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Abstract: Metabolic reprogramming of tumors with the accompanying reprogramming of glucose
metabolism and production of lactate accumulation is required for the subsequent development
of tumors. Recent evidence has indicated that tumor-secreted lactate can promote an oncolytic
immune microenvironment within the tumor. Furthermore, tumor-secreted lactate directly induces
polarization of tumor-supportive M2 macrophages. However, oxidized tumor-secreted lactate in
the tumor microenvironment can be exploited. Iron oxide nanoparticles have shown promising
anticancer potential by activating tumor-suppressing macrophages. Furthermore, lactate oxidase
(LOX) generally oxidizes tumor-secreted lactate and subsequently converts to pyruvate. Particularly,
the ratio of M2 macrophages to M1 macrophages corresponds with tumor growth. In this study, we
present iron oxide nanoparticles with carboxylic acid combined with LOX that enhance antitumor
efficacy as a synergistic effect on the repolarization of tumor-supportive M2 macrophages to tumor-
suppressive M1 macrophages in a tumor microenvironment. After M2 macrophages treated with
iron oxide nanoparticles were combined with LOX, the ratio of M1 macrophages was significantly
greater than iron oxide nanoparticles alone or with LOX alone. It is concluded that the inhibition
of cancer cell proliferation by ratio of M1 macrophages was observed. This study suggests that the
iron oxide nanoparticles combined with LOX could be potentially used for potentiating immune
checkpoint inhibitor therapies for cancer treatment.

Keywords: macrophage; iron oxide nanoparticles; lactate oxidase; lactate; synergistic effect

1. Introduction

The US Food and Drug Administration (FDA) has approved immune checkpoint
inhibitors (ICIs), which show promise in changing the landscape of drug development for
cancer therapy [1–3]. Furthermore, the efficacy of ICIs may be improved by enhancing
antibody accumulation within targets [4] or generating synergistic immunomodulatory
effects [5]. Tumor or cancer cells derive constituents to promote macrophages to a tumor-
promoting status from a tumor-killing status. Immunotherapeutic approaches enhance T-
cell-mediated immune responses and allow for control over polarization and recruitment of
macrophages, especially to inhibit cancer progression [6,7]. Recent evidence has indicated
that tumor-secreted lactate can promote an oncolytic immune microenvironment within the
tumor [3,8]. Specifically, the extracellular level of lactate in the tumor microenvironment
was shown to be higher than that under normal physiological conditions [8,9]. The tumor
microenvironment typically consists of dynamically produced growth factors, cytokines,
and metabolic product such as lactate. Thus, pH changes associated with lactate affect
not only the immune system but also tumor growth [3,8,10,11]. However, tumor-secreted
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lactate plays a major role in processes other than the tumor microenvironment and immune
cell functions, specifically polarization of tumor-supportive M2 macrophages [3].

Nanomedicine was created from medical applications based on nanotechnology in-
cluding nano-modified viruses/antibodies and biological nano-carriers [5,9,12–15]. Re-
cently, iron oxide nanoparticles have attracted increasing attention in cancer immunother-
apy [5,12,14,15]. Negatively charged iron oxide nanoparticles have exhibited promising
anticancer potential by inducing macrophages from tumor-promoting M2 macrophages
to tumor-suppressing M1 macrophages [12,15]. Due to the glycolytic tumor metabolism,
the tumor microenvironment is usually acidic [3,8,9]. Lactate oxidase (LOX) enzymatically
catalyzes lactate oxidation, producing pyruvate and H2O2. We previously developed a
nanoparticle or hydrogel loaded with LOX [9,16] to provide specific targeting within lactate-
rich tumor microenvironments. Furthermore, the in vitro or in vivo ratio of the M1/M2
macrophage corresponded with cancer cell proliferation or tumor growth [5,16]. Taken
together, these results prompted the design of iron oxide nanoparticles with carboxylic
acid combined with LOX for the repolarization of tumor-supportive M2 macrophages as
reported here (Figure 1). We showed that consuming lactate and increasing cellular uptake
of iron oxide nanoparticles can generate a synergistic effect on the repolarization of the M2
phenotype to the M1 phenotype and was associated with the inhibition of the proliferation
of cancer cells. This approach was successfully verified with iron oxide nanoparticles
combined with LOX at acidic pH conditions to induce lactate-mediated repolarization of
macrophages and subsequently inhibited proliferation of cancer cells.
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Figure 1. Concept of iron oxide nanoparticles combined with lactate oxidase (LOX) for synergistic effects on the distribution
of macrophages. LOX specifically oxidized lactate in the tumor microenvironment, and the cellular uptake of iron oxide
nanoparticles converted tumor-promoting M2 macrophages to tumor-suppressing M1 macrophages.
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2. Results
2.1. Macrophages Incubated with Iron Oxide Nanoparticles Combined with LOX

The cytotoxicity of iron oxide nanoparticles (size: 5, 20, or 30 nm) only or iron oxide
nanoparticles combined with LOX for a single dose or triple dose to M2 macrophages was
determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) assays after culturing for 72 h. Transmission electron microscopy
(TEM) photographs clearly revealed that the iron oxide nanoparticles had a diameter of
approximately 5.0, 21.8, or 32.2 nm (Figure 2).
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Figure 2. TEM images of various iron oxide nanoparticles with carboxylic acid. Bars = 20 nm.

RAW 264.7 cells were given different treatments comprising single or triple doses
over a period of 3 days according to the trials in Figure 3a. No significant toxicity was
observed for the iron oxide nanoparticles alone or iron oxide nanoparticles combined with
LOX incubated with M2 macrophages (Figure 3b). To measure the cellular uptake of iron
oxide nanoparticles in M2 macrophages after treatment under different conditions, we
quantified the treated M2 macrophages with an iron assay kit and observed the cells using
an iron staining kit (Figure 3c). The cellular iron content significantly increased when M2
macrophages were incubated only with 5 nm iron oxide nanoparticles compared with iron
oxide nanoparticles combined with LOX. Notably, the iron content decreased with iron
oxide nanoparticles combined with LOX due to the aggregation (5 nm: 342 ± 93.6 nm;
20 nm: 783.4 ± 44.2 nm; 30 nm: 1165.6 ± 344.6 nm) induced by iron oxide nanoparticles
and LOX. Consistent with the cellular iron content (Figure 3c), obvious cellular uptake of
iron oxide nanoparticles was confirmed by staining with an iron staining kit (Figure 4).
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various treatments at day 3 with staining by an iron staining kit. Bars = 100 μm. 

Figure 3. Characterization of materials: (a) Treatment protocol for M2 macrophages under various
conditions. (b) Cell viability of macrophages after incubation with various treatments. Cell viability
is given as the percentage of viable cells remaining after treatment for 72 h compared with that of the
unexposed cells determined by the MTS assay. The bars represent the mean ± standard deviation
(n = 4). (c) Qualitative determination of iron oxide nanoparticles in treated macrophages incubated
in various conditions. The bars represent the mean ± standard deviation (n = 4).
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2.2. Distribution of Macrophages with Various Treatments

Tumor-secreted lactate regulates immune function by polarizing M2 macrophages and
promotes tumor growth [3,10]. We evaluated whether M2 macrophages can be repolarized
to M1 macrophages when M2 macrophages exposed to LOX alone, iron oxide nanoparticles
(size: 5, 20, or 30 nm), or iron oxide nanoparticles combined with LOX at a single dose
or triple doses under an acidic pH after 3 days of incubation. When macrophages were
incubated with a single dose or triple dose, the percentage of M1 macrophages stained with
inducible nitric oxide synthase (iNOS) incubated with iron oxide nanoparticles combined
with LOX was significantly greater (>3.0- or 2.0-fold) than that stained with iron oxide
nanoparticles alone or LOX alone (Figure 5a–c). Notably, iron oxide nanoparticles combined
with LOX had a synergistic effect on the repolarization of M2 to M1 macrophages, resulting
in a significantly greater effect than that after the incubation of iron oxide nanoparticles
or LOX. These results were confirmed by staining of F4/80+ iNOS+ CD206− for M1 or
F4/80+ iNOS− CD206+s for M2 macrophages (Figure 6) and consistent with the flow
cytometric analysis (Figure 5a–c). Taken together, these results reveal that lactate oxidizes
into pyruvate by using LOX, thus decreasing the maintained M2 macrophages, and cellular
uptake of iron oxide nanoparticles at the optimized particle size of 5 nm improves the
repolarization of M2 to M1 macrophages.
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Figure 5. Repolarization of M2 to M1 macrophages. Percentages of M1 macrophages starting from M2 macrophages treated
with various treatments at single doses (a) and triple doses (b) examined by flow cytometry (* p < 0.005; n.s., not significant,
two-tailed unpaired Student’s t-test). Surface biomarkers, such as F4/80, iNOS, and CD206, were recognized macrophages
of M1 or M2. The bars represent the mean ± standard deviation (n = 4). (c) Representative FACS results of (a,b).
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Figure 6. Distribution of macrophages under different treatments. Representative images of M1
macrophages incubated under various conditions. Bars = 100 µm.

2.3. Apoptosis Induced by M1 Macrophages

Production of NO by M1 macrophages are characterized in bacterial endotoxin
lipopolysaccharide (LPS) [16], and the total NO concentration was examined using the
Griess assay. After M2 macrophages in acidic culture medium under iron oxide nanopar-
ticles (5 nm) alone or iron oxide nanoparticles (5 nm) combined with LOX for a 3 day
incubation period, treated macrophages were exposed to LPS (100 ng mL−1). From the re-
sults shown in Figures 5 and 6, anticancer growth was performed on recombinant HT-1080
fibrosarcoma cells cocultured with M2 macrophages treated with iron oxide nanoparticles
(5 nm) alone or iron oxide nanoparticles (5 nm) combined with LOX (Figure 7, upper panel).
Specifically, HT-1080 cells exposed to M2 macrophage-incubated iron oxide nanoparticles
(5 nm) combined with LOX at pH 6.7 significantly suppressed cancer cell growth (28.4%)
compared to the HT-1080 cells exposed to M2 macrophages treated with iron oxide nanopar-
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ticles (51.2%) or LOX (82.2%) at pH 6.7. As expected, for HT-1080 cells treated with iron
oxide nanoparticles (5 nm) combined with LOX, significant apoptosis signaling indicated
by TUNEL (terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling) assay
was observed compared to iron oxide nanoparticles (5 nm) alone or LOX alone (Figure 7,
lower panel). Taken together, we postulated that M2 macrophages were repolarized to M1
macrophages by treating with iron oxide nanoparticles and consuming lactate by LOX.
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Figure 7. In vitro therapeutic effects. Cell viability of recombinant HT-1080 cells cocultured with
M2 macrophages incubated with various treatments at pH 6.7 for 3 days as determined by MTS
assays (** p < 0.0005, two-tailed unpaired Student’s t-test). The bars represent the mean ± standard
deviation (n = 4). Microscopic images of apoptotic cells stained by TUNEL assay (green fluorescence).
Bars = 100 µm.

3. Discussion

Immunotherapy has shifted the paradigm for clinical cancer treatment; these therapies
are purposed to improve antitumor immune responses [1,17,18]. In various immunothera-
pies, mediators are acted to induce or improve the stimulation of the immune system to
attack cancer cells through natural mechanisms of immunosuppressive [1,17,18]. In clinical
treatment, immunotherapy is considered a promising therapeutic strategy to treat and even
cure several types of cancer. In general, cancer cells or solid tumors show increased levels of
lactate relative to those in normal tissue, a phenomenon termed the Warburg effect [19]. For
example, non-small cell lung cancer (NSCLC) is reprogramed the glucose metabolism and
lactate production for activation of some kinases [3]. However, tumor-secreted lactate acts
a key regulator for the modulation of immune systems in the tumor microenvironment [3].

Macrophages are mainly divided into two phenotypes: M1 (antitumoral, proinflam-
matory) and M2 (protumoral, anti-inflammatory). Specifically, tumor-secreted lactate can
promote the suppressive functions of M2 macrophages and the subsequent tumor growth
(Figure 8) [12,15,16]. Therefore, many studies have been associated with modulation of
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macrophages as an effective treatment to suppress tumor growth. Recently, extensive
evidence has shown that tumor-secreted lactate depletion can improve current therapeu-
tic strategies to restimulate immunosuppressive. Regarding lactate, inhibitors of lactate
dehydrogenase A [20] or monocarboxylate transporters [21,22] have also been tested as a
therapeutic strategy. However, the side effects associated with inhibition of lactate transport
must be considered [21–23].
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Current studies have demonstrated that LOX may target lactate in the tumor microen-
vironment; this enzyme can target lactate and is able to be combined with other therapeutic
treatments [3,9,16,24,25]. Nanoparticles have changed the immunosuppressive environment
in the tumor microenvironment by targeting the major components of the tumor microen-
vironment including macrophages, dendritic cells (DCs), and fibroblasts [5,12,14,15,26–28].
Additionally, iron oxide nanoparticles focus on anticancer immunotherapy by repolarizing
macrophages from the M2 macrophage to the M1 macrophage. Furthermore, iron oxide
nanoparticles specifically rely on the interferon regulatory factor 5 signaling pathway for
polarization of M1 macrophages [15]. More interestingly, negatively charged iron oxide
nanoparticles potently promote the induction of the M1 macrophages [29], and our re-
sults were consistently observed when M2 macrophages were treated with iron oxide
nanoparticles with carboxylic acid of different sizes (5, 20, or 30 nm). In our results, 5 nm
iron oxide nanoparticle uptake in M2 macrophages had a higher level (Figures 3c and 4)
compared with iron oxide nanoparticles of other sizes, leading to a significantly improved
ratio of M1 macrophages (Figures 5 and 6). More importantly, lactate was oxidized by LOX
and subsequently converted to pyruvate. Consistent with our combined treatment, in a
lactate-poor microenvironment, M2 macrophages can be repolarized and converted to M1
macrophages [16]. Overall, our study demonstrated that iron oxide nanoparticles combined
with LOX generated a synergistic effect that reinvigorated the ratio of M1 macrophages
and inhibition of cancer cells (Figure 7) as a potential anticancer therapy. Furthermore,
mimicking the tumor microenvironment regulated RAW 264.7 cells as macrophages, and
the obtained results will be verified by further in vivo experiments.

4. Materials and Methods
4.1. Materials

L-(+)-lactic acid, LOX from Aerococcus viridians, phosphate-buffered saline (PBS,
pH 7.4), 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI), an iron-staining assay,
a nitrite/nitrate assay kit (colorimetric), and Escherichia coli O55:B5 LPS were purchased
from Sigma–Aldrich Co. (St. Louis, MO, USA). The CellTiter 96® AQueous One Solution
Cell Proliferation Assay kit for the MTS assay was purchased from Promega (Madison,
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WI, USA). Recombinant mouse interleukin-4 (IL-4) was purchased from ProSpec-Tany
TechnoGene, Ltd. (Rehovot, IL, USA). An iron assay kit (colorimetric) and anti-iNOS anti-
body were purchased from Abcam (Cambridge, MA, USA). Donkey anti-goat IgG (H+L)
Alexa Fluor 488 and donkey anti-rabbit IgG (H+L) Alexa Fluor 555 were purchased from
Invitrogen, Inc. (Carlsbad, CA, USA). Mouse MMR/CD206 antibody was purchased from
R&D Systems (Minneapolis, MN, USA). The Apoptosis/Necrosis Detection Kit (green) was
purchased from Abcam (Cambridge, UK).

Iron oxide nanoparticles (core size: 5, 20, and 30 nm) with carboxylic acid were
purchased from Ocean NanoTech (San Diego, CA, USA). TEM (JEOL JEM-1400) was
performed on a drop of iron oxide nanoparticles, which was air-dried onto a Formvar-
carbon-coated 200 mesh copper grid. Images were acquired with an accelerating voltage
of 100 kV.

4.2. Cell Culture and Polarization of M2 Macrophages

Mouse RAW 264.7 (ATCC® TIB-71™) M0 macrophages and human HT-1080 fibrosar-
coma cells (ATCC® CCL-121™) were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS), 3.7 g L−1 sodium bicarbonate, 100 µg mL−1

streptomycin, and 100 U mL−1 penicillin. Cells were maintained and cultured in a 37 ◦C
incubator with 5% CO2.

For the polarization of M2 macrophages, M0 macrophages were incubated in culture
medium containing 20 ng mL−1 IL-4 to generate M2 macrophages at pH 7.4 after 24 h of
incubation [16]. Post-incubation, the macrophages were washed with PBS three times and
used for M2 macrophages in subsequent studies at pH 6.7 adjusted by L-lactate (1.0 M).

4.3. Cytotoxicity of Materials

M2 macrophages (7 × 104) were seeded in each of the wells of a 48-well plate and
incubated in culture medium overnight. The M2 macrophages were then exposed to
iron oxide nanoparticles (8.25 µg; 5, 20, or 30 nm) only or iron oxide nanoparticles with
LOX (0.025 units) at a single dose or triple dose for 72 h of incubation. Macrophage
proliferation was evaluated by CellTiter 96® AQueous One Solution cell proliferation assay
system, and the optical density (OD) of formazan at 490 nm was used to determine cell
viability. The reagent contained a tetrazolium compound, 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, and inner salt (MTS) and the
reduction of MTS achieved by untreated cells was set at 100%, and that of test cells was
expressed as a percentage of untreated cells [30,31]. Alternatively, the treated macrophages
were quantized by an iron assay kit and observed using an iron-staining kit as described
by the manufacturer.

4.4. Macrophages under Iron Oxide Nanoparticles Combined with LOX

M2 macrophages (7 × 104) were seeded in each well of a 48-well plate and incubated
in culture medium overnight. M2 macrophages were incubated with LOX (0.025 unit),
8.25 µg iron oxide nanoparticles (8.25 µg; 5, 20, or 30 nm) only or iron oxide nanoparticles
with LOX (0.025 unit) at a single dose or triple dose at pH 6.7 for a 3 day incubation.
Additionally, LPS induced the iNOS expression in M1 macrophages and led to increased
pulmonary NO production [16]. The 9 × 104 treated macrophages were cocultured with
3 × 104 HT-1080 cells in each well of a 24-well plate and incubated in culture medium.
Then, 100 ng mL−1 LPS was added to the culture medium for 24 h of incubation and
evaluated by an in vitro assay or Apoptosis/Necrosis Detection Kit (green).

4.5. Macrophage Staining Assay

To evaluate the specificity of an M1 or M2 macrophage, we assessed surface markers
such as iNOS and CD206. Macrophages were fixed with 4% paraformaldehyde (PFA), and
immunostaining was performed using an anti-iNOS antibody and a mouse MMR/CD206
antibody specific to the markers iNOS and CD206 to observe the distribution of M1 or
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M2 macrophages. Immunofluorescence analysis of donkey anti-rabbit IgG (H+L) highly
cross-adsorbed secondary antibody and Alexa Fluor 555 for iNOS or donkey anti-goat IgG
(H+L) cross-adsorbed secondary antibody, Alexa Fluor 488 for CD206 was performed, and
treated macrophages were observed with a confocal microscope and, subsequently, the
nuclei of macrophages were stained with DAPI.

The immunostained macrophages were measured by flow cytometry (Beckman Coul-
ter, Fullerton, CA, USA), and cells were appropriately gated by forward and side scatter, and
10,000 events per sample were collected. The negative control was used as untreated macrophages.

5. Conclusions

Macrophages are involved in mechanisms of immunosuppressive or anti-inflammatory
in the tumor microenvironment. Our work based on iron oxide nanoparticles combined
with LOX demonstrated that tumor-secreted lactate oxidation and cellular uptake of iron
oxide nanoparticles repolarized protumor M2 macrophages to antitumor M1 macrophages.
This study also suggests that iron oxide nanoparticles combined with LOX could generate
a synergistic effect on regulating the distribution of macrophages in the tumor microenvi-
ronment with potential utility in potentiating ICI therapies.
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