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A B S T R A C T   

Background: Clinical spectrum of novel coronavirus disease (COVID-19) ranges from asymptomatic infection to 
severe respiratory failure that may result in death. We aimed at validating and potentially improve existing 
clinical models to predict prognosis in hospitalized patients with acute COVID-19. 
Methods: Consecutive patients with acute confirmed COVID-19 pneumonia hospitalized at 5 Italian non-intensive 
care unit centers during the 2020 outbreak were included in the study. Twelve validated prognostic scores for 
pneumonia and/or sepsis and specific COVID-19 scores were calculated for each study patient and their accuracy 
was compared in predicting in-hospital death at 30 days and the composite of death and orotracheal intubation. 
Results: During hospital stay, 302 of 1044 included patients presented critical illness (28.9%), and 226 died 
(21.6%). Nine out of 34 items included in different prognostic scores were independent predictors of all-cause- 
death. The discrimination was acceptable for the majority of scores (APACHE II, COVID-GRAM, REMS, CURB-65, 
NEWS II, ROX-index, 4C, SOFA) to predict in-hospital death at 30 days and poor for the rest. A high negative 
predictive value was observed for REMS (100.0%) and 4C (98.7%) scores; the positive predictive value was poor 
overall, ROX-index having the best value (75.0%). 
Conclusions: Despite the growing interest in prognostic models, their performance in patients with COVID-19 is 
modest. The 4C, REMS and ROX-index may have a role to select high and low risk patients at admission. 
However, simple predictors as age and PaO2/FiO2 ratio can also be useful as standalone predictors to inform 
decision making.   

1. Introduction 

The spectrum of disease in patients affected by SARS-CoV-2 infection 
ranges from asymptomatic infection to critical illness. Patients with 
coronavirus disease 19 (COVID-19) admitted to the hospital require 
assessment for short-term prognosis to optimize clinical management 
and resources allocation. During the first wave, in-hospital mortality 
ranged from 21% to 29%, and admission to intensive care units (ICUs) 
from 14% to 16% [1–4]. It should be noted that the efficacy of 

immunomodulatory and antiviral agents in reducing death or adverse 
outcome is still debated in COVID-19 patients, mainly when used in 
advanced phases of the disease [5–7]. Despite vaccination and spreading 
of several new variants may have impacted on severity of the disease, 
caution is required in inferring a reduced severity of COVID-19 infection 
[8,9]. In this view, the opportunity of early identification of patients that 
will progress to severe disease would allow tailored treatment strategies. 

Clinical prediction models have been specifically developed to pre-
dict prognosis in patients with COVID-19; in addition, several scores 
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validated in patients with no-COVID-19-related lung failure have been 
applied to patients with COVID-19 [10,11]. Unfortunately, currently 
available evidence showed poor performance for all these models to 
predict prognosis in patients with COVID-19 and no incremental value 
was observed for scores in comparison to simple univariable predictors 
[3,10]. Among univariable predictors, oxygen saturation on room air 
and patient age have been found to be strong predictors of deterioration 
and of mortality, respectively [10]. In addition, many of the existing 
COVID-19 clinical prediction models have a high risk of bias due to poor 
reporting, over-estimation of predictive performance, and lack of 
external validation [4,12]. 

For these reasons, further external validation is required before 
moving these scores to the clinical use. 

We performed a multicenter cohort study to identify predictors of 30- 

day in-hospital death or critical illness in patients admitted to hospital 
for COVID-19 pneumoniae and to evaluate the accuracy of available 
clinical prediction models in this setting. 

2. Materials and methods 

2.1. Patients and study design 

Data from retrospectively collected cohorts of patients enrolled at 5 
Italian non-ICU centers (Perugia, Pisa, Cesena, Empoli and Terni) were 
merged in a collaborative database. Consecutive patients to the study 
centers (3 Emergency Departments, 2 Internal Medicine wards, 1 In-
fectious Disease unit) with confirmed COVID-19 pneumoniae from 
March 3rd, 2020 to March 16th, 2021 were evaluated for inclusion in the 

Table 1 
Parameters included in the prognostic scores.   

Score  

APACHE- 
II 

COVID- 
Gram 

CSS CURB- 
65 

4C HACOR MEWS NEWS- 
II 

qSOFA REMS ROX 
index 

SOFA 

Age ✓ ✓ ✓ ✓ ✓     ✓   
Gender     ✓        
Body temperature ✓      ✓ ✓     
History of severe organ failure or 

immunocompromise 
√§

Coronary heart disease   ✓          
Cancer  ✓           
Number of comorbidities  √◦ √^        
Clinical presentation             
Shortness of breath  ✓           
Hemoptysis  ✓           
Systolic blood pressure    ✓   ✓ ✓ ✓    
Mean blood pressure ✓         ✓  √* 
Heart rate ✓     ✓ ✓ ✓  ✓   
Respiratory rate ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
SpO2     ✓     ✓ ✓  
Need for oxygen        ✓     
Mechanical ventilation            ✓ 
FiO2           ✓ ✓ 
GCS ✓    ✓ ✓   ✓ ✓  ✓ 
AVPU score       ✓      
Unconsciousness  ✓      ✓     
Confusion    ✓         
Laboratory findings             
Platelet, mmc            ✓ 
White blood cells, mmc ✓            
Lymphocyte count   ✓          
N/L ratio  ✓           
Hematocrit ✓            
Urea    ✓ ✓        
Creatinine ✓           ✓ 
Lactate deidrogenase  ✓           
Bilirubin  ✓          ✓ 
pH ✓     ✓       
PaO2 √+ ✓ 
PaO2/FiO2      ✓       
AaDO₂ √+

Hypercapnia        ✓     
Sodium ✓            
Potassium ✓            
C-RP     ✓        
Procalcitonin   ✓          
D-dimer   ✓          
Chest Xray abnormalities  ✓           

AaDO2 = alveolar-arterial oxygen gradient; AVPU = Alert, Verbal, Pain, Unresponsive scale; C-RP=C reactive protein; FiO2 = fraction of inspired oxygen; GCS =
Glasgow Coma Scale; N/L = neutrophil to lymphocyte ratio; PaO2 = arterial partial pressure of oxygen; SpO2 = oxygen saturation. 
§ Heart failure class IV, cirrhosis, chronic lung disease, or dialysis-dependent. 
+ AaDO₂ or PaO₂ (for FiO₂≥0.5 or <0.5, respectively). 
◦ chronic obstructive pulmonary disease (COPD), hypertension, diabetes, coronary heart disease, chronic heart disease, chronic kidney disease, cancer, cerebral 
vascular disease, hepatitis B, and immunodeficiency. 
^ Chronic cardiac disease, chronic respiratory disease -excluding asthma-, chronic renal disease, mild to severe liver disease, dementia, chronic neurological conditions, 
connective tissue disease, diabetes mellitus, HIV or AIDS, and malignancy. 
* Mean arterial pressure OR administration of vasoactive agents required. 
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study. 
Inclusion criteria were:  

- age 18 years or older; 
- need for oxygen support or COVID-19 pneumonia (clinical or im-

aging diagnosed);  
- SARS-CoV2 infection confirmed by RT-PCR throat/nasal swab. 

Exclusion criteria were: 

- patients intubated before hospital arrival or intubated in the Emer-
gency Department;  

- insufficient data to calculate at least one risk stratification score. 

The study was approved by the Ethical Committee and/or Institu-
tional Review Boards of the participating centers. 

Informed consent was obtained in accordance with current regula-
tions for observational studies. 

2.1.1. Study outcome 
The study primary outcome was all-cause-death occurring within 30 

days from hospital admission. Secondary outcome was critical illness 
defined as the composite of all-cause-death or orotracheal intubation. 
Study outcomes were considered occurring within hospital stay or at a 
maximum of 30 days whichever comes first. 

2.2. Measurements 

The following risk stratification scores were calculated for each pa-
tient at admission: APACHE II, COVID-GRAM, CSS, CURB-65, 4C, 
HACOR, MEWS, NEWS II, qSOFA, REMS, ROX-index, SOFA (Table 1) 
[13–22]. 

2.3. Data collection 

For included patients the following data were collected: age, gender, 
comorbidities (cardiovascular disease [coronary or peripheral artery 
disease], type 2 diabetes, chronic obstructive pulmonary disease 
[COPD], cancer, kidney disease), number of comorbidities, clinical 
presentation at admission (hemoptysis, shortness of breath, body tem-
perature, systolic and diastolic blood pressure [mmHg], heart rate [beats 
per minute], respiratory rate [breaths per minute], oxygen saturation, 
fraction of inspired oxygen [FiO2], respiratory index [oxygen saturation 
to respiratory rate ratio] [23], Glasgow coma scale [GCS], confusion), 
chest x-ray abnormalities, laboratory findings (platelet count, white 
blood cells count, neutrophils and lymphocytes count, haematocrit, 
urea, creatinine, bilirubin, lactate dehydrogenase, electrolytes, d-dimer, 
C-reactive protein, and arterial partial pressure of oxygen [PaO2] 
values), date of hospital admission, date of discharge, date of death, date 
of endotracheal intubation. 

2.4. Statistical analysis 

Main baseline characteristics of patients were reported as fre-
quencies for categorical data and as mean ± standard deviation (SD) for 
continuous data. The predictive value for in-hospital death at 30 days 
and for critical illness of the individual items included in prognostic 
scores and models was assessed by Cox proportional Hazard model. 
Separate multivariable analyses were performed - to verify the inde-
pendent prognostic value of the included items; results were reported as 
hazard ratio (HR) at 95% confidence interval (CI). 

Information on candidate predictors was collected at admission; 
however, where information on physiological or laboratory measures 
was not available on the day of admission, measures recorded up to 24 h 
after admission were used. Patients were excluded from analyses when 
candidate predictors were missing. 

Irrespective of these results, the performance of each risk stratifica-
tion score (APACHE II, COVID-GRAM, CSS, CURB-65, 4C, HACOR, 
MEWS, NEWS II, qSOFA, REMS, ROX-index, and SOFA) at the estab-
lished cut-off value was assessed. 

In addition to validating existing scores, independent predictors of 
in-hospital death at 30 days at multivariate analysis were combined to 
derive a new prognostic model. According to the presence of a signifi-
cant association with study outcomes and to the magnitude of the effect 
(β-coefficient), candidate variables were arranged in new candidate 
models. The final model was chosen according to the best performance. 
The most discriminant cut-off was determined by calculating the You-
den’s index. Bootstrapping analysis (2000 samples, bias corrected and 
accelerated 95% CIs) of the new models was performed. 

The following parameters were evaluated to assess performance of 
clinical models and scores: discrimination by calculating the area under 
the receiver operating characteristic curve (AUC) at 95% CI, calibration 
by applying the Hosmer-Lemeshow test (p > 0.05 showed no significant 
differences between observed and predicted values), sensitivity, speci-
ficity, positive and negative predictive value. The risk for in-hospital 
death at 30 days and for critical illness by risk categories according to 
individual models/score was calculated using Cox proportional hazard 
model. Survival was reported by Kaplan-Meier curves and log-rank test. 

All tests were 2-sided and statistical significance was accepted if p 
value < 0.05. 

We followed the TRIPOD statement for reporting [24]. 
Statistical analysis was performed with SPSS software (version 25). 

3. Results 

Overall, 1047 patients were evaluated and 3 excluded for lack of 
baseline information. Thus, 1044 patients were included in the study: 
mean age 68.3 ± 15.6 years, 62.1% were males. Characteristics of the 
included population at admission are reported in Table 2. 

During a mean hospital stay of 15.5 days, in-hospital death at 30 days 

Table 2 
Baseline characteristics of included patients.  

Baseline characteristics Population (n = 1044) 

Age, years mean, SD 68.3 15.6 
Male, n/N, % 648/1044 62.1 
Main comorbidities 
Cardiovascular disease, n/N, % 331/1044 31.7 
Type 2 diabetes, n/N, % 187/1044 17.9 
COPD, n/N, % 123/1044 11.8 
Cancer, n/N, % 140/1043 13.4 
Clinical presentation 
Shortness of breath, n/N, % 472/839 56.3 
Hemoptysis, n/N, % 10/839 1.2 
Fever, n/N, % 274/751 36.5 
Systolic blood pressure, mmHg mean, SD 131 19.6 
Diastolic blood pressure, mmHg mean, SD 76 12.0 
Heart rate, beats per minute mean, SD 86 16.9 
Respiratory rate, breaths per minute mean, SD 22 6.0 
PaO2/FiO2, mmHg mean, SD 272 103 
SatO2, % mean, SD 92.3 6.4 
PaO2, mmHg mean, SD 73.9 31.0 
Respiratory index, mean, SD 4.7 1.3 
Laboratory findings 
Platelet, mmc mean, SD 212689 96818 
White blood cells, mmc mean, SD 7917 4477 
N/L ratio, mean, SD 8.6 10.8 
Hematocrit, % mean, SD 38.6 5.4 
Urea, mg/dl mean, SD 45.9 36.1 
Creatinine, mg/dl mean, SD 1.17 0.91 
D-dimer, ng/ml mean, SD 2091 4827 
Lactate deidrogenase, U/l mean, SD 377 242 

COPD = chronic obstructive pulmonary disease; PaO2/FiO2 = ratio of the 
arterial partial pressure of oxygen to the fraction of inspired oxygen; PaO2 =
arterial partial pressure of oxygen; SpO2 = oxygen saturation; respiratory index 
= ratio of the oxygen saturation to the respiratory rate. 
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occurred in 226 patients (21.6%) (Fig. 1 A) and critical illness in 302 
(28.9%). 

Predictors of in-hospital death at 30 days at univariate analysis are 
reported in e-Table 1. Association of age or respiratory rate at increasing 
cutoffs and of PaO2, PaO2 to FiO2 ratio, and oxygen saturation at 
decreasing cutoffs with death are reported in Fig. 1 B–F. 

Out of 34 items included in the 12 assessed scores, age ≥60 years (HR 
4.13, 95% CI 1.49 to 11.43), the presence of at least 2 comorbidities (HR 
2.43, 95% CI 1.57 to 3.76), GCS lower than 15 (HR 1.94, 95% CI 1.07 to 
3.54), mean blood pressure lower than 70 mmHg (HR 4.19, 95% CI 1.50 
to 11.71), respiratory rate higher than 20 Bpm (1.58, 95% CI 1.00 to 
2.50), PaO2 to FiO2 ratio lower than 200 mmHg (HR 1.88, 95% CI 1.22 
to 2.89), PaO2 lower than 60 mmHg (HR 1.60, 95% CI 1.05 to 2.45), 
oxygen saturation lower than 90% (HR 1.73, 95% CI 1.12 to 2.69), and 
respiratory index lower or equal to 3.8 (HR 1.82, 95% CI 1.19 to 2.80) 
were identified as independent predictors of in-hospital death at 30 days 
(Table 3, e-Table 2). 

Age ≥60 years (HR 2.57, 95% CI 1.27 to 5.21), the presence of at 
least 2 comorbidities (HR 1.93, 95% CI 1.32 to 2.83), respiratory rate 
higher than 20 Bpm (HR 1.63, 95% CI 1.07–2.46), PaO2 lower than 60 
mmHg (HR 1.67, 95% CI 1.15 to 2.43), oxygen saturation lower than 
92% (HR 1.83, 95% CI 1.26 to 2.67), and respiratory index lower or 
equal to 3.8 (HR 1.72, 95% CI 1.19 to 2.50) were independent predictors 
of 30-day critical illness (e-Table 3 and e-Table 4). 

3.1. Performance of existing risk stratification scores 

The ability to discriminate categories of patients with different risk of 
in-hospital death at 30 days (discrimination) was acceptable for nine out 
of the 12 assessed scores (Table 4 and Fig. 2). The APACHE-II, 4C and 
REMS scores showed the highest AUC values, while the HACOR, MEWS 
and qSOFA the lowest. The established cut-offs of the individual scores 
showed a high sensitivity for REMS (100.0%) and 4C (98.9%) scores, 
and a high specificity for ROX-index (98.3%) and SOFA (96.6%) scores. 
The negative predictive value was high for REMS (100.0%) and 4C 
(98.7%), the positive predicted value overall was poor with the highest 
value for the ROX-index (75.0%). 

However, small proportions of patients were categorized at high risk 
for death according to the qSOFA, SOFA score and the ROX-index; the 
REMS score identified only a minority of patients as being at low risk. 
The established cut-offs were significantly associated with the risk for in- 
hospital death at 30 days as shown in Table 4 and e-Fig. 1. The number 
of patients included in the high-risk categories varied widely across 
scores from 5.0% in the ROX-index to 91.4% in the REMS. Similarly, in- 
hospital death at 30 days in high-risk category ranged from 27.9% in the 
REMS to 75.0% in the ROX-index and in the low-risk category from 0 in 
the REMS to 21.5% in the ROX-index. 

No significant differences between observed and predicted events 
were found for CSS, 4C, HACOR, NEWS-II, q-SOFA, REMS, ROX-index 
and SOFA scores, while calibration was poor for the APACHE-II, 
COVID-GRAM, CURB-65 and MEWS scores. 

The 4C score was confirmed to have the highest discrimination in 
predicting critical illness: AUC 0.770, 95% CI 0.720 to 0.820 (e-Table 5). 
Similarly, the 4C and the REMS showed a high negative predictive value: 
96.2% and 97.4%, respectively. ROX-index showed the best specificity 
and positive predictive value: 99.1% and 87.5%, respectively. Calibra-
tion was good for ROX-index, CSS, NEWS-II, SOFA, qSOFA, CURB-65, 
REMS, HACOR, and 4C scores. 

3.2. Optimization of existing risk stratification scores 

The performance of the 4C and REMS scores was re-evaluated by 
recalculating SpO2 and respiratory rate at a different cut-off point. No 
advantage was found for the 4C score with SpO2 lower than 90% (AUC 
0.802, 95% CI 0.755 to 0.849), however, discrimination improved after 
REMS score recalculation for respiratory rate higher than 20 Bpm (AUC 
0.800, 95% CI 0.755 to 0.845). 

3.3. Derivation of new predicting models 

Variables identified as independent predictors for in-hospital death 
at 30 days were combined in new candidate models. All the examined 
new models showed a good discrimination and high negative predicted 
values (e-Table 6, Table 4). All the new models showed a good 

Fig. 1. Cumulative survival in the overall study population (A), according to age categories (B), according to oxygen saturation categories (C), according to PaO2 
categories (D), according to respiratory rate categories (E), according to PaO2/FiO2 categories (F). 
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calibration. 
Among the candidate models, a good performance in predicting in- 

hospital death at 30 days for New Model 5 (age 60 years or older, at 
least two comorbidities, GCS<15, mean blood pressure <70 mmHg, 
respiratory rate over 20 Bpm, PaO2/FiO2 <200 mmHg; AUC 0.809, 95% 
CI, 0.765 to 0.853) was observed (e-Fig. 2). The results of the boot-
strapping analysis on the predictive value of the New Model 5 were 
consistent with those of the main analysis. 

4. Discussion 

Our multicenter cohort study shows that, among 12 existing models 
for risk stratification of acutely ill patients, the 4C and REMS scores had 
good accuracy to predict in-hospital death at 30 days in patients hos-
pitalized with COVID-19, with a sensitivity of 99% and 100%, respec-
tively, and negative predictive values of 99% and 100%, respectively. 
Among the 34 items included in the 12 models, age ≥60 years, having at 

least two comorbidities, GCS lower than 15, mean blood pressure lower 
than 70 mmHg, respiratory rate higher than 20 Bpm, PaO2 to FiO2 ratio 
lower than 200 mmHg, PaO2 at admission lower than 60 mmHg, oxygen 
saturation lower than 90%, or respiratory index lower or equal to 3.8 
were identified as independent predictors of in-hospital death at 30 
days. 

Similar findings were observed for the prediction of critical illness. 
COVID-19 continues to be a major health problem still causing high 

number of deaths worldwide [25,26], despite the understanding of its 
pathophysiology continues to grow exponentially [27]. 

The experience from the initial phase of the pandemic along with the 
overwhelming amount of scientific evidence on mortality risk factors, 
respiratory support measures and treatments, allowed greater expertise 
in facing upcoming pandemic waves. Notwithstanding, the mortality 
among critical COVID-19 patients remains unacceptably high [28], and 
it is unclear if improvements in patients’ care have truly improved 
clinical outcomes [29]. In this view, a better understanding of 

Table 3 
Performance of independent predictors in the assessment of in-hospital death at 30 days.   

AUC 95% CI Cut-off Patients In-hospital death N (%) SE SP NPV PPV HRa (95% CI) 

Age 0.778 0.747–0.810 ≥60 718 (68.8) 215 (29.9) 95.1 38.5 96.6 30.0 8.00 (4.24–15.10) 
<60 326 (31.2) 11 (3.4) 

Number of comorbidities 0.679 0.639–0.719 ≥2 306 (29.3) 119 (38.9) 52.7 77.1 85.5 38.9 2.93 (2.25–3.81) 
<2 738 (70.7) 107 (14.5) 

GCS 0.538 0.479–0.598 <15 32 (6.1) 15 (46.9) 11.9 95.8 77.6 46.9 2.80 (1.63–4.80) 
≥15 495 (93.9) 111 (22.4) 

Mean blood pressure 0.578 0.530–0.627 <70 24 (3.0) 12 (50.0) 6.4 98.1 77.7 50.0 3.11 (1.73–5.58) 
≥70 784 (97.0) 175 (22.3) 

Respiratory rate 0.663 0.620–0.706 >20 394 (43.6) 127 (32.2) 64.8 62.2 32.2 86.4 2.12 (1.57–2.86) 
≤20 509 (56.4) 69 (13.6) 

PaO2/FiO2 0.722 0.682–0.762 <200 246 (25.1) 108 (43.9) 51.9 82.1 86.4 43.9 2.63 (1.99–3.47) 
≥200 734 (74.9) 100 (13.6) 

SpO2 0.682 0.632–0.732 <90 129 (19.0) 60 (46.5) 38.5 86.8 82.6 46.5 2.42 (1.75–3.36) 
≥90 550 (81.0) 96 (17.5) 

Respiratory index 0.691 0.640–0.742 ≤3.8 173 (29.4) 70 (40.5) 50.4 77.1 83.4 40.5 2.14 (1.52–2.99) 
>3.8 415 (70.6) 69 (16.6)  

a Results of the univariate analysis. 

Table 4 
Performance of risk stratification scores in the prediction of in-hospital death at 30 days.  

Scores N % AUC 95% CI Cutoff Patients n (%) In-hospital 
Death n (%) 

SE SP NPV PPV HR 95% CI 

APACHE-II 607 58.1 0.785 0.745–0.825 ≥10 229 (37.7) 94 (41.0) 68.1 71.2 88.4 41.0 3.54 2.46–5.10 
<10 378 (62.3) 44 (11.6) 

COVID-GRAM 401 38.4 0.711 0.659–0.763 ≥139 194 (48.4) 75 (38.7) 73.5 60.2 87.0 38.7 2.88 1.85–4.48 
<139 207 (51.6) 27 (13.0) 

CSS 590 56.5 0.733 0.687–0.778 ≥3 419 (71.0) 120 (28.6) 93.8 35.3 95.3 28.6 5.49 2.55–11.76 
<3 171 (29.0) 8 (4.7) 

CURB-65 704 67.4 0.705 0.662–0.749 ≥2 491 (69.7) 145 (29.5) 93.5 37.0 95.3 29.5 5.42 2.76–10.64 
<2 213 (30.3) 10 (4.7) 

4C 340 32.6 0.803 0.756–0.851 ≥9 262 (77.1) 90 (34.4) 98.9 30.9 98.7 34.4 16.76 2.33–120.49 
<9 78 (22.9) 1 (1.3) 

HACOR 427 40.9 0.675 0.615–0.736 ≥6 69 (16.2) 33 (47.8) 30.6 88.7 79.1 47.8 1.76 1.15–2.68 
<6 358 (83.8) 75 (20.9) 

MEWS 476 45.6 0.632 0.575–0.690 ≥5 131 (27.5) 46 (35.1) 40.7 76.6 80.6 35.1 1.53 1.04–2.23 
<5 345 (72.5) 67 (19.4) 

NEWS-II 721 69.1 0.736 0.691–0.781 ≥5 335 (46.5) 113 (33.7) 74.3 61.0 89.9 33.7 2.66 1.83–3.85 
<5 386 (53.5) 39 (10.1) 

QSOFA 826 79.1 0.668 0.623–0.713 ≥2 59 (7.1) 30 (50.8) 17.3 95.6 81.4 50.8 3.32 2.24–4.93 
<2 767 (92.9) 143 (18.6) 

REMS 440 42.1 0.793 0.747–0.839 ≥3 402 (91.4) 112 (27.9) 100.0 11.6 100.0 27.9 22.01 0.45–1081.74 
<3 38 (8.6) 0 

ROX-index 479 45.9 0.712 0.655–0.769 <4.88 24 (5.0) 18 (75.0) 15.5 98.3 78.5 75.0 4.46 2.69–7.41 
≥4.88 455 (95.0) 98 (21.5) 

SOFA 780 74.7 0.776 0.738–0.814 ≥6 59 (7.6) 39 (66.1) 20.9 96.6 79.5 66.1 4.31 3.02–6.17 
<6 721 (92.4) 148 (20.5) 

New Model 5 434 41.6 0.809 0.765–0.853 ≥1.5 341 (78.6) 104 (30.5) 99.1 28.0 98.9 30.5 26.31 (2.30–301.56) 
<1.5 93 (21.4) 1 (1.1) 

New Model 5: age≥60 years (+1.5), number of comorbidities≥2 (+1), GCS<15 (+1), mean blood pressure <70 mmHg (+1.5), respiratory rate>20 Bpm (+1), PaO2/ 
FiO2 <200 mmHg (+1). 
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determinants of prognosis could improve clinical management and also 
resources allocation for current COVID-19 patients and for potential new 
COVID-19 waves. These data can certainly serve to implement the 
management of non-COVID related acute respiratory distress 
syndromes. 

Our study shows that currently available prognostic models recom-
mended for risk stratification in different setting of critically ill patients 
(sepsis, pneumonia, …) have modest performance in assessing mortality 
and risk of critical illness in hospitalized patients with COVID-19. The 
4C model that has been specifically derived and validated to risk stratify 
patients with COVID-19 and the REMS score, derived and validated to 
predict mortality and length of stay in nonsurgical patients attending the 
emergency department, showed good sensitivity and negative predictive 
values. These results have biological plausibility as COVID-19 infection 
rarely causes hemodynamic impairment rather severe respiratory failure 
potentially leading to acute respiratory distress syndrome as the final 
cause of death. Thus, clinical models with high performance in patients 
with sepsis or bacterial pneumonia can have limited value in patients 
with COVID-19. The ROX-index, derived to assess the risk of mechanical 
ventilation in pneumonia patients with hypoxemic acute respiratory 
failure treated with high-flow nasal cannula, revealed to be useful to 
identify COVID-19 at increased risk for mortality and for critical illness 
(positive predictive value 75% and 88%, respectively). Therefore, 4C 
and REMS could be used to identify patients at low-risk of death (1.3% 
and 0% for patients classified at high risk) and ROX index to identify 
patients at high-risk (75% for patients classified at high risk). Of note, 
the 4C could be preferred to the REMS score for the higher prevalence of 
the low-risk category (22.9% for 4C vs 8.6% for REMS). Of note, only 5% 

of patients were categorized in the high-risk category of the ROX-index. 
In the analysis of individual predictors, age, number of comorbid-

ities, GCS, mean blood pressure, respiratory rate, PaO2 to FiO2 ratio, 
PaO2 value, oxygen saturation, or respiratory index were identified as 
independently associated with in-hospital death at 30 days. Age was 
associated with both, in-hospital death and critical illness. In particular, 
age≥60 years showed high sensitivity (95%) and negative predictive 
value (97%). According to these results, age itself has similar accuracy to 
4C and REMS for prognostic stratification. These results are in line with 
data from a recent study in 411 patients with COVID-19 [10]. In this 
study, none of the evaluated prognostic models offered incremental 
value for patient stratification with respect to univariable predictors 
such as oxygen saturation on room air at admission (AUC 0.76, 95% CI 
0.71 to 0.81 for in-hospital deterioration) and patient age (AUC 0.76, 
95% CI 0.71 to 0.81 for in-hospital mortality). However, in our study the 
combination of age to other predictors in the 4C and REMS scores 
allowed to improve negative predictive value up to 99 and 100%. 

In addition to offer external validation of existing models, we built 
new models from the combination of independent predictors. The per-
formance of model 5 including age≥60 years, having two or more 
comorbidities, GCS<15, mean blood pressure <70 mmHg, respiratory 
rate>20 Bpm and PaO2/FiO2 <200 mmHg was similar to that of 4C and 
REMS scores with the advantage of being simpler. Bootstrapping anal-
ysis on the predictive value of the new model 5 showed consistent results 
with those of the main analysis. However, as for all new scores, this 
model requires external validation. 

Study limitations include the observational study design, thus, owing 
to the limitations of routinely collected data, predictor variables were 

Fig. 2. ROC curves for the prediction of in-hospital death at 30 days according to clinical prediction model.  
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available for a varying number of patients for each model. Therefore, 
heterogeneity in model performance cannot be excluded. Second, we 
used admission data as predictors because most prognostic scores are 
intended to predict outcomes at the point of hospital admission. How-
ever, some scores are designed for dynamic inpatient monitoring. We 
included patients from the first and second waves of COVID-19. In the 
current COVID-19 patients, vaccination could also influence clinical 
outcome. Moreover, patients with extremely poor prognosis could be 
included in the study, this may have influenced study outcomes. At last, 
since patients hospitalized in non-intensive care unit were included, 
results cannot be generalized to the whole population of COVID-19. 

Our study has some strengths the multicenter design and the 
completeness of follow-up allowed to retain consistent sample for all the 
study analyses. 

5. Conclusion 

Despite the interest and widespread use of prognostic models for 
COVID-19 patients, the performance of the COVID-19-specific models is 
modest. The 4C, REMS and ROX-index may have a role to select high and 
low risk patients at admission. Age and PaO2/FiO2 ratio can also be 
useful as standalone predictors to inform decision making, despite their 
accuracy is lower with respect to models. 
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M. Fernández Sampedro, C. González-Rico, D. Ferrer, V. Mora, B. Suberviola, 
M. Latorre, J. Calvo, J.M. Olmos, J.M. Cifrián, M.C. Fariñas, Usefulness of the 
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