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Abstract

Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based com-
parative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number vari-
ations in health and disease. Technological improvements to achieve a higher resolution have resulted in the generation
of additional microarray platforms encompassing larger numbers of shorter DNA targets (oligonucleotides). Here, we
present a novel method to estimate the ability of a microarray to detect genomic copy-number variations of different
sizes and types (i.e. deletions or duplications). We applied our method, which is based on statistical power analysis, to
four widely used high-density genomic microarray platforms. By doing so, we found that the high-density oligonucleotide
platforms are superior to the BAC platform for the genome-wide detection of copy-number variations smaller than 1 Mb.
The capacity to reliably detect single copy-number variations below 100 kb, however, appeared to be limited for all plat-
forms tested. In addition, our analysis revealed an unexpected platform-dependent difference in sensitivity to detect a
single copy-number loss and a single copy-number gain. These analyses provide a first objective insight into the true
capacities and limitations of different genomic microarrays to detect and define DNA copy-number variations.
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1. Introduction

Conceptual and technological developments in molecular
cytogenetic techniques are now enhancing the resolution
power of conventional chromosome analysis from the mega-
base to the kilobase level. Array-based comparative genomic
hybridization (array CGH), i.e. the application of CGH to
an array of genomic fragments such as bacterial artificial
chromosomes (BACs), has been the method of choice for
genome-wide copy-number analysis in the last few years.1,2

The density of the various ‘whole-genome’ BAC clone
sets commonly used varies from one clone per Mb3–5 to an
overlapping clone set covering the entire human genome
with one clone per 100 kb.6,7 Array CGH has rapidly
become an important genome analysis tool in cancer
research,8–10 in the identification of novel microdeletion
syndromes and gene identification studies,11–15 in the diag-
nosis of patients with congenital malformation syndromes
and/or unexplained mental retardation,5,16,17 and in prena-
tal diagnosis.18,19 Although disease-causing genomic altera-
tions are thought to be rare, recent work using high-
resolution microarray approaches has indicated that
genomic copy-number variation without immediate pheno-
typic consequences is widespread throughout the entire
human genome.17,20–23
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Most currently used genomic copy-number profiling
microarrays are produced in academic settings, and the
resolution of these microarrays varies depending on the
type and number of genomic targets selected, the proto-
cols used, and the data-analysis tools employed. Only
recently, private enterprises embarked on this novel
microarray application, and several companies are now
offering microarrays for genomic copy-number profiling.
Most of these microarrays encompass 25–85-mer oligonu-
cleotides targeting random genomic sequences24–26 or
single-nucleotide polymorphisms (SNPs).27–31 The theor-
etical advantages of using such commercial platforms are
numerous: (1) they provide a higher genome coverage
than most microarrays generated in academia, (2) they
can be produced in large quantities according to industrial
quality standards, (3) they are available to all researchers,
also those without dedicated microarray facilities, and (4)
their widespread use will generate large comparable data
sets that facilitate data comparison and cooperation
between research groups. At present, however, little is
known about the actual performance of these platforms,
and first-time users will find limited guidance on which
platform is most appropriate for their applications and
requirements. Although various platform comparison
studies have been reported for microarray-based
expression profiling,32–35 as yet a comprehensive platform
comparison for genomic profiling, including an adequate
statistical power analysis, has not been reported.

A prerequisite for a performance comparison of genomic
microarrays is the availability of a comprehensive method
that accounts for specific requirements associated with
genomic microarray data such as adjacency of probes
and asymmetric y-axis measurements associated with del-
etions and/or duplications. Here, we introduce a method
that adheres to these requirements, and that is based on
statistical power calculations to compare the practical res-
olution of individual genomic microarray experiments
obtained using different microarray platforms. The
method is validated using simulated data sets as well as
data sets obtained using our in-house tiling-resolution
BAC arrays and commercially available 100k SNP, 250k
SNP, and 385k oligonucleotide microarray platforms.
From our results, we conclude that the increased probe
density of the commercially available microarray plat-
forms, although accompanied by a lower signal-to-noise
ratio, results in a higher genome-wide copy-number detec-
tion resolution.

2. Methods

2.1. Patients and healthy donors
The platform comparison was performed using DNA

from 13 patients harboring submicroscopic genomic
copy-number variations previously identified by tiling-
resolution array CGH.17 Genomic DNA was isolated

from blood leukocytes by standard procedures. Male and
female reference DNA pools previously used for tiling-res-
olution BAC array analysis were also used for hybridiz-
ation to the NimbleGen oligonucleotide microarrays.
These reference pools contain equal amounts of genomic
DNA from 10 healthy donors (males or females). For
the Affymetrix SNP oligonucleotide microarray exper-
iments, using single color hybridizations, two male and
two female reference pools were used for normalization
purposes.

2.2. Tiling-resolution BAC array CGH
Previously, we reported an array CGH study17 using a

tiling-resolution microarray encompassing 32,447 overlap-
ping BAC clones selected to cover the entire human
genome.6,7 Hundred patients with unexplained mental
retardation were hybridized in duplicate against a sex-
mismatched reference pool to this microarray. On the
basis of these hybridizations, we selected 13 patients
with validated submicroscopic copy-number variations,
both single copy-number gains and losses, for hybridiz-
ation to the other platforms.

2.3. Affymetrix 100k SNP arrays
The Affymetrix 100k SNP array contains 25-mer oligo-

nucleotides representing a total of 116,204 SNPs, distrib-
uted over two microarrays. Array experiments were
performed according to protocols provided by the manu-
facturer (Affymetrix, Inc., Santa Clara, CA) as described
previously.27 Copy-number estimations were determined
using the recently published software package CNAG
(Copy Number Analyzer for Affymetrix GeneChip
Mapping 100k arrays28). This algorithm strongly
improves the signal-to-noise ratios of the copy-number
data by (1) accounting for the length and GC content
of the polymerase chain reaction products using quadratic
regressions and by (2) normalizing the patient samples to
reference samples run in parallel.

2.4. Affymetrix 250k SNP arrays
Affymetrix provides two microarrays each containing

approximately 250,000 SNPs, and together forming the
500k assay. For this study, we selected the Nsp 250k
SNP array, which contains 262,264 25-mer oligonucleo-
tides. For the 100k SNP array experiments, the 250k
SNP array experiments were performed according to pro-
tocols provided by the manufacturer (Affymetrix, Inc.,
Santa Clara, CA). Copy-number estimates were deter-
mined using the CNAG software package,28 which was
recently updated for the analysis of these arrays (version
2.0).

2.5. NimbleGen 385k oligonucleotide arrays
The NimbleGen whole genome oligonucleotide microar-

ray contains 386,165 isothermal probes (45–75-mer),
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spanning the human genome at a mean probe spacing of
7 kb. Isothermal oligonucleotide design, array fabrication,
DNA labeling, CGH experiments, data normalization,
and log2(Cy3/Cy5) copy-number ratio calculations were
performed by NimbleGen according to published
procedures.26

2.6. Hidden Markov analysis
The normalized ratios were analyzed for loss and gain

of regions by a standard Hidden Markov Model (HMM),
which was optimized for each of the microarray platforms
in order to maximize the detection of the known validated
copy-number aberrations, while minimizing the false-posi-
tive rate, as described before.17

2.7. Statistical power analysis
For each of the four microarray platforms, we per-

formed a statistical power analysis of adjacent targets sur-
rounding a specific locus on a chromosome. This revealed
the relationship between the genomic length of the copy-
number variation, the noise contained in measurements,
and, ultimately, the false-positive and false-negative
detection rates for the microarray, and thus, provided a
platform-independent discrimination statistic describing
the ability of a microarray to detect single copy-number
variations.

The statistical power analysis comprises the following
steps:

(1) Determination of the distribution of the noise,
(2) Establishment of estimates for significant changes

and the variance of noise within each experiment,
(3) Calculation of the number of data points required for

detection of copy-number variations, and
(4) Determination of the resolution of a microarray

platform.

2.7.1. Determination of the distribution of the
noise The method assumes a normal distribution of
noise within the copy-number data. We used a x2 good-
ness-of-fit test,36 using a p-value of less than 0.05, and
could not reject this hypothesis, thereby justifying the
application of the method used for calculating the statisti-
cal power.

2.7.2. Establishment of estimates for significant
changes and variance of noise To provide an estimation
of a single copy-number loss, the mean log2 ratio is calcu-
lated over all targets on the X chromosome,37 excluding
those mapped to the pseudo-autosomal regions. This pro-
vides an estimate of a significant change to be used in the
power calculations, and requires that experiments used for
the comparison are performed on the basis of sex mis-
match (either in silico or in vitro, depending on the micro-
array platform used). From the estimate of a single loss,

an estimate of a single gain (m̂Gain) is calculated via

m̂Gain ¼
Chr X

Chr Xtheoretical
log2

3
2

ð1Þ

where Chr X is the mean log2 ratio of targets located on
chromosome X and Chr Xtheoretical the theoretical ratio
of a single loss (see Supplementary Data). The standard
deviation of all log2 ratios from autosomal targets, exclud-
ing those known to be involved in validated copy-number
variations, is used as an estimate of the variance.

2.7.3. Calculation of the number of data points
required for detection of genomic copy-number
variations We calculate the number of data points
required to detect a genuine single copy-number variation
(as estimated by the mean chromosome X values) given
the autosomal standard deviation, with a confidence
factor determined by the desired statistical power. This
is done by determining the number of data points
required to lie in the outer regions of the distribution of
the copy-number ratios for it to be deemed unusual in
terms of the expected (normal) distribution. We use the
non-central T cumulative distribution in order to deter-
mine the number of sample points required to satisfy
the desired power given estimates of significant changes
and an estimate of the variance.38,39

In this study, we chose to use a power of 95% and a two-
sided t-test, given the required significance level a. Note
that the statistical power (1 2 b) is the probability that
a true aberration of n adjacent probes is detected (Type
II error). The significance level a is the probability of
observing a particular deviation between the mean of
the n adjacent probes and the rest of the probes on the
chromosome, when no actual copy-number variation is
present (Type I error). Hence, we aim to solve the follow-
ing series of equations for the desired power (1 2 b) ¼
0.95. We first define the non-centrality parameter as

nĉp ¼ m̂1 � m̂0

ŝ=
ffiffiffi
n
p ð2Þ

where m̂1 is the estimate of the ratio pertaining to the
copy-number variation, m̂0 the mean of the autosomal
ratios, ŝ the standard deviation, estimated using the auto-
somal targets, and n the number of adjacent targets per
aberration. We define two cut-offs, via the inverse of the
Student’s T cumulative (central) distribution function
(http://mathworld.wolfram.com/NoncentralStudentst-
Distribution.html), T21, using the desired power, and
the inverse of the power. The cut-offs C1 and C2 are
defined as

C1 ¼ T�1 a

2
; df

� �
; C2 ¼ T�1 1� a

2
; df

� �
ð3Þ
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where the degrees of freedom df ¼ n 2 1 and a is the
required significance level. The power is then calculated
with the non-central cumulative T distribution function
TNC as follows:

power ¼ TNCðC1; df; nĉpÞ þ 1� TNCðC2; df; nĉpÞ ð4Þ

We then find the number of adjacent probes n
[in Equation (2)] required to solve the function power in
order to achieve our desired power.

2.7.4. Determination of the resolution of a microarray
platform To calculate the resolution of a microarray
platform, the outcome of the power analysis is used in
conjunction with the genomic coverage of the platform.
The distribution of the microarray probes throughout
the genome is determined by the size of the gaps
between the microarray targets. For our calculation, we
take into account the uneven genomic distribution of
the microarray targets and assume that copy-number
variations can occur randomly throughout the whole
genome. Next, we create a window with size equal to
the number of data points required to detect a copy-
number variation, as given by the power calculation,
and determine the number of instances within the
genome where the window has a size less than the size
of the variation to be detected. This is compared to the
total possible number of windows that occur within the
genome. By doing so, we create a genome-wide prob-
ability that a copy-number variation with a particular
size independent of its genomic location will be detected
by a microarray platform. We calculated the resolution
for single copy-number variations with genomic sizes
ranging from 10 kb to 1 Mb, separately for gains and
losses.

3. Results

3.1. Study design
In this study, we assessed the capacity of various

genomic microarray platforms to detect submicroscopic
single copy-number variations, including deletions and
duplications. We selected samples from 13 patients in
which we have previously identified and validated copy-
number variations using our in-house produced tiling-res-
olution 32k BAC arrays.17 These samples were hybridized
onto 100k Affymetrix SNP arrays, 250k Affymetrix SNP
arrays, and 385k NimbleGen oligonucleotide arrays. As
an example, Fig. 1 shows the chromosome profile obtained
for the various platforms in a patient with a 0.54-Mb sized
deletion at 9q33.1. We applied a standard HMM algor-
ithm to automatically detect copy-number variations
onto the different platforms. Next, we developed and
tested a novel method based on statistical power analysis

for an objective comparison of the detection resolution of
the different platforms.

3.2. Automatic detection of copy-number aberrations
by HMM

In order to obtain independent information on the per-
formance of the different microarray platforms in identify-
ing submicroscopic copy-number variations, we applied a
single automated HMM algorithm to the experiments per-
formed in this study (see Table 1). The known and vali-
dated copy-number changes were previously identified
on the 32k BAC microarray platform,17 and ranged in
sizes from 230 kb to 8.9 Mb. Samples from 10 patients
were tested on the 385k NimbleGen oligonucleotide
microarray platform, and all of the previously identified
and validated copy-number variations were detected by
the automated HMM algorithm. In contrast, two of the
previously identified and validated copy-number vari-
ations out of the 13 tested were not automatically
detected on the Affymetrix 100k SNP array platform.
One of these was a 350 kb deletion on chromosome
7q11.21 (Patient 5), and the other was a 1.65 Mb deletion
on chromosome 15q24 (Patient 11). The HMM algorithm
correctly detected 10 out of 11 previously identified and
validated copy-number variations on the Affymetrix
250k SNP microarray. Again, the 350 kb deletion on
7q11.21 could not be detected automatically, whereas
the 1.65 Mb deletion on 15q24 was readily detected on
this platform. In addition to the known and validated
copy-number variations, a large number of additional
copy-number variations was detected but not validated.

3.3. Verification of power calculation using simulated
data

In order to verify the power calculation, we created a
step function of a single copy-number loss based on our
model for an aberration and corrupted it with a noise
signal that had a normal distribution to simulate a
single copy-number loss (Supplementary Fig. 1A). The
results of the power analysis on this data set are displayed
in Supplementary Fig. 1B. This analysis shows that a
minimum of four data points with log2 ratios outside
the normal distribution is required for a single copy-
number loss to be detected with the desired power
(95%). Subsequently, a Monte Carlo simulation was
used to test the behavior of the power calculation. We
artificially generated 400 samples of size 4 under the
null hypothesis with a mean of 0, and another 400 with
a mean resembling a loss, which represents the alternate
hypothesis. The results of this analysis are illustrated in
Supplementary Fig. 1C, where the null hypothesis con-
verges to the expected 5% and the alternative hypothesis
to 95%. This analysis shows that the power calculation is
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effective in determining the required data points for the
successful detection of a copy-number variation.

3.4. Power calculation on experimental data
After having verified the power calculation, and having

confirmed that the distribution of the experimental noise
was normal (Supplementary Fig. 2), we applied this
method to the experimental data set described above.
For each sex-mismatched experiment, we calculated the
mean of all unique chromosome X log2 ratios and the

standard deviation of the autosomal log2 ratios to
provide an initial insight into the performance of each
microarray platform and the values to be used in the
power calculations (Table 2). The average log2 ratios of
these chromosome X targets were similar for the BAC
array platform and the Affymetrix SNP array platform
(�0.47), whereas the NimbleGen oligonucleotide plat-
form exhibited a lower average of approximately 0.38.
The average standard deviation of the log2 ratios of
the autosomal targets varied twofold between the differ-
ent microarray platforms. The 32k BAC platform

Figure 1. Detection of known and validated submicroscopic copy-number variations by high-density BAC, SNP, and oligonucleotide arrays.
Individual chromosome plots are shown for Patient 8 (chromosome 9), with the log2 T/R (test-over-reference) values plotted on the y-axis
versus the genomic position on chromosome 9 on the x-axis. Results are shown for the tiling-resolution 32k BAC array (A), the 100k SNP
array (B), the 250k SNP array (C), and the 385k oligonucleotide array (D). A known and validated microdeletion of 0.54 Mb on 9q33.1 is
detected by all four genomic microarray platforms (see black arrow). In addition, a previously undetected microduplication is clearly visible
on the chromosome profile obtained by the 250k SNP array (see grey arrow). This figure also shows the different levels of microarray noise
present for the different microarray platforms.

No. 1] J. Y. Hehir-Kwa et al. 5



exhibited the lowest standard deviation, and the 385k
NimbleGen oligonucleotide platform the highest. In
addition, as all BAC array hybridizations were per-
formed in duplicate, we were able to determine the

influence of replicate analyses on the noise level. As can
be seen in Table 2, the autosomal standard deviation is
reduced by almost 50% after averaging data from two
experiments.

Table 1. Detection of known and validated submicroscopic copy-number variations onto high-density BAC, SNP and oligonucleotide microarrays

Patient Copy number Chromosome Size (Mb) No. of targets in region Average ratio targets in region Detected by HMMa

32k 100k 250k 385k 32k 100k 250k 385k 100k 250k 385k
BACs SNPs SNPs Oligos BACs SNPs SNPs Oligos SNPs SNPs Oligos

1 Loss 1 3.93 42 125 230 n.d. 20.41 20.51 20.45 n.d. Yes Yes n.d.

2 Gain 1 2.12 21 50 120 176 0.44 0.49 0.77 0.59 Yes Yes Yes

3 Loss 2 0.92 11 47 64 127 20.59 20.43 20.52 20.45 Yes Yes Yes

4 Gain 5 1.24 16 40 n.d. n.d. 0.29 0.30 n.d. n.d. Yes n.d. n.d.

5 Loss 7 0.35 18 1 13 30 20.23 20.52 20.40 20.24 No No Yes

6 Gain 9 0.23 5 23 38 40 0.35 0.30 0.47 0.27 Yes Yes Yes

7 Loss 9 2.85 30 145 320 n.d. 20.39 20.45 20.44 n.d. Yes Yes n.d.

8 Loss 9 0.54 6 22 70 88 20.50 20.44 20.44 20.37 Yes Yes Yes

9 Loss 11 9.15 80 551 923 1299 20.35 20.47 20.47 20.50 Yes Yes Yes

10 Gain 12 2.30 39 69 n.d. 353 0.32 0.26 n.d. 0.23 Yes n.d. Yes

11 Loss 15 1.65 16 4 40 204 20.33 20.36 20.50 20.35 No Yes Yes

12 Gain 17 2.89 28 64 151 420 0.37 0.26 0.46 0.29 Yes Yes Yes

12 Gain 17 1.43 14 18 91 198 0.36 0.19 0.44 0.31 Yes Yes Yes

12 Gain 17 2.88 30 205 279 442 0.41 0.29 0.45 0.28 Yes Yes Yes

12 Gain 17 1.48 24 21 64 189 0.33 0.26 0.52 0.31 Yes Yes Yes

13 Loss 22 2.66 35 36 130 306 20.41 20.47 20.41 20.23 Yes Yes Yes

aAll copy-number variations were initially detected by an automated HMM on the 32k BAC array.

Table 2. Signal-to-noise parameters of the four genomic copy-number profiling platforms

Patient 32k BAC array Duplicate 32k BAC array Affymetrix 100k SNP
array

Affymetrix 250k SNP
array

NimbleGen 385k
Oligonucleotide array

Mean Xa Auto STDb Auto STD Mean X Auto STD Mean X Auto STD Mean X Auto STD

1 0.47 0.10 0.06 0.48 0.15 0.49 0.18 n.d. n.d.

2 0.49 0.14 0.08 0.48 0.13 0.48 0.14 0.42 0.20

3 0.49 0.12 0.07 0.48 0.16 0.45 0.16 0.35 0.25

4 0.42 0.13 0.07 0.47 0.14 n.d. n.d. n.d. n.d.

5 0.40 0.09 0.05 0.45 0.16 0.46 0.18 0.29 0.24

6 0.45 0.10 0.05 0.47 0.17 0.43 0.13 0.38 0.28

7 0.46 0.12 0.06 0.48 0.14 0.43 0.13 n.d. n.d.

8 0.47 0.11 0.06 0.46 0.13 0.42 0.15 0.35 0.24

9 0.40 0.12 0.06 0.48 0.24 0.47 0.16 0.51 0.21

10 0.49 0.11 0.07 0.48 0.13 n.d. n.d. 0.39 0.22

11 0.43 0.09 0.06 0.45 0.16 0.49 0.14 0.41 0.25

12 0.56 0.13 0.07 0.48 0.16 0.44 0.14 0.43 0.21

13 0.50 0.10 0.06 0.48 0.17 0.48 0.17 0.32 0.20

Average 0.46 0.11 0.06 0.47 0.16 0.46 0.15 0.38 0.23

aMean log2-transformed test-over-reference ratio of the X chromosome, excluding the pseudo-autosomal regions, obtained from cal-
culations in sex-mismatched hybridization experiments. For the BAC and the NimbleGen platforms, data were obtained within each
two-color experiment, for the Affymetrix SNP platform, data were combined in silico from different one-color experiments. For this
analysis, four reference pool samples (two of each sex) were processed in parallel with the patient samples.
bStandard deviation calculated over the log2-transformed test-over-reference ratios for all autosomal targets, excluding the genomic
regions known to harbor submicroscopic copy-number variations.
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Next, the statistical power analysis was used to deter-
mine the minimum number of adjacently located autoso-
mal targets required for the reliable detection of a single
copy-number loss or gain (Table 3, Supplementary
Table 1). An average of four adjacently located BAC
clones showing a single copy-number loss provided 95%
confidence of representing a true copy-number variation.
A similar power for detection of a copy-number loss
required, on average, five consecutive SNPs on the 100k
platform, four SNPs on the 250k platform, and eight con-
secutive oligonucleotides on the 385k platform. The
reliable detection of a single copy-number gain required
more consecutive targets, as could be expected based on
the theoretical log2 ratio difference between a single
copy-number loss (21) and gain (0.66). For the 32k
BAC and for the 100k and 250k SNP array platforms,
this increase was moderate, with one to three additional
targets being required, respectively. For the 385k oligonu-
cleotide platform, this increase was considerable, i.e. at
least twice as many targets were required for reliable
detection of a single copy-number gain (Fig. 2).

These power analysis results can be translated into
genome-wide copy-number detection resolutions by com-
bining these results with the genomic coverage of the
different microarray platforms (Table 4, Supplementary
Table 2, Supplementary Fig. 3). This resulted for each
platform in a probability to detect a single copy-number
gain or a loss throughout the genome with a size range
from 10 kb to 1 Mb and a desired power of 95%. From
this analysis, it can be concluded that (1) high-density oli-
gonucleotide/SNP-based platforms are significantly
better in detecting copy-number variations below 1 Mb

than the BAC array platform, (2) copy-number variations
smaller than 100 kb remain difficult to detect even onto
these high-density platforms, despite an average target
spacing of 7, 12, or 30 kb, and (3) small-sized single
copy-number gains are much more difficult to detect
than single copy-number losses of the same size.

4. Discussion

We have developed a novel method for establishing the
practical resolution of a genomic microarray to detect
copy-number variation and applied this method, based
on statistical power analysis, to three commercially avail-
able microarray platforms and to our in-house BAC
microarray platform. For each platform, we calculated
the number of adjacent targets required to reliably
detect a single copy-number variation (gain or loss),
given the required minimum rate of false-positives and
false-negatives. On the basis of this calculation, we deter-
mined the probability of detecting copy-number vari-
ations of different sizes onto a genomic microarray,
taking into account the number and genomic position of
all targets on the microarray platform used. This
unbiased resolution statistic is an important performance
measure for genomic microarray platforms as well as for
individual microarray experiments, which had not been
established for genomic microarrays before. Previously,
the resolution of a genomic microarray could only be
judged by the mean spacing of targets, a measure that
solely reflects the overall genomic coverage. The results
of our power analysis, however, clearly demonstrate that

Table 3. Result of the statistical power analysis: How many consecutive targets are required to detect a single copy-number loss or gain?

Patient 32k BAC array Duplicate 32k
BAC array

Affymetrix 100k
SNP array

Affymetrix 250k
SNP array

NimbleGen 385k
Oligonucleotide

array

Loss Gain Loss Gain Loss Gain Loss Gain Loss Gain

1 4 4 3 3 4 6 5 7 n.d. n.d.

2 4 11 3 4 4 6 4 6 5 13

3 4 5 3 3 4 7 5 7 10 19

4 4 6 3 4 4 6 n.d. n.d. n.d. n.d.

5 4 5 3 3 5 8 5 8 11 31

6 3 5 3 3 5 8 4 6 9 27

7 4 5 3 3 4 6 4 6 n.d. n.d.

8 4 5 3 3 4 6 5 8 8 24

9 4 5 3 4 7 9 4 7 5 8

10 3 5 3 4 4 6 n.d. n.d. 7 14

11 3 5 3 4 5 7 4 6 7 18

12 3 5 3 4 5 8 4 5 5 16

13 3 4 3 4 5 7 4 7 9 14

Average 4 5 3 4 5 7 4 7 8 18

For this analysis, we used a power of 95%.

No. 1] J. Y. Hehir-Kwa et al. 7



the level of noise and the sensitivity of copy-number
measurements co-determine the practical resolution. In
addition, our analysis revealed an unexpected platform-
dependent difference in sensitivity to detect a single
copy-number loss and a single copy-number gain.
Accurate performance measures are important for
researchers to gage the sensitivity and specificity of indi-
vidual experiments or different platforms. Also, in a diag-
nostic setting, where microarray-based genome profiling
is rapidly being introduced,17,30 it will be essential to
have a robust estimate of the practical resolution of the
genome-wide scan.

Several platform comparisons have been performed for
gene expression microarrays.32–35 The statistical
methods described in these studies, however, cannot be
used for genomic microarrays as they do not account
for various intrinsic aspects of genomic microarrays
such as the adjacency of targets and the difference
between detecting a single copy-number loss and a

single copy-number gain. Several statistical methods
have been developed for different aspects of genomic
microarray analysis, such as preprocessing (normaliza-
tion17,28), automatic detection of copy-number vari-
ations,40,41 and the analysis of Type I errors across
genomic microarrays obtained from multiple experiments
and samples.42 Here, we report on a resolution statistic for
genomic microarrays that uses an approach based on
hypothesis testing and statistical power calculations.
The method is based on the following variables: (1) the
genomic coverage of the platform, (2) an estimate of the
noise in the microarray experiment (the standard devi-
ation of the autosomal targets), (3) an estimate of a
single copy-number loss (ratio of the chromosome X
unique regions of sex-mismatch experiments),37 and (4)
the desired statistical power. The method requires a
normal distribution of the noise, which was confirmed
by a x2-test, thereby allowing the use of the T distri-
butions. We validated our method using a Monte Carlo

Figure 2. Result of the power analysis of the four genomic microarray platforms for detection of a single copy-number gain or loss contained by
different numbers of consecutive targets. The resulting power for a single copy-number gain (dotted) and a single copy-number loss (line) are
displayed for the 32k BAC array platform (A), the 100k SNP array (B), the 250k SNP array (C), and 385k oligonucleotide array platform
(D). The increase in number of targets has a varying impact on the resulting power across the four different microarray platforms. In
addition, the number of consecutive targets required to detect single copy-number gains differs considerably from the number of targets
needed to detect a single copy-number loss, and this difference appears to be platform-dependent.

Table 4. Probability to detect a single copy-number gain or loss with different genomic sizes onto the four platforms

32k BAC array Affymetrix 100k SNP
array

Affymetrix 250k SNP
array

NimbleGen 385k
Oligonucleotide array

Loss Gain Loss Gain Loss Gain Loss Gain

10 kb 0.00 0.00 0.03 0.01 0.12 0.02 0.00 0.00

50 kb 0.01 0.00 0.28 0.14 0.68 0.38 0.28 0.00

100 kb 0.02 0.01 0.56 0.39 0.88 0.75 0.94 0.01

200 kb 0.11 0.05 0.81 0.71 0.94 0.91 0.95 0.93

300 kb 0.32 0.16 0.88 0.83 0.95 0.94 0.95 0.94

400 kb 0.60 0.36 0.91 0.88 0.95 0.94 0.95 0.94

500 kb 0.83 0.60 0.93 0.91 0.95 0.95 0.95 0.95

1 Mb 0.95 0.95 0.94 0.94 0.95 0.95 0.95 0.95

This table combines the results from Table 3 with those of Supplementary Table 2. For this analysis, we used a power of 95%.
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technique to simulate the Type I and Type II detection
errors for a single copy-number loss, requiring a statistical
power of 95%. These simulations were in agreement with
the calculated Type I and Type II errors resulting from a
two-sided t-test. The calculations yielded the minimal
number of required adjacent targets at each locus in
order to detect a single copy-number variation, taking
into account the required statistical power.36,43 By com-
bining the genomic location of targets with the minimally
required sample size, we obtained an objective genome-
wide resolution statistic.

We used our method to characterize the detection per-
formance of the four genomic microarray platforms using
experimental data from 13 samples with submicroscopic
copy-number variations hybridized to the different plat-
forms. Automatic copy-number analyses detected the
large majority of known submicroscopic copy-number
variations on all genomic microarray platforms. Two
genomic variations were not detected by the 100k SNP
array platform, due to poor SNP coverage for these
regions, a problem reported also by others44 (see also
Supplementary Fig. 3). This can be reduced by simply
adding more targets for these regions. Indeed, one of the
two variations was identified automatically by the 250k
SNP array. This analysis also revealed considerable and
reproducible differences in signal-to-noise ratios between
the different platforms. Signal-to-noise ratios were
highest for the BAC array platform, which may be due
to a more robust hybridization performance of larger
genomic fragments as compared to the smaller targets
used for the other platforms. The Affymetrix SNP
arrays containing only 25-mers, however, showed signal-
to-noise ratios which were only slightly lower than the
BAC array platform after data normalization using the
CNAG package.28 It should be noted that no such data
preprocessing was performed for the NimbleGen oligonu-
cleotide platform which displayed the lowest signal-to-
noise ratios. This may indicate that preprocessing of the
data can have a significant effect on the detection resol-
ution of an individual genomic microarray experiment
and argues for a significant effort to be made in this
field of genomic microarray data analysis.45 In addition,
the noise in a genomic microarray experiment can be sig-
nificantly reduced using replicate analyses, as was shown
for the BAC array platform.

The statistical power analysis indicated that, on
average, four consecutive BACs are required for the
reliable detection of a single copy-number loss, five for
the 100k SNP array platform, four for the 250k SNP
array platform, and eight consecutive oligonucleotide
probes for the NimbleGen 385k oligonucleotide platform.
These numbers are markedly different for the detection of
single copy-number gains (see Fig. 2). This is caused by
the fact that the theoretical ratio of a single copy-
number gain (three vs. two copies) is much closer to the
random noise level than a single copy-number loss (one

vs. two copies). Therefore, it is relatively difficult to dis-
criminate between a true copy-number gain and random
experimental noise. This poses a serious problem for
those platforms that display a high noise level. The esti-
mate for a single copy-number loss on the NimbleGen oli-
gonucleotide platform is 20.38 and that for a single copy-
number gain is 0.22, within one standard deviation of the
mean (0.23 for this platform, see Table 2 and
Supplementary Table 1). As a consequence, reliable
detection of a single copy-number gain on this platform
requires 10 consecutive oligonucleotides more (18) than
detection of a single copy-number loss (8). In contrast,
the detection of a single copy-number gain on the BAC
array platform with the lowest noise level requires only
one consecutive clone more (5) than that of a single
copy-number loss (4). These results demonstrate the
impact of the different detection limits regarding single
losses and gains, resulting in more targets being required
in the latter case.46 It is important to account for this
asymmetric detection limit caused by the different
signal-to-noise ratios associated with gains and losses.

The commercially available microarrays contain 3 to 12
times as many targets as our tiling-resolution BAC micro-
array, and this can compensate for the lower signal-to-
nose level obtained on these platforms. In addition, the
targets on these microarrays are much smaller in size as
compared to BAC clones with an average insert size of
170 kb, thereby theoretically allowing the detection of
aberrations below 100 kb. Table 4 shows the probability
of detecting a single copy-number gain or loss with differ-
ent genomic sizes onto the four platforms. This table
clearly shows that the commercial platforms outperform
the BAC array platform for the detection of aberrations
below 1 Mb in size. The Affymetrix 250k SNP array
appeared most sensitive for the detection of copy-
number variations below the 100-kb level, especially for
copy-number gains. However, even on this platform, the
probability of detecting a single copy-number gain with
a genomic size of 50 kb was only 38% (68% for a single
copy-number loss). A similar analysis was performed in
silico for the 500k SNP array platform by assuming that
the 250k Sty array shows a similar sensitivity and noise
distribution as the 250k Nsp array used in this study.
This calculation indicated for the 500k SNP array that
the probability of detecting a single copy-number loss or
gain with a genomic size of 50 kb was 87 and 72%,
respectively (Supplementary Table 2). This shows that
even these high-density platforms will have significant dif-
ficulties in detecting single copy-number variations
smaller than 100 kb. As stated above, the use of replicate
measurements and/or improvements in data preproces-
sing can significantly improve the sensitivity of the differ-
ent genomic microarray platforms.

Next to performance, many other factors, including the
availability and consistency in quality of microarrays over
time, the amount and quality of input DNA required, the
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price, and the access to a microarray facility or service
company, may affect the choice for a certain microarray
platform. An important advantage of using a widely
available commercial platform is that it facilitates data
exchange between research groups. In addition, the pro-
duction of arrays containing more than a hundred thou-
sand targets is not practically achievable for academic
groups, especially since most currently available microar-
ray spotters have a practical limitation of �60,000 spots
per slide. An important bonus of using SNP arrays is
that it allows genotyping together with CGH. This pro-
vides additional information such as copy-number
neutral loss-of-heterozygosity. Initial SNP selection
against regions with a high frequency of copy-number
variation in the population, however, has recently been
shown to impact the detection of this specific form of
copy-number variation on these platforms.44 Besides
Affymetrix and NimbleGen, companies such as Agilent
and Illumina have also developed high-density genomic
microarrays that can be used for CGH applications.24,31

In conclusion, we present a straightforward statistical
method for establishing the practical resolution of an
individual genomic microarray experiment. Application
of this method to different genomic microarray plat-
forms clearly shows that these platforms vary in their
capacity to reliably detect copy-number variations of
different sizes and different types. This should be
taken into account for estimating the practical reso-
lution of a platform to detect genomic copy-number
variations.
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