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Abstract: Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut
microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China
has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm
animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing
digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising
antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth
performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and
maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid
(BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological
functions and their applications in poultry nutrition. The research findings about BA, CA and their
salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge
gaps of the scientific community and may be of great interest for poultry nutritionists, researchers
and feed manufacturers about these two weak organic acids and their effects on intestinal health
and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry
products to consumers.

Keywords: butyric acid/salt; citric acid/salt; gut health; intestinal microbiota; poultry nutrition

1. Introduction

Organic acids are weak acids having a carboxylic acid group (R-COOH), intermediates
in the degradation pathways of carbohydrates, amino acids and fats, and are used as
nutritional value and antimicrobial effects in animal feeds [1–3].

The use of organic acids in animal feeds started many years ago due to the ban on
the use of antibiotics [4]. They are used as an antibiotic alternative that can alter the
physiology and lead to the death of pathogenic microorganisms in animals, including
poultry [5,6]. Various literatures reveal that antibiotics have better positive effects in
modulating metabolism, improving weight gain, feed efficiency and controlling diseases
in poultry production [7,8]. However, their continued use in animal nutrition developed
antibiotic resistance and drug residues, which resulted in global public health issues and
exacerbating poverty in the 21st century [9–11]. In this regard, organic acids are selected
as a promising feed additive in poultry production due to their ability to maintain gut
barrier cellular integrity, modulate intestinal microbiota, improve digestion and nutrient
absorption rate and contribute to improved production performance [6,12,13]. BA as a short
chain fatty acid (SCFA) and CA as a tricarboxylic acid (TCA) gained considerable attention
as representative organic acids in poultry production. They are used as an energy source of
prime enterocytes [14] or for the bactericidal efficacy against harmful species (for example,
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Escherichia coli) and the enhanced bone mineralization and improved function of gut
microorganisms [15–17]. As organic acids, they are volatile and corrosive in their free forms;
thus, they are commercially produced into salt forms [18–20] to increase palatability and
bioavailability in the gut of birds [21,22]. Previous studies revealed that addition of active
ingredients in salt forms into the diet of monogastric and young ruminants [16,23] could
improve gut microbiota diversity and intestinal health and reduce microbial infections [24].

Each organic acid has its specific ability against pathogenic bacteria. For example,
compared to medium-chain fatty acids (MCFAs), butyrate has a less strong anti-bacterial ef-
fect, although it has been widely used in animal production because of its low price [25–27].
Furthermore, previous studies largely focused on supplementation of blends of organic
acids within short-chain fatty acids (SCFAs) or SCFAs with MCFAs on poultry challenged
with Clostridium perfringens [28], Eimeria spp. [27] and salmonella typhimurium-related dis-
eases [29,30]. A meta-analytic study of organic acids confirmed that blends of two or more
specific organic acids improved performance, immunity and welfare of birds better than
any acid achieved alone [4,8]. For example, Ndelekwute et al. studied the effects of four
different acidifiers on gut performance and found that organic acids could be used in diets
for broilers [31]. However, studies on blends of BA and CA on performance, nutrient diges-
tion, intestinal health and meat quality of birds have not been found. They can be of great
research interest for animal nutritionists and researchers. In addition, both have different
modes of action and commonly increase the acidity of gut digesta and are important to
keep the digestible nutrients under normal physiological conditions. Therefore, this review
briefly summarizes the discovery of BA, CA and their salt forms, molecular structure and
properties, metabolism, biological functions and their applications in poultry nutrition.

2. Discovery, Molecular Structure and Properties of BA and CA

BA, a SCFA with a four-carbon (C4) chain length was discovered by Adolf Lieben
and Antonio Rossi in 1869. The name BA came from the Latin word, butyrum or buturum,
meaning the acid of butter, as it was discovered from rancid butter [32,33]. It has a molecular
formula of C4H8O2 and structural formula of CH3CH2CH2COOH [34]. It has synonyms
called butanoic acid (CH3CH2CH2CO2H), n-butyric acid (a substance that was isolated from
butter in 1869) and n-butanoic acid (International Union of Pure and Applied Chemistry,
IUPAC) [35]. BA has a melting point of −7.9 ◦C, boiling point of 163.5 ◦C [36], molecular
weight of 88.11 g/mol [37] and pKa value of 4.82 [38]. Butyrate and butanoate are also
salts and ester forms of BA, respectively [39]. BA has an unpleasant odor, is a colorless
liquid, and is potentially volatile and soluble in water, ethanol, and ether property [40].
Naturally, BA is synthesized from dietary fibers by anaerobic bacterial fermentation in the
gut of mammals and birds [41,42].

Similarly, CA is a TCA or Krebs cycle acid with a six-carbon (C6) chain length dis-
covered by Swedish chemist Carl Wilhelm Scheele in 1784 by crystallizing it from lemon
juice [43,44]. The name CA came from the Latin word citrus, a tree naturally derived from
citrus fruits and juices [45]. 3-carboxyl and 1-hydroxyl groups present in CA were recog-
nized by Liebig in 1838, and calcium citrate was prepared from CA in 1860 in the United
Kingdom, and in 1880 in France, Germany and the United States of America [46]. It is a
weak organic acid with a chemical formula C6H8O7 and IUPAC name 2-hydroxypropane-
1,2,3-tricarboxylic acid, also known as β-hydroxy-tricarballylic acid [47]. It has a boiling
point of 175 ◦C, melting point of 153 ◦C and density of 1.67 g/cm3 [48] and molar mass
of 192.12 g/mol [49]. In addition, CA has a molecular weight of 210.14 g/mol, gross
energy 10.3 KJ/g [50] and three pKa values (pKa1 = 3.1, pKa2 = 4.7 and pKa3 = 6.4) [51].
It is an odorless, colorless crystal, highly soluble in water, ethanol and a sour taste prop-
erty [52]. CA is normally used as a feed acidifier, flavoring agent and preservative in
foods, beverages, detergents, cosmetics, toiletries and pharmaceuticals [53]. CA is a normal
constituent in human and animal diets [54] and an intermediary substance in oxidative
metabolism [55]. It is quickly metabolized to CO2 and H2O after ingestion. Supplementing
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CA in animal feed is safe and poses no risk to the environment [56]. Recently, the demand
for commercially produced BA and CA acidifiers have increased worldwide [57–59].

3. Metabolism of BA and CA in Poultry

BA, CA and their salt forms play a crucial part in energy metabolism and keep gut
homeostasis and epithelial integrity, participating in immune response, suppressing in-
flammation, and reducing oxidative stress in farm animals, such as poultry and pigs, and
humans [60–66]. When free BA is given orally to poultry, it is rapidly metabolized and
absorbed in the crop’s mucosa in the acidic environment of the gizzard and proventricu-
lus [67]. This results in a higher concentration of BA in the foregut and leads to higher
proteolytic activity of birds [68]. Therefore, protected butyrate is produced and fully
utilized in the colon and cecum, which helps to improve epithelial barrier function, re-
duce inflammation and limit the invasion of pathogenic bacteria [67,69,70]. Butyrate is also
mainly produced from dietary fibers (such as, cereals and grains) to a lesser extent from pro-
teins via bacterial fermentation in the colon of mammals and the cecum of chicken [71–74].
Bacteroidetes and Firmicutes phyla are the most dominant chicken cecum microbiota (80%).
They degrade structural carbohydrates and specific soluble oligosaccharides [69,75] that
escape in the upper part of the digestion process [76,77]. In the cecum of chicken, bac-
terial fermentation coverts dietary fiber (complex polysaccharides) to monosaccharides
and then to pyruvate and acetyl-CoA by pentose phosphate and glycolytic pathways [77].
Butyrate, the main energy source, is formed from acetyl-CoA condensation and a stepwise
reduction of butyryl-CoA by two metabolic pathways [78] (Figure 1). The first pathway,
Butyryl-CoA, an intermediate for the four-step pathway of butyrate production, is trans-
formed to butyryl-phosphate via phosphorylation by the enzyme phospho-transbutyrylase.
Butyryl phosphate is then converted to butyrate by the butyrate kinase enzyme [79,80].
In the second pathway, the enzyme butyryl-CoA: acetate CoA transferase, found in most
gut bacteria families, transfers the acetyl-CoA moiety of butyryl-CoA to external acetate,
leading to the formation of butyrate and acetyl-CoA [81]. Then, butyrate is absorbed in the
gut lumen by enterocytes through two mechanisms as described by [82]. First, through
simple diffusion of the undissociated form [42], which is used for villus growth and cell
turnover. Second, in dissociated form, which is activated by the SCFA transporters such as
monocarboxylate transport isoform 1 (MCT1), a H+ coupled transporter and sodium-linked
monocarboxylate transport 1 (SMCT1). SMCT1 also known as solute carrier family five-
member-eight (SLC5A8), a Na+ coupled transporter found only in the apical membrane of
colonic epithelial cells [83]. Orally given butyrate is more efficient and quickly absorbed
than naturally produced by bacterial fermentation in the cecum of birds [84]. The type of
BA, form and salt or protection structure also affects its absorption rate in the gut. The
addition of soluble fibers in the diet [85] and the addition of exogenous enzymes such as
xylanase, which converts dietary arabinoxylans (main non-starch carbohydrates in wheat)
into xylo-oligosaccharides [86,87], are also the most important strategies to increase BA
availability and absorption in the GIT of birds.

Similarly, CA is the first intermediate metabolic product formed through the TCA
cycle [88] and a crucial element in the metabolic conversion of carbohydrates, fats and
proteins to CO2 and H2O [33]. CA is produced by the reaction of oxaloacetate and acetyl-
coenzyme A to yield citrate through citrate synthase enzyme [89,90]. In the mitochondria,
acetyl-CoA is converted from pyruvate and used for energy production, whereas oxaloac-
etate is produced from pyruvate and CO2 using the enzyme pyruvate carboxylase in the
cytoplasm [91].
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Figure 1. Production pathways and absorption mechanism of butyrate (butyrate metabolism) from dietary fibers in the 
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NADH, FADH2 and ATP [92,93]. Wolffram et al. and Tugnoli et al. summarized the study 
of intestinal absorption of CA from pig proximal jejunum [94,95], which may provide a 
reference for poultry. CA is absorbed via a Na-dependent co-transporter on the apical side 
and metabolized in the enterocyte directly influencing piglet’s intestinal metabolic status. 

Literature from previous human studies also reveals that citrate is absorbed from the 
diet in the small intestine by means of the Na+-dicarboxylate cotransporters (NaDC1 and 
NaDC2) [96–98]. The enterocytes of the small intestine transport citrate out of the cells in 
the intestinal lumen. When CA is taken in by animals, it usually develops into the form of 
CA salts in the body. In general, there are limited findings on CA salts such as citrate (Na 
or K); metabolism in farm animals and human studies can be a baseline for future research 
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4. Biological Functions of BA and CA 
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ium perfringens sp. and other Gram-negative bacteria species are common pathogens 
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undissociated form will enter and dissociate into butyrate (CH3CH2CH2COO−) and release 

Figure 1. Production pathways and absorption mechanism of butyrate (butyrate metabolism) from dietary fibers in the
intestine of monogastric animals.

Pyruvate is then transferred into the mitochondria and converted to acetyl-CoA by
releasing CO2. Energy is then released and captured in the TCA cycle in the form of
NADH, FADH2 and ATP [92,93]. Wolffram et al. and Tugnoli et al. summarized the study
of intestinal absorption of CA from pig proximal jejunum [94,95], which may provide a
reference for poultry. CA is absorbed via a Na-dependent co-transporter on the apical side
and metabolized in the enterocyte directly influencing piglet’s intestinal metabolic status.

Literature from previous human studies also reveals that citrate is absorbed from the
diet in the small intestine by means of the Na+-dicarboxylate cotransporters (NaDC1 and
NaDC2) [96–98]. The enterocytes of the small intestine transport citrate out of the cells in
the intestinal lumen. When CA is taken in by animals, it usually develops into the form of
CA salts in the body. In general, there are limited findings on CA salts such as citrate (Na
or K); metabolism in farm animals and human studies can be a baseline for future research
work in poultry.

4. Biological Functions of BA and CA
4.1. Antibacterial Function, Acidity, Nutrient Absorption and Performance

Campylobacter sp., Salmonella Typhimurium, Escherichia coli sp., Shigella sp., Clostrid-
ium perfringens sp. and other Gram-negative bacteria species are common pathogens found
in poultry farming [99,100]. These pathogens damage the villus–crypt units and intestinal
mucosa of birds, lower the surface area for nutrient digestion and absorption, then reduce
overall performance [101,102]. BA and CA are weak organic acids having different antibac-
terial actions, depending on the pKa value of the acids and intestinal pH [38,103] that cause
the death of harmful bacteria in the gut of animals [16,104]. In BA, the undissociated form
will enter and dissociate into butyrate (CH3CH2CH2COO−) and release H+ ions inside
pathogenic bacteria cytoplasm [105,106]. This phenomenon lowers the pH value in the
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stomach/gut of livestock, causing enzymes inactivation [14], destroys DNA replication
abnormity, and then disrupts pathogenic bacteria’s normal metabolic function [107]. Be-
sides, the pathogenic bacteria itself consumes energy by activating proton pumps to fight
against the lowering of the acid in the cell wall, thus inhibiting pathogenic bacteria growth
and colonization in poultry intestines [16], whereas CA’s antibacterial activity creates an
acidic condition in the stomach (pH 3.5–4.0), which prevents the growth of Salmonella,
Escherichia coli and other acid-intolerant Gram-negative bacteria in the GIT of birds [108].
Its mechanism is to work through the activation of proteolytic enzymes and decrease the
risk of sub-clinical infection [17].

Similarly, the acidic environment produced by CA in the stomach promotes lacto-
bacilli growth and prevents pathogenic bacteria multiplications [109]. In addition to the
antibacterial function of BA and CA, various studies examined their effects at different
dose levels, product forms, and comparisons with antibiotics on nutrient digestibility,
growth, and meat yield of poultry. Broilers fed at 0.2% BA significantly increased carcass
weight and breast meat yield versus birds fed the control diet [110]. A supportive study
on sodium butyrate (SB) at 0.6 and 1.2 g/kg in a broiler significantly increased average
daily gain (ADG) (27.6 g) and feed conversion ratio (FCR) (1.8) during 1–21 days [111].
Salt forms of BA are slowly absorbed in the foregut gut (crop, proventriculus and gizzard)
and are more effectively absorbed in the hindgut (duodenum, jejunum, ileum and ceca),
inhibit the growth of pathogenic bacteria, and they improve the overall performance of
birds [22,38]. Song et al. also proved the effects of microencapsulated SB (MESB) orally
infected or uninfected with Eimeria species and Clostridium perfringens at 12 days of age
followed by an oral inoculation with Clostridium perfringens at 16, 17 and 18 d of age on
the growth performance of broilers. Broiler-fed MESB at 800 mg/kg feed challenged with
necrotic enteritis showed higher total body weight, daily gain, and FCR at 35 days [112].
In contrast, insignificant changes observed in growth performances of commercial laying
hens supplemented with 193, 136 and 198 g/t protected SB (PSB), respectively, whereas
the quadratic effect showed maximization of eggshell thickness, percentage and strength
sequentially with addition of PSB at 112 days of age [113]. Similarly, the antimicrobial
effects of n-butyric acid and its derivatives (Monobutyrin (MB) and a mixture of mono-,
di-, and tri-glycerides of BA) at concentrations from 250–7000 mg/kg inoculated either
Salmonella typhimurium or Clostridium perfringens. The results showed that n-butyric acid
and 50% MB could be used to control Salmonella Typhimurium or Clostridium perfringens
in poultry [114].

Similarly, protected calcium butyrate (PCB) feed for broilers was at 0, 0.2, 0.3 and
0.4 g/kg and the results showed chicken-fed PCB at 0.3 g/kg had higher weight gain
(125 g) than 0.2 (80) and 0.4 g/kg (83 g), respectively. Moreover, the apparent overall crude
fat digestibility, apparent nitrogen corrected metabolic energy and FCR, increased during
the entire experimental period [67]. The reason may be that butyrate increases the cell
concentration of Ca2+ pancreatic cells, inhibits the growth of bile salt deconjugating bacteria,
reduces the utilization of nutrients by microorganisms, and improves the digestibility and
absorption rate of nutrients in broilers. Comparatively, Chowdhury et al. examined
the effects of CA at 0.5% and avilamycin at 0.001% on broilers and obtained significant
growth performance parameters versus avilamycin or control diets at 35 days of age [108].
Similar CA findings in laying hens and broilers showed a positive response to stimulate
pepsin activity, support protein digestion, increase apparent digestibility and phosphorus
bioavailability [115,116].

In summary, several studies recommended the importance of BA, CA and their
salts to reduce the load of pathogenic microorganisms in the intestine, activate digestive
enzymes, improve the digestibility and absorption of nutrients, gut microflora function
and performance of birds [105,113,117–119]. Table 1 also summarizes various findings that
support the above summary.
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Table 1. Effects of the different forms of BA and CA on growth, digestibility and carcass yield of broilers.

Forms of BA/CA Broiler Strain and
Trial Duration (Day)

Study Layout and Dosage
Levels

Responses Expressed as a
Percentage of Respective

Controls
Reference

EBA (Buti PEARL)
Male

Cobb broilers for
42 days

Exp. 1: T1: CTR, T2: 100, T3:
200 and T4: 300 g/t EBA

respectively.
Exp. 2: Similar with Exp.1
but added T5:400 and T6:

500 g/t EBA.

EXP 1: ↓ FC at d 0–21. ↑ BWG at
d-35 and d-42.

EXP 2: ↓ FC at T6. ↑ BWG at
d-35 and 42 inT4, T5 and T6.

[120]

MEBA Hubbard classic T1: CTR, T2: 0.25, T3: 0.35
and T4: 0.45 g/kg of MEB.

↑ BWG, FCR and AID with
addition of MEB. [121]

TB and FCSB Ross 308 Broilers for
35 days

T1: CTR, T2: TB (53% BA),
T3: FCSB (24% BA)

At d-25 and 35, ↑BWG at T2
(0.058 kg) and T3 (0.043 kg). At d
9–25, ↑FCR at T2 by 5 points, T3
by 6 points. T2 and T3 ↑ FCR in

all periods by 4 and 5 points
respectively.

[122]

MB and TB Ross 308 male broilers
for 42 days

Exp. 1: T1: CTR, T2: 500, T3:
1000, T4: 2000, T5: 3000 ppm

MB.
Exp. 2: T1: CTR, T2: 5T5M,
T3: 5T5Ms, T4: 5T20M, T5:

5T20Ms

Exp. 1: ↓abdominal fat
deposition. ↑Breast muscle.

Exp. 2: ↑Breast muscle weight in
T2 at 5 weeks of age.

[123]

BA Commercial broilers for
35 days

T1: CTR, T2: Antibiotic
(furazolidone), T3: 0.2%, T4:

0.4%, T5: 0.6% BA

↑ FCR, dressing % and ↓
abdominal fat content [15]

BA, CA Unsexed Ros 308
broiler for d-42

3 × 3 factorial CRD: CP
levels (H, M, L) and 3 dietary

OA (CTR, 2.5 g/kg CA or
BA)

M + L CP ↓ ADG at d 0–14 and d
14–28. CA ↑ ADG at d 0–14.

Both CA + BA ↑ADG, FCR and
carcass yield, ↓ gizzard weight at

d-42.

[117]

CA Vencob broilers for
42 days

T1: CTR, T2: 2.4, T3: 3.2, T4:
4.00 mg/kg CA respectively

↑ FCE better in T3 followed by
T2, T1 and T4. ↑dressing% and

carcass yield in T3.
[124]

CA Ross broiler chicks for
35 days

T1: CTR, T2: 0.25, T3: 0.75%,
T4: 1.25% CA

↑ BWG, FCE, microminerals
digestibility, bone ash and

mineral density, and strength at
T3. ↑ Slaughter weight and

carcass quality with CA
addition.

[125]

CA Male Ross 308 broiler
for 42 days

Exp. 1: T1: CTR, T2: 10, T3:
20, T4: 30 g/kg CA

Exp. 2: T1: CTR, T2: 30, T3:
60 g/kg CA

Exp.1: ↑ ADG, FCR and nutrient
digestibility.

Exp. 2: ↑ ADG and ADFI. ↑
ICPD, AME and tP.

[126]

Apparent ileal digestibility (AID); Apparent metabolizable energy (AME); Average daily feed intake (ADFI); Body weight gain (BWG);
crude protein (CP); control (CTR); encapsulated BA (Buti PEARL) (EBA); fat-coated sodium butyrate (FCSB); High (H); Ileal crude
protein digestibility (ICPD); low (L); medium (M); microencapsulated BA (MEBA); organic acid (OA); Tributyrin (TB); total phosphorus
(tP); 5T5M = 500 ppm TB + 500 ppm MB; 5T5Ms = 500 ppm TB + 500 ppm MB staggered; 5T20M = 500 ppm TB + 2000 ppm MB;
5T20Ms = 500 ppm tributyrin + 2000 ppm MB staggered; increased (↑); decreased (↓).

4.2. Gut Morphology and Barrier Function

Gut morphology, barrier function, and intestinal microbiota community of birds are
vulnerable due to many detrimental environmental or nutritional factors [100], which lead
to leaky gut, dysbiosis, failed intestinal barrier permeability and intestinal inflammation
in poultry [127,128]. The intestinal dysfunction may cause reduced nutrient absorption



Int. J. Mol. Sci. 2021, 22, 10392 7 of 17

surface area and growth performance [129]. Supplementation of BA, CA and their salts are
among the strategies to modulate gut microbiota and keep poultry intestinal health [130].
They can promote intestinal epithelial cell proliferation and increase villus height (VH),
thereby improving the absorptive surface area of the GIT [107]. Broilers supplemented with
coated SB (CSB) at 0, 200, 400, 800 or 1000 mg/kg showed improved intestinal integrity by
stimulating goblet cells in jejunum and increasing ileal VH at 42 days age [22]. The authors
also found that SB at 800 mg/kg can lead to higher total antioxidant capacity (T-AOC)
and reduced malondialdehyde (MDA) content in chicken jejunal mucosa. Likewise, Elnesr
et al. mentioned the inclusion of SB at 0.5 and 1 g/kg increased villus length (VL) at
day 21 (55 and 27%) and day 42 (39 and 18%), respectively, versus the basal diet [106].
Butyrate can also benefit pro-inflammatory cytokines such as tumor necrosis factor α

(TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6) which are known
to increase epithelial cell permeability in young broiler chicks [131]. Zou et al. conducted
confirmatory studies to prove the above statement by supplementing SB at T1: CON,
T2: DSS, T3: 150 mg/kg SB and T4: 300 mg/kg levels in female Chinese Yellow broilers.
The result revealed 300 mg/kg SB significantly reduced IL-6 and IL-1β levels, whereas
it increased IL-10. At the same time, it reduced the lesion score of intestinal bleeding
and increased VH and the total mucosa area of the ileum [132]. These cytokines cause
a homeorhetic response that changes the portioning of nutrients during inflammatory
reactions in the gut of chickens [133]. In other studies, calcium butyrate administration in
the colon of rats and BA in humans was found to have anti-inflammatory effects of treating
inflammatory colon diseases [134,135]. Yan and Ajuwon also confirmed that butyrate
could decrease lipopolysaccharide (LPS) damage on intestinal barrier integrity and tight
junction (TJ) permeability and increased the abundance of claudin-3/4 expression [136].
MESB upregulated TJ protein expressions such as claudin-1, claudin-4, occludin, ZO-1,
mucin-2, chicken liver-expressed antimicrobial peptides (cLEAP-2), and thus reduced
intestinal mucosal barrier damage in Necrotic enteritis infected broilers [112]. A recent
study also reported similar positive results on intestine gene expression in coccidia infected
broilers supplemented with tributyrin (TB) [137]. The better secretion of mucin-2 by goblet
cells prevents the attachment of pathogens to the epithelial tissues by cLEAP-2. Many
researchers studied anti-inflammatory and immune-enhancing properties of SB, which
influences IL-6, IL-8, IFN-γ, TGF-β and IL-1β inflammatory cytokine expression in broilers
and piglets [22,138,139].

CA causes an acidic condition in poultry gut, decreases pathogenic bacteria and
improves intestinal morphology and barrier function [140]. CA administration at 3% and
6% significantly increased VL, crypt depth (CD) and goblet cell numbers in the duodenum,
jejunum and ileum as well as villus weight (VW) and villus length to crypt depth (VL: CD)
ratio in the duodenum of broilers at 42 days of age [141]. A study by Nourmohammadi and
Khosravinia also revealed that 30 and 60 g/kg CA in broiler diets significantly improved
the weight of proventriculus, gizzard, ileum and length of jejunum and ileum as compared
to the control [142]. A similar finding by Khosravinia et al. [126] proved a significant
increment in VL, CD and the number of goblet cells in the small intestine of broilers fed
30 g/kg CA with corn-soybean diets. CA decreases pathogenic bacteria colonization and
limits toxic metabolite production in the GIT of birds [143]. In general, BA and CA with
their salts can be a potential feed additive to maintain gut integrity, improving barrier
function and enhancing poultry productivity (Table 2).

4.3. Immune Function and Antioxidation

Additionally, the crucial role of dietary BA and CAs in enhancing the immune sys-
tem function was mentioned by various authors [16,65,144]. Butyrate also influences the
immune response of animals by affecting immune cell migration, adhesion, proliferation
and differentiation [60,80], and maintains gut homeostasis in chickens [145]. Many studies
suggested that BA as a feed additive for animals decreased oxidative stress and contributed
to better nutrient digestibility and growth rate [4,57,146]. It is proven that supplementa-
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tion of butyrate glyceride can modulate intestinal microflora and serum metabolites to
maintain intestinal metabolism homeostasis in broilers [76]. Recent studies showed linear
inclusion of SB significantly increased the relative weight of the thymus, the foundation
to achieve immune function and antibody titer, which improves the humoral immunity
of broilers, protecting against Newcastle disease (NCD) infection [111,147]. Butyrate has
powerful effects on several colonic mucous functions, such as inflammatory suppression
and carcinogenesis, improving colonic protective barrier elements and reducing oxidative
stress [82]. Orally administered butyrate at 0.25 or 1.25 g/kg doses for 5 days caused
histone protein H2A hyperacetylation in broilers regardless of the dosage level [148].

Similarly, Moquet found that butyrate supplementation can raise the concentration of
digesta butyrate in the gastric, ileum and colon regions. It helped β-oxidation of lipids and
showed a positive immune response in chickens [131]. The reason may be the promotion
of glycolysis and location impact of butyrate on energy metabolism in the GIT of broilers.
Zhou et al. also studied immunomodulatory and protective effects of butyrate on the avian
macrophages in the presence or absence of LPS challenged by salmonella typhimurium. The
results showed that butyrate inhibited IL-1, IL-6, and IFN-γ expression in LPS-stimulated
cells, suggesting that it could be used to regulate inflammation and immune homeostasis
in chickens [29]. This is due to the inhibitory action of butyrate on the activation of nuclear
factor (NF-κB) via IκB-α and IκB-β stabilization.

Furthermore, Mátis et al. examined the effects of orally given sodium butyrate at
0.25 g/kg body weight on insulin signaling of broilers from 20–24 days. Orally butyrate-
treated groups increased glucose plasma and insulin levels versus the control birds [72].
Since oral butyrate administration is more effective and absorbed faster [148], it appears
to act as a bioactive molecule in extrahepatic tissues, causing changes in insulin signaling.
Besides, butyrate also acts as a ligand for GPCRs such as GPR109A, GPR43, and GPR41,
contributing to the immune system, homeostasis, and inflammation by activating anti-
inflammatory signaling cascades [83,149].

CA also enhances the density of lymphocytes, a principal constituent of the bird’s
immune system, to combat antigens in the lymphoid organs and boost non-specific im-
munity [107]. CA at 0.5% improved specific and non-specific immunity against NCD
vaccinated broilers [150]. Furthermore, the inclusion of CA at 0.5% in a corn–soybean basal
starter chicken diet improved tibial ash deposition, lymphocyte organs, and tissue densities
to fight against pathogens [151]. Besides, supportive findings showed that broilers supple-
mented with 30 and 60 g/kg CA increased thymus and bursa fabricius index, respectively,
which correlates with the improved immune response of broilers at 42 days [142]. The
authors concluded that 60 g/kg CA caused acidic stress, severely reduced performance
and disrupted liver function in chickens.

Conversely, Lakshmi and Sunder recommended that 2% CA was the ideal inclusion
level and more effective in stimulating humoral immune response and higher antibody
titers in broilers at 42 days of age [152]. Similarly, previous research findings stated that
the inclusion of CA at 2.5% in the diet of rabbits improved lymphocyte cells, which are
the second most common leukocytes that increase the protection mechanism against non-
specific pathogens to boost immunity [153]. Based on the various research findings, it can
be concluded that the relative increment in the weight of immune organs, inactivation of
NF-κB with dietary supplementation of BA or CA with their derivatives improved immune
responses and health of broilers (Table 2).
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Table 2. The responses of different forms of BA and CA on histomorphology, immune organs and serum biochemistry
of broilers.

Forms of BA/CA Broiler strain and Trial
Duration (Day)

Study Layout and
Dosage Levels

Responses Expressed as a
Percentage of Respective Controls Reference

BA Broiler chicks for
42 days

T1: CTR, T2: 20 mg/kg
BMD, T3: 3 g/kg BA,

T4: 4 g/kg BA

↑ GLUT5, SGLT1 and PepT1
expression. ↑ humoral, cell-mediated

immune responses and serum
biochemistry at T4. ↑VL and VD.

[154]

SB M77 Hubbard broiler at
d-21 and d-35

T1: CTR, T2: 0.1 g/kg
ZnB, T3: 0.5 g/kg SB,

T4: 1.0 g/kg SB

↑ antibody titer against NCD and
SRBCs. ↑ Thymus, spleen and bursa
weight. ↑ Duodenum and Jejunum

VH. ↑Goblet cells in the SI and ileum.

[147]

SB Cobb 400 broiler for
42 days

T1: CTR, T2: AB (50
ppm), T3: 0.09% CSB,

T4: 0.18% CSB, T5:
0.03% UCSB, T6: 0.06%

UCSB

Cecal Escherichia coli and Clostridium
perfringens count reduced with the

addition of CSB. ↑ Jejunum VH, VH:
CD ratio and VH: VW ratio with

addition of CSB by 0.18%.

[155]

SB Arbor Acres broilers for
45 days

T0: CTR, T1: 0.3, T2: 0.6
and T3: 1.2 g/kg SB

↑ weight and length of duodenum,
jejunum, ileum, SI, pancreas, thymus,
and length of caeca. ↑ Antibody titer

against NCD.

[111]

SB Broiler chicks

SB with or without
Salmonella typhimurium

(LPS) challenged
disease

SB ↓IL-1, IL-6, IFN-γ, and IL-10 in
LPS-stimulated cells. ↓TGF-3

expression in both cases.
[29]

ESB Female Chinese Yellow
broilers

T1: CON, T2: DSS, T3:
150 mg/kg SB, T4:

300 mg/kg SB

↓ Lesion scores of intestinal bleedings.
↑ VH and ileum total mucosa. ↓ D
(-)-lactate level, IL-6, and IL-1β. ↑

interleukin-10.

[132]

PPSB
Mixed Cobb chicks at

1–14, 15–28 and
29–42 days.

T1: CTR, T2: AB
(100,000 IU/kg), T3:

700 ppm PSB

↑Jejunum and SI length, jejunal villi.
T2 produced deepest crypts and

lowest VH:CD ratio in all intestinal
segments at d-14.

[156]

CA Male Ross 308 broiler
for 42 days

Exp. 1: T1: 0, T2: 10, T3:
20, T4: 30 g/kg CA

Exp. 2: T1: 0, T2: 30, T3:
60 g/kg CA

Exp.1: ↑ proventriculus weight and IL.
↑ Duodenum, jejunum and ileum, VL.
↑ CD and VL: CD ratio. ↓ epithelial

thickness of the Jejunum.
Exp. 2: ↑ gizzard weight and IL. ↑

proventriculus, intestine, gizzard, JL
and ileum. ↑ VL, CD, and goblet cell

count in the hindgut. ↓ Epithelial
thickness in the SI.

[126]

Antibiotic as a growth promotor (oxytetracycline, colistin sulfate/Colival) (AB); antibiotic bacitracin methylene di-salicylate (BMD); dextran
sulfate sodium (DSS); Negative control (CON); encapsulated SB (consists 99.9% butyrate salt) (ESB); glucose transporter 5 (GLUT5); ileum
length (IL); jejunum length (JL); zinc bacitracin (ZnB); peptide transporter (PepT1); partially protected sodium butyrate (PPSB); sheep red
blood cells (SRBCs); sodium-dependent glucose transporter (SGLT1); small intestine (SI); uncoated sodium butyrate (UCSB); villi length
(VL); villi width (VD) increased (↑); decreased (↓).

5. Application of BA and CA in Poultry Nutrition

BA and CA are potent feed additives used in livestock nutrition, and we have gained
special insights due to gut health enhancer and antimicrobial activity [21,65,142,145,150].
Physical form, flavor property, water solubility and safety concerns of BA and CA are
the crucial factors for effective delivery to target gut compartments of animals including
birds [95,157,158]. The rate of acid absorption and the compartments of the GIT are
closely associated with the various application techniques. These include unprotected
butyrate absorbed in the crew, stomach and gizzard, whereas TB is absorbed in the SI and
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fat-coated butyrate is absorbed throughout the GI tract [159]. BA can be supplemented
as straight (natural BA), butyrate (salt forms), coated/encapsulated (lipid shell) salts of
butyrate [57,103] and butyrate glycerides (butyrin) [123]. Each form of the product has
its advantages and limitations in terms of bioavailability, cost, handling safety, stability,
processing temperature/pressure, releasing target in the GIT, and feasibility [38]. In a
comparative study to evaluate encapsulated BA at 500 g/t (T2) and protected SB (PSB) at
700 g/t (T3) of feed in laying hens, the results indicated that T2 (41.3 g/kg BW) showed
higher (P = 0.005) weight of SI contents than the control diet (35.0 g/kg BW) and T3
(36.5 g/kg BW) group of birds [160].

In contrast, higher total SCFAs and BA concentration in the cecal digesta were ob-
served in T3 versus T1 and T2 groups. However, the addition of the two BA sources (T2
and T3) increased cecal microflora activity of enzymes in birds and noted beneficial effects
on eggshell quality, the tibia, and selected GIT parameters [160]. Similarly, Xiong et al.
proved that CSB was less effective than TB in improving gut morphology in LPS-challenged
broilers [30] because CSB rapidly absorbs in the upper intestine, whereas TB is slowly
reached and is more absorbed in the SI. A supportive study for the above findings was con-
ducted by van den Borne et al. on feeding uncoated vs. fat-coated CB on stomach passage
time in the GIT of broilers. The results showed that 80% of uncoated CB is oxidized and
absorbed from the upper digestive tract. In comparison, fat-coated CB extended-release
pattern time of more than six hours indicated that the coating process delayed release more
in the lower intestinal segments [161]. Pires et al. also examined the effects of PSB at 0
or 0.105 g/kg on the percentage of broken and dirty eggs at commercial chicken farms.
The number of dirty and broken eggs was reduced in laying hens fed 0.105 g/kg PSB
versus the control diet [113]. Likewise, PSB significantly increased carcass weight versus
unprotected SB or without butyrate in broilers diet, which indicates the role of butyrate
in increasing poultry meat production [84]. Therefore, the above findings showed that
targeted delivery of organic acids through a coating or encapsulation process effectively
exerts the antimicrobial function in the GIT. This reduces coliform counts both in the distal
jejunum, cecum and SI, as the main sites of bacterial activity in chicken [95,162]. There is
currently a novel application technique called in ovo administration of BA, that occurs in
the early life stages of chickens to establish a healthy intestinal microflora environment in
the early post-hatch stage of chicks [163,164]. At the early age of birds, butyrate is used
as a direct energy source to the gut epithelium and can reduce intestinal inflammation
by promoting mucus secretion [57]. In general, and as a witness for its contribution, the
global animal feed industry reported protected BA to be the second top (30%) product
as a replacement of antibiotics, followed by probiotics (50%), to improve the gut health
of broilers.

Similarly, CA as a potential growth promoter and potent chelator of calcium can pro-
duce a favorable environment for endogenous and exogenous microbial enzymes such as
phytase, which improves the hydrolysis of phytate available in poultry feedstuffs [17,141].
Fazayeli-Rad et al. showed that 30 g/kg CA improved growth performance and nutrient
retention of male broilers at 42 days due to improved phosphorus availability [165]. Islam
et al. also studied the effects of dietary CA at 0%, 0.25%, 0.75% and 1.25% on broiler perfor-
mance and mineral metabolism for 35 days. Bodyweight, feed conversion efficiency (FCE),
carcass weight, and graded carcasses increased sequentially with increasing CA levels. In
addition, mineral digestibility, bone ash content and mineral density, and strength also sig-
nificantly increased up to 0.75% level of CA [125]. A supportive study on growing rabbits at
0%, 0.5%, 1.0% and 1.5% CA supplementation was examined for 56 days. The growth rate
and growth velocity increased linearly with the increasing CA addition and concluded that
1.5% was an effective dosage for rabbits’ positive growth performance [166]. In summary,
the type of product, inclusion level, bird type and age, diet composition and particle size,
methodology, experimental duration, LPS challenges, and environmental stress are the
main factors determining the effectiveness of BA and CA on broiler performance and
intestinal development (Tables 1 and 2).
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6. Conclusions and Future Research Directions

The goal of market-oriented modern poultry production depends on high feed ef-
ficiency and the health of the gut. The withdrawal of antibiotics in the diet of poultry
brought numerous options as antibiotics alternatives, among which organic acids acquire
significant attention. In animal nutrition, organic acids and their salts are cost-effective,
performance-enhancing options and exert antibacterial, pH reduction effects with the
function of energy supply. BA and CAs, as representatives of organic acids, significantly
impact their biological functions of antimicrobial activity as a gut health enhancer. They
are used as the main energy source of metabolic activities and reduce pathogenic bacterial
load in the GIT of birds. The supplementation results in poultry are not consistent due to
different conditions such as the type of product (application methods), inclusion levels,
target release of the products in the GIT, age, and sex strains of birds. BA and CA are
promising antibiotic replacers and are significant concerns in future research work on poul-
try nutrition. In addition, blends of organic acids or simple monocarboxylic acids/SCFA
(e.g., BA) and Krebs cycle acids/TCA/carboxylic acids bearing a hydroxyl group (e.g., CA)
are not common and need further investigation about their interactive effects on intestinal
microbiota composition, diversity, gut health, and immunity as well as growth performance
in poultry.
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