regulating cell prolifera-
tion and migration. It has been shown that LPA inhibits
large tumor suppressor (LATS) kinase, a major core kin-
ase of the Hippo-YAP/TAZ pathway, resulting in activa-
tion of YAP transcription coactivator and the expression
of its downstream target genes. Though studies in
monocytes and CV-1 cells (kidney fibroblast cell line de-
rived from an African green monkey) suggested that
LPA could bind to and activate PPARy (which is a tran-
scription factor also known to play a crucial role in adi-
pogenesis), experiments in mouse preadipose cell line
(3T3F442A) showed negative effect of LPA on adipogenic
differentiation, as demonstrated by a reduction in the
PPARy-sensitive genes phosphoenolpyruvate carboxyki-
nase (PEPCK) and adipocyte lipid-binding protein (ALBP)
[20]. However, the role of LPA in human MSC differenti-
ation to adipocytes has never been demonstrated.

Synchrotron-based Fourier-transform infrared spec-
troscopy (FTIR) microspectroscopy is a valuable tool for
characterizing and describing the biochemical changes
in cells and tissues. The positions of the peaks observed
in the FTIR spectra provide significant information rela-
tive to the biochemical content of the macromolecules
in the cells. Therefore, this information can be used as a
fingerprint of the structure and functionality of speci-
mens. The content of these molecules can also be linked
to the stage of differentiation and the physiological state
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of cells [21-25]. FTIR microspectroscopy is a proven
label-free method for studying a small sample size with
high spatial resolution [26]. With the brightness of SR
light, FTIR microspectroscopy can be used to study sin-
gle cells with a good signal-to-noise ratio [27, 28].

In the present work, we studied the role of YAP in
regulating the adipo-osteogenic balance in human
MSCs. The expression level of YAP during MSC differ-
entiation was manipulated using the pharmaceutical
molecule (DH and LPA to inhibit and activate YAP, re-
spectively) and a genetic approach (Crispr/Cas9 target-
ing YAP and YAPs5a to inhibit and overexpress YAP,
respectively). In addition to other standard procedures
that are used to confirm the presence of osteoblasts and
adipocytes, FTIR microspectroscopy was used to track
the structural changes of nucleic acids, proteins, and
lipids in differentiated cells after YAP had been manipu-
lated. The results showed that YAP plays an important
role in controlling adipo-osteogenesis in human MSCs.
It is clear that YAP is required for MSCs to achieve osteo-
genic fate, whereas the absence of YAP promotes adipo-
genic differentiation. This result also strongly suggests the
use of FTIR is an effective method for studying cell char-
acteristics of human osteogenesis and adipogenesis.

Materials and methods

Isolation and culture of hUC-MSCs

Three umbilical cords (UC) were obtained, cut into
small pieces, and incubated with 0.25% (w/v) trypsin-
EDTA (GIBCO™; Invitrogen Corporation, Carlsbad, CA,
USA) for 30 min at 37°C. Cell suspensions were col-
lected and washed with phosphate-buffered saline (PBS)
before being resuspended with culture medium, which
consisted of Dulbecco’s modified Eagle’s medium
(DMEM)-low glucose (Gibco®) supplemented with 10%
fetal bovine serum (FBS; Merck Millipore, Burlington,
MA, USA), and plated in culture vessels (Corning, Corn-
ing, NY, USA). Cultures were maintained at 37°C in a
humidified atmosphere containing 5% CO,. The culture
medium was replaced every other day. Adherence cells
were treated with 0.05% Trypsin-EDTA (Gibco®) and
split to a seeding ratio of 5000 cells/cm? for expansion.

Immunophenotypical characterization

Primary culture from UC-MSCs (4 x 10° cells) were re-
suspended in 50 ul of PBS and incubated with 10 pl of
peridinin-chlorophyll proteins (PerCP), fluorescein iso-
thiocyanate (FITC) or phycoerythrin (PE)-conjugated
antibodies against CD45 (BioLegend, San Diego, CA,
USA), CD34 (BioLegend), CD73 (BioLegend), CD90
(BioLegend), or CD105 (BioLegend) for 30 min at 4 °C in
the dark. After washing with PBS, the cells were fixed
with 1% paraformaldehyde (PFA). At least 10,000 labeled
cells were acquired and analyzed using flow cytometry
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(FACSCanto™ or FACSCalibur™ analyzer; BD Biosci-
ences, San Jose, CA, USA).

Preparation of small molecules

Lysophosphatidic acid (LPA) and dobutamine hydro-
chloride (DH) were purchased from Sigma-Aldrich (St.
Louis, MO, USA) and prepared as a 20 mmol/l stock so-
lution in the diluent suggested by the manufacturer’s
protocol. The final concentration of 10 uM of LPA and
20 uM of DH was used as a supplement into osteogenic
and adipogenic differentiation media.

Generation of YAP-targeted cells

Crispr/Cas9 plasmid construct targeting YAP was pur-
chased from GenScript Corporation (Piscataway, NJ,
USA). For the preparation of lentivirus, the plasmid was
transfected into 4 x 10° HEK293T cells in a 100-mm cell
culture dish using Lipofectamine 3000 (Life Technolo-
gies, Carlsbad, CA, USA). After 24 h, the medium was
changed to fresh HEK293T cell medium consisting of
DMEM (Gibco®) + 10% FBS. Culture media were col-
lected at day 2 after transfection, passed through a 0.45-
puM filter (Jet Biofil, Guangzhou, China), and concen-
trated by transferring the virus-containing supernatant
through Amicon Ultra-15 Centrifugal Filter Units
(Merck Millipore), followed by centrifugation at 4000g
for 30 min at 4 °C. The concentrated virus was collected
and added to 5x 10* MSCs in the presence of 5 pg/ml
polybrene (Sigma-Aldrich). The medium was changed
the next day to completed media. The transfected cells
were treated with 2 pug puromycin for 2 days to eliminate
the non-transfected cells before being subjected to
osteogenic and adipogenic differentiation.

Generation of YAP-overexpressing cells

MSCs were transfected with plasmids to promote the
overexpression of YAP using 4D nucleofector (Lonza,
Basel, Switzerland). At 24 h after transfection, puromycin
(2 pg) was added into the culture media for 2 days before
the cells were subjected to osteogenic and adipogenic
differentiation. Overexpression was confirmed by quanti-
tative real-time polymerase chain reaction (RT-PCR).

Quantitative PCR and data analysis

Isolated total RNA was reverse-transcribed using a
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA). Quantitative RT-
PCR (qRT-PCR) was performed using Real-Time PCR
Master Mix (Applied Biosystems) and the Universal
Probe Library (UPL; Roche Life Science, Penzberg,
Germany) in a final volume of 10pul. RT-PCR assays
were performed using a CFX384 Real-Time PCR System
(Bio-Rad Laboratories, Hercules, CA, USA).
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Western blot analysis

The presence of YAP was determined by Western blot-
ting. Total protein was extracted from cells using a cell
lysis buffer (10x RIPA; Cell Signaling Technology, Dan-
vers, MA, USA) containing protease inhibitors (Roche
Life Science). The denatured protein was run onto 7%
SDS/polyacrylamide gels, and the separated proteins
were transferred to PVDF membranes (Merck Millipore)
and probed with the following primary antibodies: anti-
YAP, anti-phosphorylated YAP (Cell Signaling Technol-
ogy) diluted 1:1000, and anti-B-actin peroxidase (ACTB;
Sigma-Aldrich) diluted 1:25,000. Peroxidase-conjugated,
species-appropriate antibody at a 1:5000 dilution was
added and then detected by autoradiography using en-
hanced chemoluminescence (Merck Millipore). ACTB
served as the loading control.

Scratch wound healing migration assay

MSCs (passages 3—6) were seeded at a density of 1 x 10*
cells/cm® in a 6-well plate and allowed to grow to con-
fluence before being scratched with a P1000 pipette tip.
Cell debris was removed by washing once with 1 ml of
culture media. New culture media supplemented with
20uM DH or 10puM LPA was then added, and cells
were maintained for up to 7 days concurrently with non-
treated cells. The culture medium was changed every
other day. Images of the closing wound were acquired
on days 3, 5, and 7 by inverted microscopy. Three inde-
pendent experiments were performed.

Transwell migration assay

The MSCs were treated with 20 uM DH or 10 uM LPA
for 24 h before being seeded into the insert chamber of
an 8-um pore size transwell (Corning) filled with DMEM
supplemented with 2% (v/v) FBS, 100 U/ml penicillin,
and 100 pg/ml streptomycin. The lower chamber con-
tained 600 ul of completed DMEM medium (10% FBS).
The culture was then maintained at 37 °C in a humidi-
fied atmosphere containing 5% CO, for 6 h to allow cell
migration. After 6-h incubation, the numbers of cells
that migrated to the other side of the transwell inserts
were determined by Hoechst-33342 staining. Data are
presented as the mean + standard error of the mean
(SEM) of three independent experiments.

Osteogenic differentiation

Cells at passages 3—6 were used to study osteogenic dif-
ferentiation capacity. For osteogenic differentiation,
MSCs at a density of 5 x 10* cells were plated into a 35-
mm tissue culture dish. NH OsteoDiff® Medium (Milte-
nyi Biotec, Bergisch Gladbach, Germany) was then
added for osteogenic differentiation induction. After 2
weeks of culture, the cells were fixed with 4% formalde-
hyde for 15 min and stained with 40 mM Alizarin red S
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(Sigma Aldrich) for 20 min at room temperature (RT) to
evaluate calcium deposition in the cells. Alizarin red S
staining was quantitated by adding 10% acetic acid to
the cells with subsequent incubation at RT for 30 min
with shaking. The cells in 10% acetic acid were collected
using a cell scraper, transferred into a 1.5-ml microcen-
trifuge tube, and incubated at 85 °C for 10 min. The cell
mixture was centrifuged for 15min at 20,000g. The
supernatant was collected, and the pH value was ad-
justed to 4.1-4.5 with 10% ammonium hydroxide. Sam-
ple aliquots of 50 ul/well were prepared in triplicate in a
96-well plate to read the absorbance at 405nm on a
spectrophotometer (BioTek Instruments, Inc., Winooski,
VT, USA). Alizarin red S deposited in the cells was cal-
culated from the concentration of Alizarin red S relative
to a standard curve.

Adipogenic differentiation

For adipogenic differentiation, MSCs at passages 3—6
were used; 5 x 10* cells of MSCs were cultured in NH
AdipoDiff® Medium (Miltenyi Biotec) for 3 weeks. Cells
were stained with 0.5% (w/v) Oil Red O (Sigma Aldrich)
in isopropanol for 30 min at RT to determine the lipid
droplet in the cells. For the quantification of Oil Red O
staining, the dye was eluted with 100% isopropanol by
incubating cells with isopropanol for 10 min at RT. Solu-
tion aliquots of 200 ul/well were transferred into a 96-
well plate to read the absorbance at 510 nm by spectro-
photometer (BioTek). Oil Red O concentration was cal-
culated relative to a standard curve.

Sample preparation for imaging by FTIR

Cells were trypsinized into single cells, and a drop of
4% 10° cells was deposited onto IR transparent 2-mm-
thick barium fluoride windows, air dried, and washed
several times with distilled water to eliminate culture
medium contamination before storage in a desiccator
until spectra were acquired.

FTIR microspectroscopy analysis

FTIR spectra comprises three important regions, includ-
ing the protein region (1700-1500cm™": amide I and
amide II protein), the lipid region (3000—2800 cm™': CH
stretching, C=0 ester lipid (1750-1700cm™, and the
carbohydrate and nucleic acid region (1300-900 cm™:
P=0 phosphates, C-O, C-C glygogen, and carbohydrate
(1300-900 cm ™). In this study, spectrum data were ac-
quired at an infrared microspectroscopy beamline (BL4.1
IR Spectroscopy and Imaging) at the Synchrotron Light
Research Institute with a Vertex 70 FTIR Spectrometer
(Bruker Optics Ltd., Ettlingen, Germany) coupled with
an IR microscope (Hyperion 2000; Bruker Optics Ltd.).
The detector of the infrared microscope was a liquid

nitrogen-cooled mercury cadmium telluride (MCT-A)
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detector (of 100 um in size). Measurements were per-
formed using an aperture size of 10 x 10 um with a spec-
tral resolution of 6 cm™, with 64 scans co-added over
the measurement range from 4000 to 800 cm ™. Spectral
acquisition and instrument control were performed
using OPUS 7.5 software (Bruker Optics Ltd). Spectral
changes in the functional groups were evaluated at the
integral area of each peak, especially the region of amide
I protein (1700-1600 cm™Y), amide II protein (1600—
1500 cm ™), CH stretching from lipid (30002800 cm™),
C=0 ester lipid (1750-1700 cm ™), and PO43- or nu-
cleic acid (1200-900 cm™). Spectra from each sample
group were analyzed using principal component analysis
(PCA). Data were preprocessed by performing a baseline
correction, and they were normalized using extended
multiplicative signal correction using spectral regions
from 3000 to 2800 cm™* and 1800-900 cm™ using Un-
scrambler 10.1 software (CAMO Software, Oslo, Norway).

Results

Effect of pharmacological molecules on YAP

MSC samples that were characterized by immunopheno-
typic profiling (Additional file 1: Figure S1) were used in
this study. To determine whether YAP was expressed in
MSCs, we first determined the expression of YAP across
cell types, including iPSCs, HEK293, and MSCs (Add-
itional file 2: Figure S2). The results showed YAP to be
highly expressed in MSCs and that it could be used as a
model for studying the effect of small molecules on
MSC differentiation. To confirm the efficacy of the
pharmacological molecules, cells treated with 20 uM DH
or 10 pM LPA were harvested for Western blot analysis
to determine YAP activity. An increase in phosphory-
lated YAP (p-YAP; inactive form) was observed in DH-
treated cells (Fig. 1a, b), and an increase in YAP active
form was found in LPA-treated cells (Fig. 1c, d). These
results indicated that the pharmacological molecules
were working in the expected and appropriate manner.

Effect of DH and LPA on human MSC proliferation and
migration

To determine whether pharmacological molecule treat-
ment affects hMSC proliferation and migration, in vitro
wound healing assay and transwell migration assay were
performed. The result of the wound healing experiment
showed that the wound area completely sealed on day 7
in the LPA-treated group, while cells treated with DH
showed delayed effect compared to control (Fig. 2a). To
further confirm that DH suppresses cell migration, we
performed transwell migration assay. The result showed
that DH-treated cells barely migrated to the bottom side,
whereas LPA was found to enhance migration (Fig. 2b).
Cell count analysis confirmed that a significantly less
number of cells migrated to the bottom side of the
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Fig. 1 Effects of DH and LPA on the expression of YAP. Western blot analysis showed the phosphorylated form of YAP in MSCs after treatment with 20 uM
DH or 10 uM LPA (a). Quantification of p-YAP protein levels confirmed a significant increase in p-YAP expression in DH and decreased p-YAP expression in
LPA-treated cells (b). An increase in YAP upon treatment with LPA (c) and quantification of YAP protein levels confirmed a significant increase in YAP upon
LPA treatment (d). Band intensity was normalized to that of actin (mean + SEM; n =3, *P < 005, **P < 001, **P < 0001, Student’s t test)

upper chamber, as shown in Fig. 2c. Taken together,
these results suggest that DH suppresses cell prolifera-
tion and migration, whereas the treatment of cells with
LPA showed effects opposite to those treated by DH. To
determine whether DH treatment induces cell death, cells
at day 5 of treatment were collected for total cell count
and to determine the number of living and dead cells
using trypan blue exclusion assay. We found a signifi-
cantly increased number of cells (living + dead cells) in the
LPA-treated group compared to other conditions, whereas
the DH-treated group had a significantly lower total num-
ber of cells. However, the number of dead cells did not
differ significantly among treatments (Fig. 2d). These re-
sults indicate that DH inhibits MSC proliferation and mi-
gration, but it does not significantly induce cell death.

DH inhibits osteogenic differentiation and promotes fat-
forming process of human MSCs, but the inverse was
observed in LPA

To determine whether the pharmacological molecules
DH and LPA influence the differentiation capacity of
MSCs, we performed osteoblast-like cell differentiation
by culturing MSCs in cytokine-induced osteogenic dif-
ferentiation medium in the presence of either LPA or
DH (Fig. 3a). After 2 weeks of culture, we found that DH
treatment inhibited the osteogenic differentiation of
MSCs, while LPA promoted MSC differentiation to
osteoblast-like cells, as demonstrated by Alizarin red

staining (Fig. 3a). Quantitative measurement of calcium
deposition from Alizarin red staining showed a signifi-
cant decrease in calcium content in DH-treated MSCs
(Fig. 3b). These results suggest that the expression level
of YAP, which is a target protein of DH and LPA, could
influence the differentiation capacity of MSCs.

The effects of pharmacological molecules were also in-
vestigated during the fat-forming process of MSCs. In
contrast to osteogenic differentiation, DH-treated cells
showed increased intracellular fat droplets compared to
both control and LPA-treated cells (Fig. 3c). Quantitative
measurement of fat droplets from Oil Red O staining
showed a significant increase in fat content in DH-treated
MSCs (Fig. 3d). These results suggest that the expression
of YAP influences the differentiation of human MSCs.

Gain- and loss-of-function experiments confirm the role
of YAP in adipo-osteogenic differentiation

To further confirm that YAP plays a critical role in
osteogenic differentiation, we performed gain- and loss-
of-function experiments by generating YAP-knockdown
(YAP-KD) and YAP-overexpressing (YAP-O/E) MSCs.
The knockdown and overexpression efficiency rates were
determined, as shown in Fig. 4a. Later, YAP-KD and YAP-
O/E MSCs were subjected to osteogenic and adipogenic
differentiation medium. Consistent with the results of
small molecule treatment, YAP-KD cells exhibited less
osteogenic differentiation phenotype when compared to
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Fig. 2 Effects of DH and LPA on MSC proliferation and migration. A scratch was made using a P1000 pipette tip and cultured in the presence of
DH or LPA for 7 days. The distance between edges was monitored under a microscope to determine the proliferation rate upon treatment (a).
Representative pictures of cells at the bottom side of the inserted chamber after 6-h incubation stained with Hoechst-33342 (b). The number of
migrated cells was counted and reported as mean + SEM; n =3, *P < 0.05, ***P < 0.001, Student’s ¢ test (c). MSC numbers were enumerated after
treatment with DH and LPA with trypan blue exclusion (d). Statistical analysis for live cells is shown as mean + SEM; n =3, *P < 0.05, ***P < 0.001,
Student’s t test. Numbers of dead cells were not significantly different among treatments

those of YAP-O/E and control cells (Fig. 4b, c). In con-
trast, YAP-depleted cells demonstrated an increased bias
towards adipogenic lineage commitment than YAP-
overexpressing cells, as shown in Fig. 4d, e. These results
confirm that YAP plays a crucial role in both adipogenic
and osteogenic differentiations.

FTIR signatures of YAP-depleted MSC-derived adipocytes
and osteoblasts

To further confirm that the expression of YAP could in-
fluence the differentiation potential of hMSCs to bone

and fat, differentiated cells were collected and subjected
to FTIR analysis. The mean FTIR spectra, PCA analysis,
and loading information of the control MSCs, YAP-O/E,
and YAP-KD cells differentiated to adipocytes and oste-
oblasts recorded from more than 200 single cells in the
mid-IR region of 4000-800cm™' are shown in Fig. 5.
For differentiation to osteoblasts, PCA was performed
on the second derivative spectra from control MSC,
YAP-O/E, and YAP-KD (Fig. 5a). Three groups of spec-
tra were clearly separated into 2D PCA score plots: PC1
and PC2 (Fig. 5b). PC1 and PC2 explained 28% and 20%
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of the total variance, respectively. The spectrum groups
of YAP-KD were associated with positive scores on the
score plot (PC1) and presented as a negative loading of
PC1. The high negative loading for PC1 loading at 1029,
1122, and 1241cm™ assigned to PO4>" phosphate
bands, and nucleic acid from phosphodiester bonds
(centered at 1241 cm™") was responsible for distinguish-
ing the YAP-KD cells from control and YAP-O/E cells
(Fig. 5¢). The YAP-O/E group was clearly separated
along the negative score plot of PC2. The negative value
of PC2 loading at 2931 and 2857 cm™" corresponding to

the C—H stretching bands, 1226cm™ associated with
phosphodiester bonds from the nucleic acid, and PO,*
phosphate bands centered at 977 cm™ and 1000 cm™
(Fig. 5¢).

Unique FTIR spectra were also found in adipogenic
differentiation. The second derivative spectra from con-
trol MSC, YAP-O/E, and YAP-KD cells that differenti-
ated to adipocytes are shown in Fig. 5d. The PCA score
plot demonstrated the separation of these samples with
a total variance of 33% for PCl and 16% for PC2
(Fig. 5€). The highest positive loading plot from PC1 was
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observed in the CH stretching (CH2, CH3 stretching)
centered at 2921 and 2850 cm™' from lipid, and C=0O
ester lipid centered at 1741 cm ™', and oppositely corre-
lated with negative score plot in the MSC group from
the second derivative spectrum (Fig. 5f). The separation
along PC2 can be explained by the positive loading for
PC2 in the spectral region at 1238 and 1035 cm™" from
the nucleic acid and carbohydrate regions, respectively.
The respective spectra of the YAP-O/E were associated
with negative score plots in PC2 and presented as a posi-
tive loading of PC2 (Fig. 5f). Taken together, these
results show that FTIR signatures could clearly

demonstrate the consequence of YAP upon adipo-
osteogenic differentiation. Similarly, unique FTIR spectra
were also observed in LPA- or DH-treated cells differen-
tiated to osteoblasts and adipocytes (Additional file 3:
Figure S3).

Discussion

YAP has been implicated in several types of cells for control-
ling cell proliferation and differentiation [29, 30]. However,
whether YAP plays a role in controlling adipo-osteogenic
balance in humans has never been fully elucidated. In the
present work, we showed that the expression level of YAP
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during human MSC differentiation is crucial for adipo-
osteogenic differentiation. Increasing YAP, either by
pharmaceutical molecule or by genetic manipulation, en-
hances osteogenic differentiation but suppresses differenti-
ation to adipocytes even though the cells were cultured in
enriched cytokine medium that promotes and supports adi-
pogenic differentiation. In contrast, low YAP promotes
adipogenic differentiation but inhibits osteogenic differenti-
ation. These results clearly suggest that YAP plays a crucial
role in human adipo-osteogenic differentiation.

YAP is highly expressed in highly proliferative cells,
such as iPSCs and cancers, since it plays a role in

inducing cell proliferation and anti-apoptosis [31, 32].
Even though the Hippo-YAP/TAZ signaling pathway has
been studied in pluripotent stem cells for quite some
time, the role of YAP in pluripotent stem cells remains
inconclusive and controversial. A study in mouse embry-
onic stem cells (mESCs) found that YAP is highly
expressed in self-renewing mESCs but is inactivated dur-
ing differentiation [33]. Overexpression of YAP inhibits
mESC differentiation and maintains stem-like properties
and self-renewal even under differentiation conditions.
In contrast, Chung and colleagues reported that YAP is
dispensable for self-renewal, but it is required for
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differentiation [29]. Interestingly, a study in human
pluripotent stem cells found YAP to be irrelevant rela-
tive to maintaining pluripotency but required for self-
renewal. Overexpression of YAP could transform pluri-
potent stem cells into naive stem cells [30].

Aside from controlling the biological properties of
pluripotent stem cells, YAP in MSCs seems to have no
role in cell proliferation and anti-apoptosis processes.
YAP was instead found to be crucial for the mechano-
sensing process by responding to the interaction of cell-
matrix adhesion and by conveying the differentiation
phenotype of MSCs [34-36]. In soft ECM, YAP retained
in the cytoplasm undergoes a degradation process. This
phenomenon enhances the likelihood of differentiation
towards adipogenesis. Conversely, stiff ECM induces
YAP to translocate into the nucleus to induce osteogen-
esis. These results clearly suggest that genes that are in-
volved in adipo-osteogenesis are downstream targets of
YAP. In this experiment, the expression of YAP was ma-
nipulated by pharmaceutical molecules and genetic ap-
proaches to determine the differentiation capacity of
MSCs. Our results confirm that YAP is an essential mol-
ecule for adipo-osteogenic lineage decision of MSCs.

The mechanism by which YAP regulates adipo-
osteogenesis was demonstrated by Pan and colleagues
[17]. They found that YAP interacts with beta-catenin to
promote osteogenic differentiation and maintain bone
homeostasis in a mouse model [17]. Recently, transcrip-
tional coactivator with PDZ motif (TAZ), a YAP homo-
log protein, was identified in mouse MSCs (C3H10T1/2
cell line) and in human adipose tissue-derived stem cells
as an important effector protein that binds to Smad4 to
regulate the balance of lineage commitment in osteo-
genic and adipogenic differentiation. However, they
found that YAP did not interact with Smad4 in either
osteogenic or adipogenic differentiation of MSCs [19].
Thus, multiple mechanisms may account for YAP regu-
lation of adipo-osteogenesis of human MSCs, which re-
quires further investigation.

FTIR microspectroscopy has been applied in the bio-
medical field to study global structural and compos-
itional changes in the nucleic acids, proteins, and lipids
of many biological samples, including stem cells and dif-
ferentiated cells [24, 37-42]. SR FTIR was shown to pro-
vide information that can be used as a chemical
fingerprint of biological cells. It is very useful for detect-
ing physiological changes in cells that can be related to
their physiological properties. Previous studies in stem
cells have shown that the structures of nucleic acid, pro-
tein, and lipid have changed along the differentiation
time course [24, 38, 41, 42] and that these changes result
in a shift in the corresponding peaks in the FTIR spectra.
Hence, the dynamics of the peaks during differentiation
may have the potential for use as biomarkers to identify
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the stage of the cell. Moreover, FTIR microspectroscopy
has a high signal-to-noise ratio of less than 10 pm per
spot on the sample and enhanced diffraction-limited lat-
eral spatial resolution. These advantages suggest the pos-
sibility that FTIR microspectroscopy can be used to
identify even a small difference in a cell at the single-cell
level. So far, this technique can be applied to study stem
cell differentiation. The spectral signature of cells can be
applied to create a spectral database of stem cell differ-
entiation that will allow us to identify correlations be-
tween differentiation potential and spectral signature.

Conclusions

In this study, we demonstrated that the expression level
of YAP is essential for adipo-osteogenic differentiation
of human MSCs. Increasing YAP activity, either by
pharmaceutical molecule or by genetic manipulation, en-
hances osteogenic differentiation but suppresses differ-
entiation to adipocytes. In contrast, low YAP activity
promotes adipogenic differentiation but inhibits osteo-
genic differentiation. These results clearly suggest that
YAP plays a crucial role in human adipo-osteogenic dif-
ferentiation. We also showed that FTIR can be used as
an effective method for studying cell characteristics of
MSC-derived osteoblasts and adipocytes.
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