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Objectives: Bloodstream infection is associated with high mortality rates 
in critically ill patients but is difficult to identify clinically. This results in 
frequent blood culture testing, exposing patients to additional costs as 
well as the potential harms of unnecessary antibiotics. The purpose of 
this study was to assess whether the analysis of bedside physiologic 
monitoring data could accurately describe a pathophysiologic signature 
of bloodstream infection in patients admitted to the ICU.
Design: Development of a statistical model using physiologic data 
from a retrospective observational cohort.
Setting: University of Virginia Medical Center (Charlottesville, VA), a 
tertiary-care academic medical center.
Patients: Critically ill patients consecutively admitted to either the 
medical or surgical/trauma ICUs with available physiologic monitor-
ing data between February 2011 and June 2015.
Interventions: None.
Measurements and Main Results: We analyzed 9,954 ICU admis-
sions with 144 patient-years of vital sign and electrocardiography 
waveform data, totaling 1.3 million hourly measurements. There were 

15,577 blood culture instances, with 1,184 instances of bloodstream 
infection (8%). The multivariate pathophysiologic signature of blood-
stream infection was characterized by abnormalities in 15 different 
physiologic features. The cross-validated area under the receiver 
operating characteristic curve was 0.78 (95% CI, 0.69–0.85). We 
also identified distinct signatures of Gram-negative and fungal blood-
stream infections, but not Gram-positive bloodstream infection.
Conclusions: Signatures of bloodstream infection can be identified in 
the routine physiologic monitoring data of critically ill adults. This may 
assist in identifying infected patients, maximizing diagnostic stew-
ardship, and measuring the effect of new therapeutic modalities for 
sepsis.
Key Words: bacteremia; critical care; fungemia; physiologic 
monitoring; sepsis; statistical models

Bloodstream infection (BSI) is associated with a high risk 
of mortality (1–3). This is especially true in critically ill 
patients, in whom BSI has reported mortality rates of  

30–47% (4–7). Clinical signs and symptoms of BSI are nonspecific, 
and published guidelines do not provide clear indications for when 
it is most appropriate to obtain blood cultures (8). Therefore, clini-
cians often have a low threshold to perform blood culture testing (9). 
This leads to a low diagnostic yield, with true positive rates of 4–7% 
(9, 10). In addition, there are a significant number of false positives 
(i.e., contaminants), which lead to increased cost, length of hospital 
stay, and unnecessary antibiotic use (11–15). Smaller studies have 
attempted to better identify distinguishing features of BSI in hos-
pitalized patients; however, many of these have had a narrow focus 
regarding the types of patients or the types of infections included 
(e.g., only patients with urinary tract infection), as opposed to focus-
ing on defining features of BSI as a whole (16–19). Additionally, 
attempts to compose multivariate scoring systems and clinical pre-
diction rules for BSI often categorize continuous variables (18–20), 
which leads to loss of information and predictive capability (21).

Routine physiologic monitoring data contain dynamic multi-
variate signatures of critical illness states (22). There is a growing 
recognition of the heterogeneity of sepsis physiology, including the 
recent identification of four physiologic phenotypes of sepsis (23).  
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We tested the hypothesis that routine monitoring data could 
describe a detailed and distinct pathophysiologic phenotype of BSI 
in critically ill adult patients. This physiologic description could 
provide a basis for future predictive modeling in order to improve 
recognition of infected patients, maximize diagnostic stewardship 
of blood cultures, measure the effectiveness of treatments, and 
identify opportunities for the development of novel therapeutics.

MATERIALS AND METHODS

Study Design
We retrospectively analyzed blood cultures associated with admis-
sions to a 15-bed adult surgical/trauma ICU and 29-bed medical 
ICU from February 2011 to June 2015 at the University of Virginia 
(UVa) Medical Center, an academic tertiary-care center. Each ICU 
was equipped with continuous physiologic monitoring systems 
whose signals were archived in an electronic data warehouse along 
with the entire medical record.

The primary outcome was BSI, defined as a single blood culture 
with growth of a pathogenic organism. We focused on physiologic 
data from 12 hours before until 24 hours after a positive blood 
culture. As controls, we included data from patients with nega-
tive blood cultures as well as from those who did not have blood 
cultures obtained, along with data greater than 12 hours before 
acquisition of a positive blood culture for patients with BSI. We 
censored data more than 24 hours following a BSI instance unless 
they were within 12 hours before to 24 hours after another BSI 
instance. We performed a secondary analysis comparing instances 
of Gram-positive (GP), Gram-negative (GN), and fungal BSIs 
with negative culture instances. The UVa Institutional Review 
Board approved this study with a waiver of informed consent.

Outcome Definition and Contaminant Identification
We defined a blood culture “set” as a single culture acquisition, 
typically an inoculation of two blood culture bottles. We grouped 
all sets into blood culture “instances,” defined as a sequence of sets 
from a single patient where each set was within 1 hour of the last. 
We categorized each instance as positive, negative, or contaminated. 
To do this, we identified all the unique organisms that were isolated 
and labeled them as either potential contaminants or true patho-
gens. We labeled all instances that grew true pathogens as positive. 
Organisms deemed potential contaminants included coagulase-
negative staphylococci, Propionibacterium species, Bacillus species, 
Corynebacterium species, and viridans group streptococci. For 
these, we labeled the organism as a contaminant if it was present 
in only one set of a culture instance (15) or in only one of the two 
bottles in an instance comprised of a single set. We adjudicated 
instances with potential contaminants that did not meet these cri-
teria (i.e., multiple sets grew a potential contaminant) by an inde-
pendent review of the medical record by two separate clinicians 
who were blinded to each other’s decisions (A.N.Z. and C.C.M.). 
A third clinician (T.D.B.) adjudicated discordant decisions, also in 
a blinded fashion. We labeled instances as contaminated if a con-
taminant was the only growth. We labeled instances with both true 
pathogens and contaminants as positive. We labeled instances with 
growth of multiple true pathogens as a single positive instance. For 

individual isolate modeling, these polymicrobial culture instances 
were labeled as positive for all true pathogen isolate classes that 
were grown (i.e., an instance with growth of Staphylococcus aureus 
and Escherichia coli was labeled as both GP and GN).

Model Development and Validation
We performed modeling in R 3.5.1 (R Core Team 2018, Vienna, 
Austria) using the “rms” package (24). We used the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD) guidelines and followed the rec-
ommendations set forth by Leisman et al (21) to analyze and report 
this study (25). For the univariate analysis, we calculated predictive-
ness curves to show the independent association of 40 vital signs, 
laboratory values, and continuous cardiorespiratory monitoring 
(CRM) variables with instances of BSI compared with negative cul-
tures. In order to reduce bias due to repeated measures and missing 
data, we used a bootstrapping technique to estimate the predic-
tiveness curves. We randomly sampled one measurement within 
12 hours before to 24 hours after each instance. We calculated the 
relative risk of BSI at each decile of the sampled variable and then 
interpolated the risk to 20 points evenly spaced in the range of the 
variable. We repeated this process of sampling, calculating relative 
risk, and interpolating 30 times. Finally, we averaged the 30 risk esti-
mate curves to obtain a bootstrapped predictiveness curve at the 20 
evenly spaced points and displayed the results as a heat map.

For multivariate modeling (both for the aggregate BSI model 
and the individual isolate models), we assessed 40 physiologic vari-
ables and developed a statistical model on the entire cohort, using 
cross-validation to reduce bias in feature selection and performance 
characteristics. We used multivariate logistic regression adjusted for 
repeated measures to relate physiologic data to the BSI outcome. We 
systematically built the models by: 1) removing, blinded to the out-
come, the most predictable features correlated more than R2 of 0.9 
with other features, 2) imputing missing values with median val-
ues for the study population, 3) building a model with all remain-
ing features, adjusting for repeated measures using the Huber-White 
method (24), 4) using fast backward elimination to remove features 
most predictable by other features in the model, based on an Akaike 
information criterion (AIC) threshold of zero (26), 5) repeating steps 
3 and 4 with restricted cubic splines (three, four, and five knots of 
nonlinearity) on each feature with enough unique values (22, 24), and 
(6) selecting the model (linear or nonlinear with three, four, or five 
knots) that maximized the AIC. Finally, to ensure unbiased feature 
selection, we performed 10-fold cross-validation with fast backward 
elimination, removing eliminated features and retraining the model.

In the absence of a suitable second extrinsic dataset, we 
performed internal validation using 10-fold cross-validation 
(TRIPOD type 1b model study) (25, 27). We randomly split the 
patient-admissions into 10 groups, excluded a single group’s data 
as a test set, trained a model on the remaining data, and then used 
that model to estimate the risk of BSI (or specifically GP, GN, or 
fungal BSIs, depending on the model being tested) for the test 
set. We repeated this procedure until each of the 10 groups had 
served as a test set. We evaluated the performance of the mod-
els based on the resulting predicted risks instead of the in-sample 
predicted risks. Although this method calculated out-of-sample 
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predictions with the same features, we made the predictions with 
slightly different models, one for each test set. For continuous 
risk estimation, we calculated the area under the receiver operat-
ing characteristic curve (AUC) and 95% CIs using 200 bootstrap 
runs, each accounting for repeated measures from each hospital 
admission. For the individual isolate class models, we calculated 
AUCs for all three classes of BSI—that is, for each model, we cal-
culated its AUC for GP, GN, and fungal BSIs compared with nega-
tive cultures.

As sensitivity analyses, we repeated our modeling procedure for 
the aggregate model with the following changes: 1) using only data 12 
hours prior to a positive culture, censoring any data afterward unless 
those data were 12 hours prior to a subsequent positive culture, 2)  
using only patients with negative blood cultures as the control 
group, 3) using only patients without blood cultures obtained as 
the control group, and 4) using only data surrounding the first 
positive blood culture during an ICU admission.

RESULTS

Demographics, Clinical/Microbiologic Characteristics, 
and Outcomes
We analyzed 9,954 ICU admissions with over 144 patient-years 
of physiologic data, totaling 1.3 million hourly measurements. 
Patients were primarily male (56%) and White (81%), with a 
median age of 59 years (Table 1). At least one blood culture was 
obtained in 5,671 admissions (57%). There were 15,577 blood cul-
ture instances comprising 27,337 blood culture sets, with 1,184 
instances (8%) of BSI (Fig. S1, Supplemental Digital Content, 
http://links.lww.com/CCX/A380). The most common isolated 

organisms can be found in Table S1 (Supplemental Digital 
Content, http://links.lww.com/CCX/A382).

The median (interquartile range) length of hospital stay for 
patients with BSI was 15 days (8–30 d) compared with 10 days 
(6–17 d) (p < 0.0001) for patients with negative cultures and 5 
days (3–8 d) (p < 0.0001) for patients without any blood cultures 
obtained. Of the 744 patients with BSI, 207 (28%) died in hospital, 
compared with 774 of 4,927 patients (16%) with negative blood 
cultures (odds ratio [OR] 2.07; 95% CI, 1.73–2.47; p < 0.0001) and 
171 of 4,283 patients (4%) without any blood cultures obtained 
(OR 9.27; 95% CI, 7.43–11.57; p < 0.0001). The length of stay 
and mortality by ICU and isolate class are shown in Figure S2 
(Supplemental Digital Content, http://links.lww.com/CCX/A381).

Pathophysiologic Signatures of BSI
Univariate analysis of 40 physiologic variables (Table S2, 
Supplemental Digital Content, http://links.lww.com/CCX/A383) 
identified trends in each, which were associated with BSI classes 
(Fig. 1). Multivariate logistic regression modeling identified a signa-
ture of 15 independent physiologic features that best characterized 
BSI (Fig. 2A). These features were, in decreasing strength of associa-
tion: temperature, serum bicarbonate, platelet count, systolic blood 
pressure, blood urea nitrogen (BUN)/creatinine ratio, serum glu-
cose, serum chloride, WBC count, age, respiratory rate, pulse rate, 
the cross-correlation coefficient of heart rate and oxygen saturation, 
serum calcium, serum potassium, and the cross-correlation coeffi-
cient of heart rate and electrocardiogram-derived respiratory rate. 
Several of the features in the model had nonlinear associations with 
BSI (e.g., temperature and WBC concentration). The cross-validated 
AUC was 0.78 (95% CI, 0.69–0.85). The model developed solely on 

TABLE 1. Clinical and Demographic Characteristics of Critically Ill Adult Patients Admitted to 
the ICU, 2011–2015

Demographic/Clinical Variable
All  

(n = 9,954)

Positive Blood  
Cultures  
(n = 744)

Negative Blood 
Cultures Only  

(n = 4,927)

No Blood  
Cultures Obtained  

(n = 4,283)

Age, mean yr (range) 59 (47–71) 61 (51–72) 60 (49–71) 58 (45–71)

Sex, n (%)

 Male 5,584 (56) 399 (54) 2,764 (56) 2,424 (57)

 Female 4,370 (44) 345 (46) 2,163 (44) 1,859 (43)

Race, n (%)

 White 8,022 (81) 585 (79) 3,859 (78) 3,578 (84)

 Black 1,681 (17) 142 (19) 940 (19) 599 (14)

 Other 197 (2) 14 (2) 95 (2) 88 (2)

 Asian 41 (< 1) 2 (< 1) 23 (< 1) 16 (< 1)

 Unspecified 10 (< 1) 0 (< 1) 8 (< 1) 2 (< 1)

 Native American 3 (< 1) 1 (< 1) 2 (< 1) 0 (< 1)

Medical ICU admissions, n (%) 5,157 (52) 509 (68) 3,326 (67.5) 1,323 (31)

Surgical ICU admissions, n (%) 4,797 (48) 235 (32) 1,601 (33) 2,960 (69)

Acute Physiology and Chronic Health  
Evaluation score, median (range)

14 (10–24) 25 (15–30) 17 (12–26) 12 (9–16)
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data 12 hours prior to a positive blood culture included 13 physi-
ologic features, nine of which were identical or similar to features in 
the original model (platelet count, pulse rate, BUN/creatinine ratio, 
temperature, diastolic blood pressure, serum bicarbonate concentra-
tion, serum chloride concentration, age, and cross-correlation coef-
ficient of heart rate and clinician-documented respiratory rate). The 
cross-validated AUC of this model was 0.76 (95% CI, 0.75–0.76). 
The sensitivity analyses with different control groups identified a 
similar set of pathophysiologic features and trends characterizing 
BSI with similar AUCs (patients with negative cultures as controls, 
AUC = 0.73 [95% CI, 0.67–0.78]; and patients without blood cul-
tures obtained as controls, AUC = 0.85 [95% CI, 0.80–0.89]). Finally, 
the analysis using data surrounding only the first positive culture 
instance from an admission also identified similar features to our 
aggregate model, also with a similar AUC (0.78; 95% CI, 0.74–0.83).

In order to describe the time frame during which BSI physiol-
ogy was detectable, we assessed whether the identified signature 
was present in a window of 72 hours leading up to the time of cul-
ture and whether it changed after systemic antimicrobial admin-
istration. Figure 2B shows the relative risk of BSI as a function 
of time to blood culture. For patients with positive cultures, the 
average relative risk began to rise 24–48 hours prior to the culture. 
Patterns for patients who ultimately had negative or contaminated 
cultures were similar to consistently lower relative risks compared 
with the positive group. The relative risk of BSI in patients with 
positive cultures began to fall soon after antimicrobial adminis-
tration (Fig. 2C); however, it did not return to the pretreatment 
average baseline risk during the subsequent 48 hours.

We also identified individual signatures of illness arising from 
different isolate classes (Fig. 3). Only six of the physiologic vari-
ables assessed were present in multiple isolate models; otherwise, 
each of these models was composed of unique features. These iso-
late class models performed variably when estimating risk of dif-
ferent classes of BSI (Fig. 4).

Figure 1. Heat map depiction of the univariate risk of different classes of 
bloodstream infection (BSI) as a function of 40 measured physiologic variables 
in 9,954 critically ill patients, 2011–2015. Each tile plots the value of the 
variable on the x-axis against the relative risk of BSI isolate class per ventile of 
the variable on the y-axis. A red color saturation indicates higher relative risk 
of the isolate class for that ventile of the variable; a blue saturation indicates 
a lower relative risk. The gray bars above each tile indicate the distribution of 
measurements for each variable—darker gray indicates more measurements 
present in that range of the variable. AGAP = anion gap (mEq/L),  
BUN = blood urea nitrogen (mg/dL), BUN/Cr = blood-urea-nitrogen-to- 
serum-creatinine ratio, Ca = serum calcium concentration (mg/dL), Cl = serum 
chloride concentration (mmol/L), CO2 = serum bicarbonate (mmol/L),  

Figure 1. (Continued ) COSEn = coefficient of sample entropy of R-R  
interval, Cr = serum creatinine (mg/dL), DBP (cuff) = cuff-measured  
diastolic blood pressure (mm Hg), DBP = invasive diastolic blood pressure (mm 
Hg), DFA = detrended fluctuation analysis applied to R-R intervals,  
EDR = electrocardiogram-derived respiratory rate (breaths/min), Gluc = blood 
glucose (mg/dL), GN = Gram negative, GP = Gram positive, Hct = hematocrit 
(%), HR = heart rate measured by cardiac telemetry (beats/min), HRV = sd 
of heart rate by cardiac telemetry (beats/min), HRxEDR = cross-correlation 
coefficient of heart rate and electrocardiogram-derived respiratory rate,  
HRxRR = cross-correlation coefficient of heart rate measured by cardiac 
telemetry and respiratory rate measured by chest impedance, HRxSO2 = cross- 
correlation coefficient of heart rate measured by cardiac telemetry and oxygen 
saturation measured by continuous pulse oximetry, K = serum potassium 
concentration (mmol/L), LDd = local dynamics density of heart rate, MAP  
(cuff) = cuff-measured mean arterial pressure (mm Hg), Mean R-R interval = mean  
R-R interval by cardiac telemetry (s), Na = serum sodium concentration 
(mEq/L), O2V = sd of oxygen saturation by pulse oximetry (%), Plt = platelet 
concentration (k/uL), PP = pulse pressure (mm Hg), Pulse = heart rate 
measured by pulse oximetry (beats/min), Resp = clinician-documented 
respiratory rate (breaths/min), RR = respiratory rate measured by chest 
impedance (breaths/min), RRV = sd of respiratory rate by chest impedance 
(breaths/min), RRxSO2 = cross-correlation coefficient of respiratory rate 
measured by chest impedance and oxygen saturation measured by pulse 
oximetry, SBP = invasive systolic blood pressure (mm Hg), sd breaths = sd of 
electrocardiogram-derived respiratory rate (breaths/min), sd R-R intervals = sd 
of the R-R interval by cardiac telemetry (s), SO2 = oxygen saturation measured 
by continuous pulse oximetry (%), Hgb = hemoglobin (g/dL), SpO2 = clinician-
documented oxygen saturation (%), Temp = temperature (°C).
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DISCUSSION
We applied multivariate logistic regression to describe signatures 
of BSI in the physiologic data of critically ill adults. The compre-
hensive signature was composed of 15 different features from vital 
sign, laboratory, and CRM data, with an AUC of 0.78, indicating 
good discriminatory capability. To our knowledge, this is the first 
study that provides a comprehensive and quantitative model of the 
clinical pathophysiology of BSI.

The features of the aggregate model described a pathophysi-
ologic response to BSI, which was consistent with the syndrome 
of systemic inflammation that often precipitates blood culture 
testing, including fever or hypothermia, altered hemodynamics, 
tachypnea, and leukocytosis or leukopenia (9, 16, 18). There were 
also markers of end-organ damage, including low serum bicarbon-
ate, markers of kidney dysfunction, and low platelet count (28). 
Additional laboratory values present in the model represented 

Figure 2. Pathophysiologic model of bloodstream infection (BSI) in critically ill adults. A, Fifteen pathophysiological features comprising a signature of BSI in 
9,954 critically ill patients, 2011–2015. Each tile plots the value of the feature on the x-axis against the log-odds of BSI on the y-axis. The translucent ribbon 
represents the 95% CI. Background hue represents the direction of association with BSI—orange indicates positive association, blue indicates negative 
association, and green indicates nonlinear or biphasic association. Background color saturation indicates the strength of the association with BSI. B, Predicted 
risk of BSI according to a multivariate logistic regression model as a function of time relative to blood culture. The translucent ribbon represents the 95% CI. 
 C, Predicted risk of BSI according to a multivariate logistic regression model as a function of time relative to antimicrobial administration. The translucent ribbon 
represents the 95% CI. Patient data were grouped as positive, negative, or contaminant based on the ultimate result of the culture instance at time 0. BUN/
sCr = blood-urea-nitrogen-to-serum-creatinine ratio, Ca = serum calcium concentration (mg/dL), Cl = serum chloride concentration (mmol/L), CO2 = serum 
bicarbonate (mmol/L), Gluc = blood glucose (mg/dL), HRxEDR = cross-correlation coefficient of heart rate and electrocardiogram-derived respiratory rate, 
HRxSO2 = cross-correlation coefficient of heart rate and oxygen saturation by continuous pulse oximetry, K = serum potassium concentration (mmol/L),  
Plt = platelet concentration (k/uL), Pulse = heart rate measured by pulse oximetry (beats/min), Resp = clinician-documented respiratory rate (breaths/min),  
SBP (cuff) = cuff-measured systolic blood pressure (mm Hg), Temp = temperature (degrees Celsius).
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other metabolic derangements frequently seen in critically ill 
states—hyperglycemia, hyper- and hypokalemia, hypochloremia, 
and hypocalcemia (29, 30). The model identified rising risk in 
patients with BSI 24–48 hours prior to the time blood cultures 
were obtained (Fig. 2B), reflecting a rising degree of physiologic 
or biochemical abnormality in the hours prior to clinical recogni-
tion of BSI.

Notably, none of the abnormalities included in the model are 
necessarily specific to BSI as opposed to other focal infections. 
This may explain the concomitant, though less steep, increase in 
relative risk among the negative and contaminant cohorts leading 
up to the time of blood culture (Fig. 2B). These patients may have 
exhibited similar pathophysiologic abnormalities due to the pres-
ence of focal infections, but those derangements did not escalate 
to the level characteristic of BSI. Despite these small rises among 
the negative and contaminant groups, there remained a clear dif-
ference in relative risk among patients who eventually had posi-
tive blood cultures as early as 48–72 hours prior to obtaining the 
culture. This suggests that the deranged physiology escalates to an 

Figure 3. Individual pathophysiological signatures of Gram-positive (GP), 
gram-negative (GN), and fungal bloodstream infections (BSIs) identified from 
9,954 critically ill patients, 2011–2015. Each tile plots the value of the feature 
against the log-odds of BSI. The translucent ribbon represents the 95% CI.  

Figure 4. Area under the receiver operating characteristic curve (AUC) for 
models of aggregate, Gram-positive (GP), Gram-negative (GN), and fungal 
bloodstream infections (BSI), evaluated on all isolate classes against negative 
blood cultures among 1,184 instances of BSI in critically ill patients, 2011–
2015. GN and fungal BSIs are well predicted by their own models, whereas 
fungal BSI is also reasonably well predicted by the GP model. GP BSI is not 
well predicted by any model.

Figure 3. (Continued ) Background hue represents the direction of 
association with BSI—orange indicates positive association and blue indicates 
negative association. Background color saturation indicates the strength of 
the association with BSI. BUN/sCr = blood-urea-nitrogen-to-serum-creatinine 
ratio, Ca = serum calcium concentration (mg/dL), Cl = serum chloride 
concentration (mmol/L), CO2 = serum bicarbonate (mmol/L), Cr = serum 
creatinine (mg/dL), HRxEDR = cross-correlation coefficient of heart rate 
and electrocardiogram-derived respiratory rate, HRxRR = cross-correlation 
coefficient of heart rate measured by cardiac telemetry and respiratory rate 
measured by chest impedance, HRxSO2 = cross-correlation coefficient of 
heart rate and oxygen saturation by continuous pulse oximetry, K = serum 
potassium concentration (mmol/L), Na = serum sodium concentration 
(mEq/L), Plt = platelet concentration (k/uL), PP = pulse pressure (mm Hg),  
Pulse = heart rate measured by pulse oximetry (beats/min), Resp = clinician-
documented respiratory rate (breaths/min), SBP = invasive systolic blood 
pressure (mm Hg), sd R-R intervals = sd of the R-R interval by cardiac 
telemetry (s), SO2 = oxygen saturation measured by continuous pulse 
oximetry (%), Temp = temperature (°C), RRV = sd of respiratory rate by chest 
impedance (breaths/min).
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identifiable level in patients with BSI well prior to the time of clini-
cal recognition prompting blood culture testing. The sensitivity 
analysis focusing only on data 12 hours prior to obtaining a blood 
culture had similar features and performed comparably with the 
original model, further suggesting that a distinct signature can be 
identified from data prior to the time of blood culture acquisition.

The physiology described in the GN model appeared unique to 
GN infection, and the aggregate model was better able to describe 
GN BSI compared with GP and fungal isolates (Fig. 4). This sug-
gests that GN BSI elicits an especially distinct pathophysiology. 
The derangements most strongly correlated with GN BSI were 
hypotension, thrombocytopenia, metabolic acidosis, and hypo-
calcemia (Fig.  1), all markers of organ dysfunction and critical 
illness (28–30). These findings are consonant with the classic con-
ception of endotoxin-mediated GN sepsis as a characteristically 
inflammatory syndrome, with a higher likelihood of progression 
to shock than other types of infection (31).

GP BSI was not clearly distinguishable, as GP isolates were not 
well predicted by any model (Fig. 4). The ability to detect a dis-
tinct GP signature may be impeded by the heterogeneity of infec-
tions within this isolate group. Among common GP pathogens, 
there is a wide distribution of more virulent organisms (such as 
S. aureus) and less virulent organisms (such as enterococci). This 
may lead to an array of different pathophysiologic responses to GP 
BSI and, thus, a less clear signal attributable to this isolate class. 
Fungal isolates were well predicted by the fungal model (Fig. 4), 
and the univariate analysis showed several individual physiologic 
variables that correlated strongly with fungal BSI, such as cytope-
nias (Fig. 1). However, we suspect this constellation of abnormali-
ties was more representative of severe comorbid conditions (e.g., 
hematological malignancies) that predisposed to invasive fungal 
infection, rather than the pathophysiologic response of the host.

Aside from the identification of clinical phenotypes, physi-
ologic modeling of BSI may also prove useful in the assessment 
of novel therapeutic modalities for sepsis. As multidrug-resistant 
organisms outpace the development of new antibiotics, there is a 
growing line of research investigating modulation of the molecu-
lar pathways that drive the pathophysiologic response to infection 
as a means of reducing morbidity and mortality in sepsis (32–35). 
A detailed description of the pathophysiology of infection, as 
we performed in this study, could help generate hypotheses for 
potential targets of future therapeutics. Additionally, our model 
shows an ability to detect a change in the pathophysiology of BSI 
in response to therapy (Fig. 2C). This suggests a potential utility in 
the quantification of response to standard and novel therapeutics 
for sepsis if the model were further refined for such a purpose.

A major strength of our study is the size of the dataset. To our 
knowledge, with over 27,000 blood culture sets, 1,184 instances 
of BSI, and 1.3 million hours of physiologic data, this is the larg-
est study of the clinical correlates of BSI yet described. Another 
strength is the model’s ability to produce an instantly updated, 
quantitative description of BSI physiology composed of continu-
ous physiologic variables. The most successful studies for identify-
ing BSI to date have primarily categorized continuous variables 
in order to compose clinical prediction rules (18, 19). This leads 
to inappropriate assumptions about the significance of different 

values of the variables in question and foregoes useful informa-
tion about changes in those variables (21). Our model immedi-
ately quantifies the change in risk from small changes in any of its 
physiologic features to produce a new and continuously updated 
estimate of BSI physiology in a given patient. This has the poten-
tial to describe more faithfully the pathophysiology of infection in 
a critically ill patient. The model we present here could be refined 
for predictive purposes to assist with recognition of BSI (or lack 
thereof) in critically ill adults and, thus, affect clinical outcomes, 
but that was not the goal of this study.

There are several limitations to this study. First, we elected to 
include data associated with repeat positive blood culture instances 
from the same patient-admission. This may have introduced bias 
by allowing individual patients’ physiology to overly influence the 
model if they had multiple positive cultures. However, when we 
repeated modeling using only data surrounding the first positive 
culture instance during an admission, we identified similar fea-
tures and trends with good discrimination. Since data from repeat 
positive cultures did not have a significant impact on the features 
or trends seen in the model, we retained them in our models.

Additionally, our model was generated using single-center, 
retrospective, observational data. The addition of a larger, more 
diverse patient population would allow for external validation 
and improve the generalizability of our findings. Our model was 
also designed purely for descriptive purposes as opposed to bed-
side prediction of BSI risk. A bedside display of sepsis risk based 
on physiologic data has been shown to reduce mortality in very 
low birth weight infants, even without establishing thresholds or 
guidelines for interpretation (36); however, validation of the pre-
dictive utility of our modeling would require future refinement 
specifically for predictive purposes, ideally accompanied by a 
multicenter prospective study.

Finally, the inclusion of patients with no blood cultures in the 
control group introduces uncertainty as to whether all control 
group patients were truly without BSI, since a substantial portion 
(43%) was not tested during their ICU admission. However, our 
sensitivity analysis using only patients with negative blood cul-
tures as controls identified a distinct BSI pathophysiologic profile 
with good discrimination. This finding supports our strategy of 
including patients without any blood cultures as controls, which 
allowed us to describe comprehensively pathophysiologic differ-
ences between the patients with BSI and all other ICU patients, 
not just those who underwent blood culture testing.

CONCLUSIONS
We used data from a large number of critically ill patients to iden-
tify pathophysiologic signatures of BSI. We believe this type of 
physiologic modeling could have a future role in bedside decision-
making regarding the utility of blood culture testing and could be 
integrated into the investigation of novel therapeutics for sepsis.
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