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A B S T R A C T   

Recently, markerless tracking systems, such as RGB-Depth cameras, have spread to overcome 
some of the limitations of the gold standard marker-based tracking systems. Although these 
systems are valuable substitutes for human motion analysis, as they guarantee higher flexibility, 
faster setup time and lower costs, their tracking accuracy is lower with respect to marker-based 
systems. Many studies quantified the error made by markerless systems in terms of body segment 
length estimation, articular angles, and biomechanics, concluding that they are appropriate for 
many clinical applications related to motion analysis. We propose an innovative approach to 
compare a markerless tracking system (Kinect V2) with a gold standard marker-based system 
(Vicon), based on motor control assessment. We quantified kinematic synergies from the tracking 
data of fifteen participants performing multi-directional upper limb movements. Kinematic syn-
ergy analysis decomposes the kinematic data into a reduced set of motor primitives that describe 
how the central nervous system coordinates motion at spatial and temporal level. Synergies were 
extracted with the recently released mixed-matrix factorization algorithm. Four synergies were 
extracted from both marker-based and markerless datasets and synergies were grouped in 6 
clusters for each dataset. Cosine similarity in each cluster was ⩾0.60 in both systems, showing 
good consistency of synergies. Good matching was found between synergies extracted from 
markerless and from marker-based data, with a cosine similarity between matched synergies 
⩾0.60 in 5 out 6 synergies. These results showed that the markerless sensor can be feasible for 
kinematic synergy analysis for gross movements, as it correctly estimates the number of synergies 
and in most cases also their spatial and temporal organization.   

1. Introduction 

Human motion tracking is a fundamental assessment for analyzing movement kinematics in various scenarios, such as investigating 
pathological conditions in clinics. Markerless tracking systems, including RGB-Depth cameras and inertial measurements systems 
(IMUs), are recently-developed technologies that are used for human motion tracking. In the last decade, these technologies have 
spread to overcome some of the limitations of the gold standard marker-based tracking systems. Indeed, marker-based systems consist 
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in a set of infrared cameras that register the 3D position of markers that are attached to anatomical landmarks of the human body. They 
are characterized by a very high tracking accuracy (error in 3D positioning <1 mm). However, these systems are expensive, require 
large setups in laboratories and long preparation times. Therefore, markerless systems became a valuable alternative for human motion 
analysis in many applications as they provide higher flexibility, faster setups and lower costs [1]. However, markerless systems such as 
Kinect cameras that are based on a combination of RGB and depth sensors, were originally conceived for entertainment purposes and, 
therefore, they are less accurate than the marker-based systems. Despite this limitation, Kinect cameras have been employed for a wide 
variety of applications, such as human action recognition [2] and human 3D reconstruction [3], and they became very popular in the 
rehabilitation and clinical scenarios since they have much lower costs and are easily useable. Indeed, the increasing need of clinical 
assistance and rehabilitation have stressed the lack of staffs and structures and the high costs related to rehabilitation, especially in 
clinical environment [4]. At the same time, the growing sanitary costs and events such as the COVID 19 pandemic crisis led to the 
necessity of telerehabilitation and home monitoring. In this scenario, markerless systems represent a cost-effective and portable so-
lution that guarantees patient monitoring and evaluation at home [5–7], leading to many Kinect-based setups. In this way, delivering 
therapies at home reduces the costs and improve the accessibility and efficiency of the rehabilitation and to guarantee the continuity of 
care. Indeed, Kinect cameras have been used in clinical practice for evaluating movement performance in post-stroke patients in upper 
limb [8]. The Kinect sensors demonstrated to be feasible in many clinical or medical care scenarios including lower limb for evaluating 
stroke patients [9], patients with multiple sclerosis [10] and in complex clinical applications, like measuring clinically relevant 
movements in patients with Parkinson’s disease [11]. 

An extensive use of markerless system requires the understanding of their tracking capabilities and limitations. In literature, many 
studies investigated the reliability of the Kinect cameras with respect to gold standard systems. Clark et al. studied postural control and 
balance, finding excellent results with both Kinect V1 [12] and V2 [13]. Many studies analyzed the Kinect accuracy when computing 
spatiotemporal gait parameters, showing good agreement with the marker-based systems with all the generations of Kinect cameras 
[14–16]. However, in few other studies, the accuracy of joint kinematics was put into discussion [17] and upper limbs [18] was poor, 
especially for distal joints, such as wrist or ankle, and for tracking fine movements [11,19]. Moreover, the accuracy of Kinect cameras 
decreases when some parts of the body are hidden [20,21]. Although the studies available are in most cases very comprehensive, they 
mostly investigated “standard” kinematic parameters, such as 3D joint positions, segment lengths, or articular kinematics. Only in few 
studies, the analysis was extended to biomechanics with joint torques [22] and normalized jerk [23], finding that Kinect cameras are in 
general suitable for assessing biomechanics. To the best of our knowledge, very few studies [24,25] have analyzed the capability of 
Kinect cameras when considering the control of motor coordination of multiple degrees of freedom that can be assessed with a 
multi-joint synergistic approach i.e., kinematic synergies. Kinematic synergies are the kinematic dual of muscle synergies, a quanti-
tative framework for motor control based on the hypothesis that the central nervous system (CNS) controls multiple degrees of freedom 
(DoF) through a combination of motor primitives, called synergies, rather than with separate commands. So far coupled only with 
marker-based tracking systems, kinematic synergy analysis has been already used for the motor control of hand posture and grasps 
[26–28], human locomotion [29], and upper limb movements [30]. The most diffused synergy model (spatial synergy model) de-
composes the kinematic signal in spatial time-invariant synergies and in corresponding temporal activations that activate each synergy 
differently for every motor task. The factorization algorithms that are usually employed are the non-negative matrix factorization 
(NMF) algorithm [31] for muscle synergies and the principal component analysis (PCA) for kinematic synergies. PCA allows to 
decompose signals with positive and negative components; however, with respect to NMF, PCA adds the constraint of orthogonality 
between synergies, which does not reflect any physiologically relevant constrain. Recently, the new mixed-matrix factorization (MMF) 
algorithm [32] was released for decomposing muscle and kinematic signals together, allowing to factorize positive and negative 
signals without the constraint of orthogonality. The MMF algorithm decomposes the input signal into synergies with positive and 
negative components and corresponding non-negative temporal coefficients. It has been employed for the extraction of 
kinematic-muscle synergies for the upper limb [32] and for hand grasps [33], and it can be applied to any unconstrained signal. 
Therefore, it can be used for the extraction of kinematic synergies. The synergistic control aims at understanding how the degrees of 
freedom are coordinated to achieve purposeful movement. There is plenty of literature regarding muscle and/or kinematic synergies 
that suggests that assessing synergies is a method to quantify motor control and coordination. The changes in the modular organization 
of the neuro-motor system, expressed in terms of number, structure and recruitment of synergies, is a long-established concept in 
rehabilitation, allowing to discriminate a variety of pathological changes in the nervous system [34]. Synergies describe the underlying 
modular organization of the motor control that in neurological patients. Restoring synergistic control should be the main focus of 
rehabilitation [35] as motor modules are at the basis of motor control [36] and cannot be assessed by using standard kinematic 
measures, such as range of motion (ROM) and smoothness metrics. The recovery of physiological motor modules provides evidence of 
motor recovery and, therefore, kinematic synergy analysis adds a significant value to the standard protocols. In literature, it has been 
noted that joint synergies in gait between stroke patients identify significant differences that cannot be revealed by standard gait 
analysis [37]. Indeed, kinematic synergy analysis was used in various locomotion tasks [29,38], hand grasps [26,39], and upper limb 
[30] movements. However, kinematic synergies were extracted only from marker-based tracking data. Kinematic synergies were 
extracted from Kinect data only by Lambert-Shirzad and colleagues [24,25]. In one study, bilateral hand movements were acquired 
from the Kinect camera and three different factorization methods were compared for the extraction of kinematic synergies, concluding 
that PCA and NMF outperformed independent component analysis (ICA) [25]; in the second study, kinematic synergies were compared 
between healthy and stroke patients, finding that more synergies are needed for stroke patients to achieve the same level of recon-
struction accuracy [24]. However, in these studies, joint angles were computed developing a musculoskeletal model in OpenSim and 
not directly from the skeleton joint positions, and the validity of the kinematic muscle extraction with respect to the gold standard 
tracking systems was not demonstrated. 
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Employing a synergistic approach for comparison of the performance between marker-based and markerless systems opens the way 
to relevant in-depth measurements that include motor control assessments that are becoming crucial in the evaluation of many pa-
thologies, promoting assessments at neural level. Many studies already used kinematic measures, such as articular angles or range of 
motions, to compare the performance between marker-based and markerless tracking systems. Kinematics of both upper limbs [20] 
and lower limbs [17,40] computed from markerless sensors was found to have good agreement with kinematics computed from 
marker-based systems and, therefore, markerless sensors are feasible for assessing human kinematics. Thus, the comparison can be 
shifted from kinematic measures to kinematic synergies, providing insight also on the synergistic control, which was not assessed 
before. 

In this study, kinematic synergies were used as benchmark metrics for evaluating the performance of markerless systems. Kinematic 
synergies were extracted from tracking data of a markerless system in order to quantitatively demonstrate its range of application with 
respect to the gold standard systems, using the data from fifteen participants performing multi-directional upper limb movements. 

2. Materials & methods 

2.1. Participants 

Fifteen healthy participants (8 females, 7 males, mean age 24.0 ± 3.0 years) were recruited for this study with no musculoskeletal 
impairments affecting their performance. Ethical approval was granted by the CNR Ethical Committee (Rome, Italy, protocol number 
0044338/2018) and the experimental trial was conducted in compliance with the Declaration of Helsinki. The participants provided 
written informed consent to participate in this study and for the publication of any data included in this article. 

2.2. Acquisition setup 

Kinematic data were recorded with both a marker-based, optoelectronic system (Vicon, Vicon Motion Systems, Oxford, UK) and a 
markerless tracking system (Kinect V2, Microsoft, Redmond, WA, USA). Kinect V2 was used as it is a well-known and documented 
markerless system for motion tracking [7,15,41]. Although a new generation of Kinect sensors was launched, recent studies have 
demonstrated that Kinect V2 performances are comparable to those achieved with the recent Kinect Azure in both upper limb tracking 
accuracy [14] and in shoulder angle estimation [42]. The Vicon system featured 10 infrared cameras, and the Vicon Upper Limb model 
consisted of 25 retroreflective markers placed on specific anatomical landmarks. To improve the accuracy and reliability of the tracked 
data of the markerless sensor, our software for acquisition provided real time monitoring of the tracked and inferred joints and only 
tracked data were considered. Moreover, the Kinect was placed following the Microsoft’s suggestions. The Kinect V2 camera was 
placed in front of the participant at about 2.0 m, at a height of approximately 1.5 m. Participants were instructed to perform a set of 
point-to-point movements, as motion primitives for daily life activities, following a similar protocol previously adopted for muscle 
synergy studies [43]. Movements consisted in reaching 9 targets on a circular board. Eight targets were placed at 8 cardinal points 
(North-East (NE), East (E), South-East (SE), South (S), South-West (SW), West (W), North-West (NW), North(N)) and one in the center 
of the board (labelled as O). Movements started from a reference position with the arm leaning along the body. First of all, the 
participant reached the point O from the reference position and went back to the initial position; then, all the other points were reached 
with the same modality. The target board was positioned according to 3 different orientation in order to include a more comprehensive 
volume of the upper limb workspace: laterally on the right (Right), frontally in horizontal position (Horizontal), and laterally on the 
left (Left). Each set of movements was performed with the right arm and was repeated twice and recorded simultaneously with the 
marker-based and markerless systems. The set-up for the acquisition is the same described in Scano et al. [21] and it is shown in Fig. 1. 

Fig. 1. Setup for the acquisition. Position of the markerless system with respect to the participant is reported from the top view (left panel) and from 
the lateral view (right panel). The three positions of the target are shown (horizontal, right, left) in both view; in the lateral view, the right panel is 
not shown for representation purposes. 
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2.3. Signal processing 

Vicon data consisted in 3D marker trajectories. They were sampled at 100 Hz and labelled in the Vicon Nexus software. The joint 
center of movement of shoulder, elbow, and wrist was reconstructed with the Vicon Upper Limb model for both the right and left arm. 
Kinect data consisted in 3D trajectories of 25 joints of the Microsoft SDK 2.0 skeleton, sampled at 30 Hz. Both marker-based and 
markerless data were filtered with a 3rd order low-pass Butterworth filter with cut-off frequency = 5 Hz, a typical cut-off frequency for 
kinematics [14,23,44]. Movements were segmented with a threshold algorithm on the time series of the velocity of the wrist. Forward 
phases (from the reference position to the target) and backward phases (from the target to the reference position) were identified for 
each movement. The onset and the offset of the phases were computed when wrist velocity exceeded the 5 % of the maximum absolute 
velocity of the wrist. Only the forward phases were considered for the analysis, as it is typically done in similar work regarding 
synergistic approaches. In fact, in forward phases, kinematic patterns are due to phasic muscle activity rather than relying on gravity 
[45]. 

Ten rotational degrees of freedom (DoFs) of the upper limb and upper body were computed from the position of the centers of 
rotation of the right upper limb, described in detail in Scano et al. [21]. In particular, DoFs considered were the shoulder elevation, 
shoulder plane of elevation, shoulder internal-external rotation (positive internal rotation), elbow flexion-extension, hand 
flexion-extension, hand deviation (positive radial deviation), scapular elevation, trunk torsion, trunk antero-posterior flexion, trunk 
medio-lateral flexion. All variables were computed in the subject specific reference system. In appendix A, equations for DoF 
computation are reported. All the time series of the forward phases of the DoF were segmented and each phase was resampled at 100 
samples in order to allow comparison between phases and participants. 

2.4. Synergy extraction 

Kinematic synergies were extracted separately from the makerless and marker-based datasets. The synergy extraction procedure 
consists in decomposing the input signals in time-invariant vectors (synergies) and in corresponding time-varying coefficients that 
modulate the activations of the synergy in the different movement phases. In this study, kinematic synergy extraction was performed 
with the Mixed-Matrix factorization (MMF) algorithm [32], that extends the standard Non Negative Matrix Factorization, allowing to 
decompose signals with negative components. All repetitions and board orientation were concatenated in a single matrix. Therefore, 
for each participant, the DoFs were arranged in a matrix with M rows and K • T • R columns, where M is the number of DoF and K is the 
number of tasks sampled with T samples each and R is the number of repetitions. In this study, K = 9 • 3, T = 100, R = 2, M = 10. 
Thus, input data was a 10 × 5400 matrix. The MMF algorithm decomposes the input signal as: 

KIN(t, k, r,m)=
∑S

i=1
ci

k,r(t) wi(m)

where wi are the time-invariant synergy vectors and ci the time-varying scalar activation coefficients for each synergy (i = 1 … S), and 
KIN(t, k, r,m) the angle of the DoF m at time t of repetition r in task k. Synergy extraction leads to the identification of S synergies (each 
a column vector with 10 components) and S • 5400 time-varying coefficients. Each spatial synergy was normalized by the Euclidean 
norm of that synergy and the temporal coefficients were normalized by the reciprocal of the norm. Therefore, in this synergy model, 
the original signal KIN can be reconstructed by multiplying the synergy matrix W by the matrix of the temporal coefficients C. To 
evaluate the quality of reconstruction of the input signal, the reconstruction R2 was computed as 1 − SSE

SST where SSE is the sum of the 
squared residuals and SST is the sum of the squared differences with the mean KIN vector [43]. The kinematic synergies were extracted 
from 1 to 10 number of synergies and the algorithm was repeated 20 times in order to avoid local minima and, for each number of 
synergies, the solution with the highest R2 was chosen. Since multiple criteria have been used in literature for the choice of the optimal 
number of synergies to extract, we extracted the same number of synergies from each participant to allow inter-individual comparison. 
The number of synergies were chosen as the lowest one that allow to reach at least the mean R2 (computed across participants) > 0.90. 

2.5. Synergy clustering 

In order to identify synergistic patterns common to all participants, synergies were grouped with the k-means clustering algorithm 
[46]. The set of kinematic synergies extracted from all the participants was used as input to the clustering algorithm and the number of 
clusters was increased from the number of extracted synergies until all synergies from the same participant were grouped in different 
clusters. The algorithm was repeated 200 times with a new initialization of initial centroids (mean synergy for each of the clusters) at 
each iteration with the same number of clusters and the solution that minimized the sum of Euclidean distances of each synergy with 
respect to the centroids was chosen. The procedure was done separately for marker-based and markerless datasets. 

2.6. Outcome measures and statistics 

The quality of the reconstruction was quantified with the R2 value for each dataset (marker-based and markerless). Each dataset 
was tested for normality using the Kolmogorov-Smirnov test and the R2 was compared with paired t-tests for each number of synergies. 
The level of significance (α) was set 0.05. The Bonferroni correction for multiple comparisons was adopted. Thus, since ten tests were 
performed, the α level was αcorrected = α/10 = 0.005. 
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The number of synergies to extract from each participant was defined as the lowest one for which the reconstruction R2 > 0.90. For 
each participant, synergies were matched by similarity between marker-based and markerless datasets and inter-subject similarity was 
computed as the cosine angle between matched synergies for the spatial synergies and as the Pearson’s correlation coefficients between 
the corresponding temporal coefficients. 

To evaluate the variability of synergies across participants, the mean intra-cluster similarity was computed as the mean similarity 
found across all the possible pairs of synergies belonging to the cluster. Similarity between spatial synergies was evaluated with the 
cosine angle, while similarity between temporal coefficients was computed as correlation coefficients. 

Finally, clusters from marker-based and markerless datasets were matched for similarity and inter-cluster similarity was computed 
between matched clusters with cosine angle for spatial synergies and with correlation coefficients for temporal coefficients. 

3. Results 

3.1. Articular angles 

In Fig. 2, mean angles computed from the tracked data of the two systems are shown. The mean angle errors for each DOF are ⩽5◦ in 
all sectors, except for the shoulder plane of elevation, shoulder internal/external rotation, hand deviation, and hand flexion that are 
between 5◦ and 15◦. These results confirmed the errors that were found in the previous study with the same setup [21]. 

3.2. Reconstruction R2 

In Fig. 3, the comparison of the reconstruction R2 for the marker-based and markerless datasets is shown. 
The reconstruction R2 was not statistically different when comparing marker-based and markerless datasets (p > 0.005, due to 

Bonferroni correction). The mean R2 exceeded 0.90 at 4 synergies with R2 = 0.94 for both marker-based and markerless datasets. 
Therefore, 4 synergies were extracted from each subject. 

3.3. Synergy extraction 

In Fig. 4, an example of 4 kinematic synergies extracted from subject 1 is shown for marker-based and markerless datasets. Syn-
ergies were matched by similarity. The corresponding temporal coefficients are reported in Fig. 5. 

In Fig. 6, an example of the original input signal and the reconstructed signal, computed as W•C with 4 synergies is shown for 
marker-based data. 

Fig. 2. Articular angles. Means and standard deviations of the 10 DOFs considered are reported for marker-based (in red) and markerless (in blue) 
datasets. Each movement phase is reported in columns, while the DOFs (angles in ◦) are reported in rows. Column Labels indicate the direction of 
motion: 0: center of the target; NE: North-East direction; E = East; SE = South-East; S = South; SW = South-West; W = West; NW = North-West; N =
North. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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In Fig. 7, an example of the original signal and the reconstructed signal with 4 synergies is shown for markerless data. 
In Table 1, intra-subject similarity of matched synergies and temporal coefficients between marker-based and markerless datasets 

are reported. 
Matched synergies showed a quite high to very high cosine similarity (>0.60) for the first three synergies, except for subject 8, 

while the last synergy showed lower similarity, even <0 for some participants. Similarity of matched temporal coefficients, instead, 
was different for each participant and, in some cases, did not correspond to the same trend of the similarity of the synergies. 

Fig. 3. Reconstruction R2. Comparison between reconstruction R2 of marker-based data (red) and markerless data (blue). The squares and the 
circles are the mean R2 across participants (marker-based and markerless, respectively) and the error bars represent the standard deviations. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Kinematic synergies. Example of kinematic synergies extracted from the marker-based (upper panel in red) and the markerless (lower panel 
in blue) datasets for one participant. Synergies were matched by similarity. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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3.4. Synergy clustering 

In Fig. 8, the results of the clustering procedure are shown for the marker-based system and the markerless system datasets and the 
corresponding temporal coefficients are reported in Fig. 9. In the marker-based dataset, 12 synergies were grouped in W1, 7 synergies 
in W2 and W3, 15 synergies in W4, 11 synergies in W5 and 8 synergies in W6. In the markerless dataset, 6 synergies were grouped in 
W1, 12 synergies in W2, 7 synergies in W3, 14 synergies in W4, 10 synergies in W5 and 11 synergies in W6. 

The first cluster W1 is characterized by a negative component of shoulder rotation associated with positive shoulder elevation and 
elbow flexion. The temporal activation C1 increases during the movement phase, with a maximum before the end of the phase, and it is 
higher in the Right sector. W2 was characterized by positive shoulder elevation and C2 increased with during the movement, rep-
resenting the shoulder elevation needed to reach the target. W3 shows positive shoulder plane of elevation, rotation and trunk torsion 
that was more active in the Left sector. W4 is characterized by the positive elbow flexion that has maximum activation at the half of the 
movement phase. W5 shows positive rotation coupled with positive shoulder elevation for marker-based data and with negative plane 
of elevation and positive elbow flexion for markerless data. C5 shows that the fifth cluster activates more at the end of the phase, except 
for the Horizontal sector in which the activation is almost constant. Finally, W6 is characterized by positive shoulder rotation and 
elbow flexion and negative hand deviation and hand flexion for marker-based data that is active more at the half of the movement 
phase and by positive shoulder elevation and rotation that is activated principally at the end of the phase. 

In Table 2, the similarity across synergies of the same clusters is reported for both Vicon and Kinect datasets. The similarity between 
matched clusters from marker-based and markerless datasets are also reported. 

Good similarity was found in each cluster of the spatial synergies for both marker-based and markerless data, while clusters of the 
temporal coefficients showed high similarity (>0.70) in five clusters, moderate similarity in one cluster (0.54) and low similarity 
(<0.50) in 6 clusters. The mean intra-cluster similarity was 0.75 (0.04) for marker-based data and 0.77 (0.03) for markerless data. The 
average similarity of random chosen pairs of synergies extracted was 0.15 (0.47) for marker-based data and 0.14 (0.50) for markerless 
data, so consistently lower than the obtained result. Inter-cluster similarity of matched cluster was high (⩾0.70) for the first three 
cluster, moderate (⩾0.60) for W4 and W5, and very low (0.10) for the last cluster. Clusters of temporal coefficients are matched with a 
high similarity in C1, C2, C3 and C4, moderate in C5 and very low in C6. 

Fig. 5. Temporal coefficients. Temporal coefficients extracted from the marker-based (in red) and the markerless (in blue) datasets for one 
participant. Temporal coefficients were matched based on synergy similarity. Movement phases are reported in columns, temporal coefficients C in 
rows for Right (first panel), Horizontal (second panel), and Left (last panel) movements. Column Labels indicate the direction of motion: 0: center of 
the target; NE: North-East direction; E = East; SE = South-East; S = South; SW = South-West; W = West; NW = North-West; N = North. Repetitions 
are averaged for visualization purposes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

C. Brambilla and A. Scano                                                                                                                                                                                          



Heliyon 10 (2024) e32042

8

4. Discussion 

4.1. Main findings 

In this study, kinematic synergies were extracted from 3D joint tracking data of fifteen participants performing upper limb 
movements in multiple directions during simultaneous recording from the markerless Kinect V2 and the marker-based Vicon system. 
The extracted kinematic synergies were compared between the two systems. Four synergies were extracted from all participants for 
both markerless and marker-based data, corresponding to a reconstruction accuracy (R2) of the original input kinematics waveforms of 
at least 0.90. 

All participants, except one, showed high similarity for at least three synergies between markerless and marker-based data, 
indicating that markerless systems capture kinematic synergies very similar to the gold standard. These similarities are present also in 
the temporal coefficients, that showed high correlations between matched synergies. Cluster analysis found six mean synergies for both 
markerless and marker-based data, showing good intra-cluster similarity (i.e., synergies could be well generalized across subjects). 
Five clusters were matched with good similarity (⩾60) and only one cluster was not matched well. The first and second cluster de-
scribes the negative rotation of the shoulder and the shoulder elevation, respectively. The third cluster represents all the three DoFs of 
the shoulder and trunk torsion, the forth cluster represents mainly the elbow flexion and the fifth cluster is mainly characterized by the 
positive shoulder rotation. The last cluster is the most different between marker-based and markerless data: for the data of the marker- 
based system, the sixth mean synergy is characterized by shoulder rotation and elbow flexion with negative hand flexion and devi-
ation, while for data from the markerless system, the sixth synergy shows shoulder elevation and rotation. 

4.2. Markerless vs. marker-based systems for extracting kinematic synergies 

Assuming the marker-based system as a gold standard, the differences between the synergies extracted from markerless and 
marker-based systems may be related to some tracking limitations of the markerless camera. A known limitation of the markerless 
system regards fine and small range movements that are not always clearly detected. In our tests, trunk movements have a limited 
range of motion and may have not been clearly computed. Indeed, this limitation can be observed in low correlations between syn-
ergies extracted from the two systems in some participants. The main mismatch in these synergies was related to a disagreement in 
hand flexion or deviation, shoulder internal/external rotation and trunk torsion that cannot be clearly and correctly detected by the 
markerless sensor. This limitation is reflected in the little contribution of trunk flexion and in some disagreements in trunk torsion 
between marker-based and markerless data in clusters W1, W4 and W5. Moreover, the tracking of wrist/hand joints are based on few 

Fig. 6. Marker-based reconstructed signal. Original signal (in gray) and reconstructed signal with 4 synergies (in red) are reported for marker-based 
data. Each movement phase is reported in columns, while the DoFs (angles in ◦) are reported in rows. Column Labels indicate the direction of 
motion: 0: center of the target; NE: North-East direction; E = East; SE = South-East; S = South; SW = South-West; W = West; NW = North-West; N =
North. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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anatomical landmarks and therefore, estimation of hand/wrist degrees of freedom can be unstable. It follows that hand deviation and 
flexion may have not been clearly detected, as already observed in previous work [19]. Coherently, we found that in cluster W2, W4 
and W5 the hand DoFs of the markerless sensor had higher contributions with respect to the marker-based system, since the instability 
of hand and wrist joints resulted in wider movements of the hand. The instability of the wrist may influence also the elbow flexion and, 
therefore, this justifies the higher amplitude of the elbow flexion in W2, W3 and W5 for markerless data with respect to marker-based 
data. Finally, the arm performing the movement in the Left sector may have occluded some joints as already reported in the literature 
[47] or the target in the Horizontal sector could have occluded the lower limb affecting the overall accuracy [23]. Despite these sources 
of errors, the markerless sensor showed to be feasible for the extraction of kinematic synergies. 

Fig. 7. Markerless reconstructed signal. Original signal (in gray) and reconstructed signal with 4 synergies (in blue) are reported for markerless 
data. Each movement phase is reported in columns, while the DoFs (angles in ◦) are reported in rows. Column Labels indicate the direction of 
motion: 0: center of the target; NE: North-East direction; E = East; SE = South-East; S = South; SW = South-West; W = West; NW = North-West; N =
North. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Intra-subject similarity of matched synergies and temporal coefficients between marker-based and markerless datasets are reported for all 15 par-
ticipants. Mean and standard deviations for each participant are reported.  

Markerless vs. marker-based system: intra-subject similarity 

Kinematic synergies (cosine similarity)  

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 

W1 0.93 0.82 0.89 0.97 0.89 0.95 0.72 0.81 0.79 0.90 0.99 0.87 0.98 0.90 0.80 
W2 0.88 0.82 0.88 0.86 0.79 0.91 0.70 0.72 0.76 0.67 0.95 0.85 0.84 0.89 0.75 
W3 0.87 0.81 0.79 0.84 0.70 0.91 0.67 0.22 0.75 0.61 0.93 0.84 0.82 0.85 0.70 
W4 0.79 − 0.53 0.60 0.71 − 0.05 0.86 0.46 − 0.33 0.42 − 0.14 0.92 0.63 0.30 0.47 0.52 

mean 0.87 0.48 0.79 0.84 0.58 0.91 0.64 0.35 0.68 0.51 0.95 0.80 0.74 0.78 0.69 
std 0.06 0.67 0.13 0.11 0.43 0.03 0.12 0.53 0.17 0.45 0.03 0.11 0.30 0.20 0.12 

Temporal coefficients (Pearson’s coefficient) 

C1 0.96 0.18 0.69 0.88 0.89 0.91 0.75 0.94 0.79 0.96 0.98 0.86 0.94 0.76 0.90 
C2 0.85 0.83 0.70 0.81 0.87 0.82 0.63 0.73 0.83 0.35 0.79 0.53 0.91 0.93 0.73 
C3 0.32 0.81 0.95 0.71 0.74 0.89 0.76 − 0.01 0.80 0.74 0.97 0.89 0.82 0.94 0.90 
C4 0.92 − 0.03 0.61 0.77 0.33 0.70 0.80 0.22 0.61 − 0.06 0.77 0.49 0.31 0.70 0.75 

mean 0.76 0.45 0.74 0.79 0.71 0.83 0.74 0.47 0.76 0.50 0.88 0.69 0.75 0.83 0.82 
std 0.30 0.44 0.15 0.07 0.263 0.10 0.06 0.44 0.10 0.45 0.11 0.21 0.29 0.12 0.09  
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4.3. Comparison with previous work based on kinematic synergies in the upper limb 

In literature, kinematic synergies were mainly used for the analysis of motor control of hand grasps, since they are the most suitable 
way for investigating synergistic control when a large number of degrees of freedom is involved, especially on the human hand [26, 
39]. However, few studies extracted kinematic synergies in upper limb reaching movements. In a previous study, kinematic synergies 
were extracted with PCA from data collected with IMU in multi-joint upper limb movements, finding that only 4 synergies were needed 
to explain the 94 % of the VAF, which is comparable to our results [30]. These 4 synergies represent the main kinematic pattern of the 
movements and higher order synergies described fine motions of specific phases. Similar results were found also in reach-to-grasp 
movements in which three synergies reconstructed the 86 % of the total variance by describing the main patterns of the move-
ment, such as elbow flexion, shoulder elevation or shoulder angles related to trunk rotation [48]. Another study, instead, found that 
only three kinematic synergies are needed to explain the 95 % of variance in manipulation tasks with 12 joints analyzed [49], while we 
found that four synergies explain about 94 % of the VAF. Lambert-Shirzad & Van der Loos found that 3 to 4 kinematic synergies are 
needed for explaining the 90 % of the VAF using 10 DoFs [25], similarly to our results. However, their synergies seemed to be less 
sparse than our synergies and this may be related to the different factorization method used. 

4.4. Novelties and applications 

The MMF algorithm for kinematic synergy extraction extends the previous factorization algorithms that are usually employed. 
Since kinematic data can be either positive and negative to represent the extension and the flexion of a joint, the NMF algorithm is not 
the most suitable way for the extraction of kinematic synergies as it has a constrain of non-negativity of the input data. PCA, instead, 
allows the factorization of positive and negative data, but it adds a constraint of orthogonality between the extracted synergies that 
does not adhere to the physiological needs [50]. MMF algorithm is also suitable for performing kinematic synergy extraction by 
replacing angular displacements with angular velocities or accelerations, since they are positive and negative signals. 

This is the first time that the validity of markerless systems is demonstrated and quantified also for motor control analysis with 
kinematic synergies. Synergies can be used as biomarker for the assessment of neuromotor diseases, such as post-stroke patients, and 
for the evaluation of the motor recovery. In clinical context, the analysis of synergies (muscle and/or kinematic) assesses how the 
motor control of patients is altered with respect to healthy subjects. Patients with impaired motor control, such as post-stroke patients 
and with Parkinson’s disease, showed altered synergistic patterns, reflecting an altered motor control. In particular, it has been 
demonstrated that muscle synergies changes in number and composition with stroke, depending also on the severity of motor 
impairment [51]. Kinematic synergies may allow to investigate motor control without the need of the EMG signal and with the advent 
of markerless sensors, this kind of assessment can be carried in domestic context. In this way, the motor control assessment can be 
performed during telerehabilitation, providing more information than clinical scale only. Kinematic synergies can be used to evaluate 

Fig. 8. Synergy clustering. Results of the synergy clustering procedure are reported for marker-based (upper panel in red) and markerless (lower 
panel in blue) system. Bold lines represent the mean synergy of the cluster while gray lines represent synergies of all participants. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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if the rehabilitation (in clinics or at home) is having positive effects on patients, i.e. they are recovery their motor capability and 
coordination. In clinics, the motor performance is evaluated with clinical scales, and with some kinematic parameters, like ROM or 
smoothness metrics. However, this kind of assessments may be subject to biases and low sensitivity and they evaluate the kinematic 
outcome variables as a result of synergistic coordination. Thus, they cannot describe the underlying modular organization of the motor 

Fig. 9. Temporal coefficients clustering. Mean temporal coefficients of the clusters are reported for marker-based (in red) and markerless (in blue) 
system. Movement phases are reported in columns, temporal coefficients C in rows for Right (first panel), Horizontal (second panel), and Left (last 
panel) movements. Column Labels indicate the direction of motion: 0: center of the target; NE: North-East direction; E = East; SE = South-East; S =
South; SW = South-West; W = West; NW = North-West; N = North. Repetitions are averaged for visualization purposes. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Similarity of clustered synergies and temporal coefficients are reported for marker-based and markerless datasets. Mean and standard deviations for 
each cluster are reported. Inter-cluster similarity is reported between matched clusters for spatial synergies and temporal coefficients.  

Intra-cluster cosine similarity (spatial synergies) and Pearson’s correlation (temporal coefficients)  

W1 W2 W3 W4 W5 W6 
marker-based 0.76 (0.13) 0.80 (0.11) 0.74 (0.17) 0.77 (0.19) 0.77 (0.18) 0.67 (0.24) 
markerless 0.77 (0.13) 0.79 (0.15) 0.80 (0.15) 0.78 (0.12) 0.72 (0.18) 0.76 (0.14)  

C1 C2 C3 C4 C5 C6 
marker-based 0.28 (0.25) 0.79 (0.12) 0.88 (0.07) 0.48 (0.24) 0.43 (0.23) 0.31 (0.28) 
markerless 0.54 (0.23) 0.86 (0.08) 0.88 (0.05) 0.46 (0.19) 0.40 (0.15) 0.73 (0.11) 

Kinect vs. Vicon: inter-cluster cosine similarity (spatial synergies) and Pearson’s correlation (temporal coefficients) 

Spatial synergies 0.76 0.75 0.70 0.69 0.60 0.10 
Temporal coefficients 0.71 0.93 0.99 0.92 0.67 0.004  
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control that in neurological patients should be the main focus of interventions [35]. The recovery of physiological motor modules is 
evidence of motor recovery and, therefore, kinematic synergy analysis adds a significant value to the standard protocols. Moreover, the 
possibility to use this method with portable tracking systems allows clinicians to assess motor recovery of patients remotely, since only 
a markerless system is needed. 

Therefore, changes in the synergistic patterns can give insights on the motor recovery process of patients. Kinematic synergies 
reflect joint coordination and how the DOFs are involved in a motor task. Patients with impaired motor control show abnormal 
movements, that may result in decreased ROM or compensatory strategies, as well as reduced smoothness. All these alterations relate 
to changes in synergistic patterns with respect to physiological motion. Thus, several groups of patients may show altered synergistic 
control. Stroke patients have different muscle synergy composition and/or timing, depending on the severity of motor disability [51], 
and this should reflect in altered kinematic synergies too. In particular, mild patients preserve synergy structures but their activations 
are altered, while severe post-stroke patients reduce the number of synergies as a result of the merging of motor modules [52]. Patients 
may show different kinematic synergies because of a reduced ROM in some joints but also because some DOFs may be involved in the 
task in an abnormal way. This can happen when patients compensate their motor disability with other movements, such as trunk 
movements, to accomplish a task [53]. Indeed, in patients with impaired motor control, the number of muscle synergies may increase 
due to a fractionation of the physiological patterns into different modules [51], that can be related to the compensatory motor stra-
tegies used to compensate the impaired movement at distal joints [54]. Kinematic synergies, therefore, can identify which DOF is 
abnormally active, helping in the discrimination of compensatory movements from motor recovery, which sometimes cannot be 
assessed with clinical scales only [55,56]. Moreover, further studies will investigate at what extent muscle and kinematic synergies 
relate to each other; using kinematic synergies coupled with low-cost devices might be advantageous in some scenarios due to much 
faster set-up procedures and the fact that a multi-channel EMG is not needed. The possibility of extracting kinematic synergies from 
markerless systems paves the way for a more easy and portable application of synergy analysis, allowing to study motor patterns in 
more flexible scenarios, like in small clinics or at home. In this way, this advanced analysis can be transferred to the clinical routine, 
avoiding time-consuming setup preparations, saving costs for equipment and trained operators [57]. Therefore, the advance technique 
of synergy analysis can be performed in fast clinical assessment, accessible for more clinics. Moreover, since no sensors have to be 
placed on the body, markerless systems are more comfortable for patients, providing a better experience during the assessment [58]. In 
this way, synergy analysis can be also employed to assess motor control improvements during at home rehabilitation, guaranteeing 
continuity of care [59]. Furthermore, this can be extended to the coupled analysis of muscular and kinematic signal for the 
kinematic-muscular synergy extraction [33]. 

4.5. Limitations and future work 

Although the numerous novelties, this study has some limitations. First of all, only ten degrees of freedom of only one upper limb is 
studied. Future application will include more joints, such as both upper limbs or total body, to make a more comprehensive analysis of 
the motor control. Moreover, only point-to-point reaching movements were examined. Even though the considered movements 
include variability since multiple directions and repetitions were included, future work will involve more gestures that can resemble 
daily life functional movements, such as full body movements, bilateral movements, reaching in more directions, and others. More-
over, more DoFs with a wider range of motion might be included in functional and total body movements. In fact, since kinematic 
synergies describe how multiple joints are coordinated, the more DOFs are involved in the task, the more comprehensive can be the 
characterization of movement. Indeed, neurological patients may show impairments in the interlimb coordination and asymmetry in 
bilateral movements [60,61]. Therefore, including more joints from different limbs in the assessment can provide information also on 
the interlimb coordination. Then, including also functional movements will provide a description of the motor control in a real sce-
nario, with the only limit of fine manipulation that cannot be evaluated with the Kinect systems. Furthermore, only healthy partici-
pants were recruited in this study to assess the performance of the markerless tracking system in the extraction of kinematic synergies. 
It would be worth to recruit also patients in order to analyze the changes in motor control. Extending the kinematic synergy assessment 
to patients, in particular those with impaired motor coordination, might give insights on the motor control that cannot be assessed with 
kinematic data only, as already shown with muscle synergies in stroke [62] and patients with Parkinson’s disease [63]. Then, in this 
study, the Kinect V2 was used as markerless system for motion tracking. However, a new generation of Kinect sensor (Azure Kinect) 
was released and, therefore, future work may use the new markerless tracking sensors to further improve the tracked data. Finally, 
multiple technologies could be integrated to compensate the limitations of the markerless sensor, such as IMUs or instrumented gloves, 
and to extend the analysis to multi-domain variables. Indeed, kinematic data could be associated with muscular data with the 
extraction of kinematic-muscular synergies [32,33] for a more comprehensive description of the motor control of the upper limb 
movements. 

5. Conclusions 

In this study, the performance of a markerless sensor was compared to the gold standard marker-based system with the extraction of 
kinematic synergies from 10 DoFs computed in multi-direction upper limb movements. The MMF algorithm was used for the extraction 
of synergies, that allows to factorize positive and negative signals. Good matching was found between synergies extracted from 
markerlss and from marker-based data, showing that the markerless sensor can be feasible for the kinematic synergy analysis, 
providing an advanced tool for the evaluation of synergistic control. Our results showed the potentiality of applying synergy analysis to 
markerless tracking systems, allowing detailed analysis for research in home and clinical scenarios. 
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Appendix A 

Denoting: ̂t = vertical unit vector representing the trunk, pointing upwards; ŝ = unit vector from left to right shoulder; f̂ = unit 
vector orthogonal to the trunk, pointing forwards; â = arm unit vector from shoulder to elbow joint; âf = forearm unit vector from 
elbow to wrist joint; n̂1 = unit vector orthogonal to t̂ and ŝ, pointing forward; n̂2 = unit vector orthogonal to n̂1 and t̂, pointing 
laterally; ŵ2 = unit vector connecting medial to lateral styloid; ŵ1 = unit vector orthogonal to ŵ2 and âf ; ĥ1 = hand unit vector from 
wrist to hand joint; ̂h2 = unit vector orthogonal to ̂h1, pointing medially; âp = arm vector projected on a plane orthogonal to the vector 
t̂ ; âfp = forearm vector projected on a plane orthogonal to the vector â; ûhandΦ = projection of ĥ1 on the plane orthogonal to the vector 
ŵ1; ̂uhandπ = projection of ̂h1 on a plane orthogonal to the vector ŵ2; ̂sʹ is the vector connecting the trunk to the right glenohumeral joint 
center projected on the plane orthogonal to the vector ̂f ; ̂t sag = projection of vector ̂t on the sagittal plane, orthogonal to the vector ̂s in 
the first frame; ̂t front = projection of vector ̂t on the frontal plane, orthogonal to the vector f̂ in the first frame. 

shoulder elevation= acos(â • (− t̂))

shoulder plane of elevation= acos[âp • (− f̂ )] − 90  

shoulderinternal
/

externalrotation= acos
(

âfp • n̂2

)
− 90  

elbow flexion= acos(â • âf )

hand deviation= acos(ûhandΦ • ŵ2) − 90  

hand flexion= acos(ûhandπ • ŵ1) − 90  

scapular elevation= acos(ŝʹ • ŝ)

trunk torsion= acos[ŝ • (− f̂ )] − 90  

trunkantero
/

posteriorflexion= acos
(
t̂ sag • f̂

)

trunk medio
/

lateral flexion= acos
[
t̂ front • (− ŝ)

]
− 90  
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