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Background: The nodule mass is an important indicator for evaluating the invasiveness of neoplastic 
ground-glass nodules (GGNs); however, the efficacy of nodule mass acquired by artificial intelligence (AI) 
has not been validated. This study thus aimed to determine the efficacy of nodule mass measured by AI in 
predicting the invasiveness of neoplastic GGNs.
Methods: From May 2019 to September 2023, a retrospective study was conducted on 755 consecutive 
patients comprising 788 pathologically confirmed neoplastic GGNs, among which 259 were adenocarcinoma 
in situ (AIS), 282 minimally invasive adenocarcinoma (MIA), and 247 invasive adenocarcinoma (IAC). 
Nodule mass was quantified using AI software, and other computed tomography (CT) features were 
concurrently evaluated. Clinical data and CT features were compared using the Kruskal-Wallis test or 
Pearson chi-square test. The predictive efficacy of mass and CT features for evaluating invasive lesions (ILs) 
(MIAs and IACs) and IACs was analyzed and compared via receiver operating characteristic (ROC) analysis 
and the Delong test. 
Results: ROC curve analysis revealed that the optimal cutoff value of mass for distinguishing ILs and AISs 
was 225.25 mg [area under the curve (AUC) 0.821; 95% confidence interval 0.792–0.847; sensitivity 64.27%; 
specificity 89.19%; P<0.001], and for differentiating IACs from AISs and MIAs, it was 390.4 mg (AUC 
0.883; 95% confidence interval 0.858–0.904; sensitivity 80.57%; specificity 86.32%; P<0.001). The efficacy 
of nodule mass in distinguishing ILs and AISs was comparable to that of size (P=0.2162) and significantly 
superior to other CT features (each P value <0.001). Additionally, the ability of nodule mass to differentiate 
IACs from AISs and MIAs was significantly better than that of CT features (each P value <0.001).
Conclusions: AI-based nodule mass analysis is an effective indicator for determining the invasiveness of 
neoplastic GGNs.
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Introduction

With the widespread application of low-dose computed 
tomography (LDCT) in lung cancer screening, the detection 
rate of ground-glass nodules (GGNs) has significantly 
increased. On computed tomography (CT) images, GGNs 
appear as pure ground-glass nodules (pGGNs) or part-solid 
nodules (PSNs) based on their density (1). Pathologically, 
they can generally be classified as neoplastic or nonneoplastic. 
Among neoplastic GGNs, pGGNs are typically associated 
with adenocarcinoma in situ (AIS) and less commonly 
minimally invasive adenocarcinoma (MIA) or invasive 
adenocarcinomas (IAC); meanwhile, PSNs are more likely 
to be MIA or IAC (2,3). The pathological type of neoplastic 
GGNs considerably influences the subsequent treatment 
and prognosis.

At present, surgical resection remains the preferred 
treatment for neoplastic GGNs in clinical practice. The 
details of surgical management vary depending on the 
degree of invasiveness. Limited resections such as wedge 
resection and segmental resection are suitable for AIS 
and MIA, while lobectomy is recommended for IAC (4).  
Additionally, the risk of lymph node metastasis and 
prognosis varies across different subtypes. Studies indicate 
that local lymph node metastasis mostly occurs in MIA and 
IAC and that IAC requires lymph nodule dissection (5-7).  
The 5-year disease-free survival rate after complete 
resection of AIS and MIA is 100%, whereas the 5-year 
survival rate after complete resection of IAC is 70–90% 
(3,8). Therefore, accurately evaluating the invasiveness of 
GGNs before operation is crucial.

Previous studies have introduced various methods to 
assess the invasiveness of neoplastic GGNs, including 
axial long diameter (AXLD), mean density, CT-based 
morphological features, the invasion of lung adenocarcinoma 
by GGN features (ILAG) predictive models, semiautomatic 
segmentation, and others (2,9-11). de Hoop et al. were first to 
report that the presence of a mass can indicate the growth of 
GGNs earlier than can changes in diameter and volume (12). 
The mass can be used to evaluate the change of GGNs more 
accurately, objectively, and comprehensively and to reflect 
the size and internal attenuation of GGN simultaneously. 
Furthermore, the nodule mass has been shown to be a 
reliable independent risk factor for distinguishing subtypes 
of neoplastic GGNs, and an optimal cutoff of mass could 
be used for differentiating IACs from MIAs or AISs (13). 
Therefore, the nodule mass may be an important predictive 
indicator of the invasiveness of GGNs. 

Nodule mass can be derived through a formula based 
on the semiautomatic segmentation of diameter or 
volume (14,15). However, this method is time-consuming, 
inconvenient, and prone to measurement errors due to 
the ill-defined boundaries of GGNs and difficulties in 
standardizing manual measurements. With the development 
of computer technology, artificial intelligence (AI) software 
has become increasingly popular. Nodule net, principal 
component analysis (PCA), training datasets, machine 
learning (ML) [including support vector machine (SVM) 
and random forest (RF)], deep learning (DL), convolutional 
neural network (CNN) [including three-dimensional unit 
network (3D U-Net), dense V-network (DenseV-Net), 
region pulmonary lobe segmentation network (RPLS-
Net), and no-new-unit-Net (nnU-Net)], and a computer-
aided detection (CADe) system have all been implemented 
in nodule segmentation, feature extraction and selection, 
and classification. These methods can characterize nodule 
morphology (e.g., boundary and spiculation), volume and 
volume doubling time, intensity, texture, heterogeneity, 
and peritumor features; quantify nodule features; and help 
differentiate between malignant and benign nodules (16-20).  
AI also offers a more stable and efficient method for 
obtaining nodule mass. 

However, no studies on whether AI-based mass 
measurements can be used to differentiate between subtypes 
of neoplastic GGNs have been conducted thus far. The aim 
of this study was thus to assess the effectiveness of using 
AI-measured nodule mass in predicting the subtypes of 
neoplastic GGNs. We present this article in accordance with 
the STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-665/rc).

Methods

The study was performed in accordance with the Declaration 
of Helsinki (as revised in 2013) and was approved by 
the Ethics Committee of The First Affiliated Hospital 
of Chongqing Medical University (No. 2019-062). The 
requirement for individual consent was waived due to the 
retrospective nature of the analysis.

Patients

From May 2019 to September 2023, patients with GGNs 
who underwent surgical resection in The First Affiliated 
Hospital of Chongqing Medical University were recruited 
for this study. The inclusion criteria were as follows: (I) a 

https://qims.amegroups.com/article/view/10.21037/qims-24-665/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-665/rc
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GGN diameter less than 3 cm; (II) availability of complete 
clinical and pathological data; (III) confirmation of GGNs as 
being AIS, MIA, or IAC through pathological examination; 
(IV) interval between surgery and CT examination less than 
1 month; and (V) all examinations conducted by the same 
brand of CT scanner. Meanwhile, the exclusion criteria 
were as follows: (I) absence of thin-section CT images 
with a thickness of ≤1 mm, (II) presence of concomitant 
diffuse interstitial lung disease, and (III) severe artifacts 
or noise affecting image assessment. Among the initially 
screened patients, 18 were excluded due to the absence 
of thin-section CT images, 12 due to diffuse interstitial 
lung disease, and 13 due image artifacts interfering with 
observation. Ultimately, a total of 755 patients comprising 
788 GGNs (259 AISs, 282 MIAs, and 247 IACs) were 
included in the analysis. The patient selection process is 
illustrated in Figure 1.

CT examination

The CT scans were conducted using the following scanners: 
SOMATOM Definition Flash, SOMATOM Perspective, 
and SOMATOM Force (Siemens Healthineers, Erlangen, 
Germany). Patients were instructed to perform a breath-
hold maneuver before image acquisition. Scans were acquired 
from the thoracic inlet to the costophrenic angle at the end 
of inspiration during a single breath-hold, with the patient in 
a supine position. The data used in this study were acquired 
from CT scans performed under routine parameters rather 
from an LDCT scan. The CT images were obtained under the 

following parameters: tube voltage, 120–130 kVp; reference 
tube current, 50–140 mAs (with automatic current modulation 
technology); scanning slice thickness, 5 mm; rotation time, 
0.5 seconds; pitch, 1.0–1.1; collimation, 0.60 mm; and  
matrix, 512×512. The images were reconstructed at a slice 
thickness and interval of 1.00 mm using a medium-sharpness 
algorithm. 

Image acquisition and analysis

The patients’ CT data were evaluated on a picture archiving 
and communication system (PACS) workstation (Vue 
PACS, Carestream, Rochester, NY, USA). Image analysis 
was mainly based on axial images with lung window settings 
[window level, −600 Hounsfield unit (HU); window width: 
1,500 HU], with multiplanar reconstruction (MPR) images 
being used as a supplement. The CT features of GGNs 
were reviewed by two radiologists (T.W.X. and H.G., 
with more than 10 years of working experience), who 
were blinded to the clinical and pathological information. 
In cases of discordant opinions between the radiologists, 
consensus was reached through discussion.

The following indicators of GGNs were evaluated: (I) 
location, including right upper lobe, right middle lobe, 
right lower lobe, left upper lobe, and left lower lobe; (II) 
size, calculated as mean value of the longest diameter 
and the perpendicular diameter on axial CT images; (III) 
margin, including smooth or coarse; (IV) shape, including 
irregular or regular (round or oval); (V) boundary, including 
well-defined or ill-defined; (VI) lobulation, including a 

Patients (N=798) with a pulmonary GGN on LDCT images between 
May 2019 and September 2023 (n=831)

Patients (N=755) with GGNs confirmed as AIS, MIA, or IAC (n=788)

AIS (n=259) MIA (n=282) IAC (n=247)

The exclusion criteria were as follows:
• Absence of thin-section CT images (n=18); 
• Diffuse interstitial lung disease (n=12);
• Image artifacts interfering with observation (n=13)

Figure 1 Flow diagram for the inclusion and exclusion of patients. GGN, ground-glass nodule; LDCT, low-dose computed tomography; 
CT, computed tomography; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma.
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wavy or scalloped configuration of the nodule’s surface (4); 
(VII) spiculation, including long or short linear strands of 
the nodule surface (21); (VIII) vacuole sign, including round 
or irregular air attenuation within the nodule (11); (IX) air 
bronchial sign, including visible air-filled bronchi within 
the nodule); (X) internal vessel change, including dilation 
and distortion; and (XI) pleural indentation, including a 
linear shadow on the nodule surface pull on the pleura (22). 
Additionally, a lung nodule AI-assisted diagnosis system 
(InferRead CT Lung, InferVision Medical Health, Beijing, 
China) was used to automatically recognize and segment 
the GGNs from images and to subsequently obtain the 
nodule mass. The workflow for acquiring the nodule mass 
was as follows: step 1, the AI software automatically crawled 
thin-section chest CT images from PACS and detected all 
nodules; step 2, the AI software was used to find the target 
GGNs in the list; step 3, AI delineation of GGN boundaries 
in all sections was checked; step 4, the density histogram 
and other quantitative indicators of GGN were obtained 
through the nodule analysis module (Figure 2).

The pulmonary nodule AI-assisted diagnosis system 
was coupled with a DL algorithm to accomplish automatic 
segmentation of the boundary of GGNs. In the calculation 
process, the system automatically segments the GGNs 
and computes the number of voxels corresponding to each 
CT value in the whole lesion. Each CT value and the 
corresponding number of voxels are stored as a “list”, and 
the “list” of the whole nodule is stored as a “dictionary”. 
The information obtained is used for calculating the 
required index via the corresponding formula. The nodule 
mass was calculated based on the voxel method and the 
corresponding formula as follows: Mass = [nodule volume × 
(mean density + 1,000)]/1,000 (13,23).

Statistical analysis

All data were processed with SPSS 25 (IBM Corp., Armonk, 
NY, USA) and MedCalc (MedCalc Software, Ostend, 
Belgium) software. Clinical data and various CT features 
were statistically analyzed for each patient. A normality test 
was performed for continuous variables, which are expressed 
as the mean ± standard deviation (SD). Meanwhile, 
categorical variables are expressed as the frequency and 
percentage. The Kruskal-Wallis test was used for analyzing 
age and size, whereas the Pearson chi-square test was used 
for analyzing sex, shape, location, boundary, lobulation, 
spiculation, vacuole sign, air bronchial, vessel change, and 
pleural indentation. Subsequently, the optimal mass and 

size thresholds for determining ILs and IACs among the 
neoplastic GGNs were determined via receiver operating 
characteristic (ROC) analysis. The Delong test was used 
to compare the predictive performance of mass and that of 
other clinical and CT features. A P value (bilateral) less than 
0.05 was considered statistically significant.

Results 

Patients’ clinical characteristics

The patients’ clinical characteristics and CT features of 
GGNs are summarized in Table 1. The group with AIS had 
a greater proportion of females than did the group with 
IAC (P=0.008). Compared to the groups with AIS and 
MIA, the IAC group had a significantly higher patient age, 
nodule size, and mass (each P value <0.001). Compared 
with IACs, AISs and MIAs were likely to have a regular 
shape (P<0.001). Vacuole sign, vascular change, lobulation, 
spiculation, air bronchogram, and pleural indentation were 
more commonly detected in IACs than in MIAs and AISs 
(each P value <0.05). 

Quantitative and qualitative indicators for predicting ILs 
and IACs

The quantitative and qualitative indicators for predicting 
ILs and IACs are shown in Tables 2,3 and Figure 3. Among 
the indicators, the efficacy of nodule mass in differentiating 
between ILs and AISs and between IACs and MIAs/
AISs was the highest and was followed by nodule size. 
The optimal cutoff value of mass for distinguishing ILs 
from AISs was 225.25 mg, while that for distinguishing 
IACs from AISs/MIAs was 390.4 mg. Regarding the 
GGNs in different lobes, the cutoff values of nodule mass 
for determining ILs and IACs are shown in Tables 4,5. 
According to the results, the cutoff values of nodule mass 
in the upper lobes and lower lobes for determining ILs 
(229.165 vs. 217.215 mg) and IACs (325.955 vs. 335.18 mg) 
were similar. Meanwhile, the optimal cutoff value of size 
for distinguishing ILs and AISs was 9.95 mm, while that 
for distinguishing IACs from AISs and MIAs was 10.9 mm. 
The efficacy of mass in distinguishing ILs and AISs was 
comparable to that of size (P=0.2162) and was significantly 
superior to other CT features (each P value <0.001). 
Additionally, the ability of nodule mass to differentiate IACs 
from AISs/MIAs was significantly better than that of size 
and other CT features (each P value <0.001) (Figure 4). 
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Figure 2 A schematic figure for the process of nodule mass acquisition. CT, computed tomography; 3D, three-dimensional.
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Table 1 Clinical data and CT features of the patients with AIS, MIA, or IAC 

Characteristic Patients with AIS (n=259)a Patients with MIA (n=282)b Patients with IAC (n=247)c P value

Number of patients N=239 N=273 N=243

Sex 0.008e

Male 56 (23.4) 79 (28.9) 84 (34.6)

Female 183 (76.6) 194 (71.1) 159 (65.4)

Age (years) 51.9±11.5 54.9±12.2 58.8±10.0 <0.001f

Size (mm) 8.0±2.8 10.4±4.0 15.5±5.0 <0.001f

Mass (mg) 139.7±232.7 355.1±490.9 1,446.3±2,003.1 <0.001f

CT pattern <0.001f

Distribution 0.221

Upper lobe 173 (66.8) 174 (61.7) 167 (67.6)

Middle lobe 14 (5.4) 27 (9.6) 13 (5.3)

Lower lobe 72 (27.8) 81 (28.7) 67 (27.1)

Shape <0.001f

Regular 197 (76.1) 167 (59.2) 90 (36.4)

Irregular 62 (23.9) 115 (40.8) 157 (63.6)

Boundary 0.742

Ill-defined 21 (8.1) 20 (7.1) 22 (8.9)

Well-defined 238 (91.9) 262 (92.9) 225 (91.1)

Lobulation 20 (7.7) 53 (18.8) 104 (42.1) <0.001f

Spiculation 10 (3.9) 36 (12.8) 85 (34.4) <0.001f

Vacuole sign 20 (7.7) 31 (11.0) 41 (16.6) 0.007e

Air bronchogram 13 (5.0) 35 (12.4) 89 (36.0) <0.001f

Vascular change 14 (5.4) 18 (6.4) 33 (13.4) 0.002de

Pleural indentation 17 (6.6) 32 (11.3) 63 (25.5) <0.001de

Data are presented as the mean ± standard deviation or N (%). There were significant differences between groups a and b, a and c, and b 
and c for age, size, mass, CT pattern, shape, lobulation, spiculation, air bronchogram; between groups b and c and between a and c for 
vascular change and pleural indentation; and between groups a and c for sex and vacuole sign. d, MIA and IAC are statistically significant; 
e, AIS and IAC are statistically significant; f, each pairwise comparisons are statistically significant. CT, computed tomography; AIS, 
adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma. 

Discussion 

In this study, we evaluated the ability of AI-measured 
nodule mass to distinguish the different subtypes of 
neoplastic GGNs. Overall, its efficacy in differentiating 
was better than that of size and significantly better than 
that of other CT features. The optimal cutoff values of 
nodule mass for distinguishing between ILs and AISs and 
between IACs and AISs/MIAs were 225.25 mg [area under 

the curve (AUC) =0.821] and 390.4 mg (AUC =0.883), 
respectively. This indicates that the nodule mass based on 
AI was a reliable indicator for evaluating the invasiveness of 
neoplastic GGNs. 

Morphological features are useful for assessing the 
invasiveness of neoplastic GGNs. Previous reports have 
highlighted a correlation of lobulation, spiculation, air 
cavity, air bronchogram, pleural indentation sign, and 
blood vessel sign with invasive GGNs (22,24). The greater 
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Table 2 Performance of different clinical and CT features in distinguishing ILs from AISs

Clinical and CT features
Neoplastic GGNs (AIS vs. ILs)

P value*
AUC (95% CI) P value Sensitivity (%) Specificity (%)

Sex (male) 0.546 (0.510–0.581) 0.0053 31.57 77.61 <0.0001

Year (>50 years) 0.627 (0.592–0.661) <0.0001 71.46 48.26 <0.0001

Shape (irregular) 0.637 (0.603–0.671) <0.0001 51.42 76.06 <0.0001

Size (>9.95 mm) 0.810 (0.781–0.837) <0.0001 64.27 84.94 0.2162

Boundary (well-defined) 0.501 (0.465–0.536) 0.935 92.06 8.11 <0.0001

Lobulation 0.610 (0.575–0.630) <0.0001 29.68 92.28 <0.0001

Spiculation 0.595 (0.560–0.630) <0.0001 22.87 96.14 <0.0001

Vacuole 0.529 (0.494–0.565) 0.0084 13.61 92.28 <0.0001

Air bronchial 0.592 (0.557–0.627) <0.0001 23.44 94.98 <0.0001

Vessel change 0.521 (0.486–0.557) 0.0263 9.64 94.59 <0.0001

Pleura indentation 0.557 (0.521–0.592) <0.0001 17.96 93.44 <0.0001

Mass (>225.25 mg) 0.821 (0.792–0.847) <0.0001 64.27 89.19 –

*, P value of the Delong test in comparing the predictive performance of mass with that of other clinical and CT features. CT, computed 
tomography; IL, invasive lesion (MIAs and IACs); AIS, adenocarcinoma in situ; GGN, ground-glass nodule; AUC, area under the curve; CI, 
confidence interval; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma. 

Table 3 Performance of different clinical and CT features in distinguishing IACs from AISs and MIAs

Clinical and CT features
Neoplastic GGNs (AIS/MIA vs. IAC)

P value*
AUC (95% CI) P value Sensitivity (%) Specificity (%)

Sex (male) 0.546 (0.510–0.581) 0.0106 34.82 74.31 <0.0001

Year (>52 years) 0.628 (0.593–0.662) <0.0001 74.09 46.58 <0.0001

Shape (irregular) 0.654 (0.620–0.687) <0.0001 63.56 67.28 <0.0001

Size (>10.9 mm) 0.866 (0.840–0.889) <0.0001 83.4 78.19 0.0402

Boundary (ill-defined) 0.507 (0.471–0.542) 0.5355 8.91 92.42 <0.0001

Lobulation 0.643 (0.575–0.630) <0.0001 42.11 86.51 <0.0001

Spiculation 0.630 (0.595–0.663) <0.0001 34.41 91.5 <0.0001

Vacuole 0.536 (0.500–0.571) 0.0076 16.6 90.57 <0.0001

Air bronchial 0.636 (0.601–0.669) <0.0001 36.03 91.13 <0.0001

Vessel change 0.537 (0.502–0.572) 0.0019 13.36 94.09 <0.0001

Pleura indentation 0.582 (0.547–0.617) <0.0001 25.51 90.94 <0.0001

Mass (>390.4 mg) 0.883 (0.858–0.904) <0.0001 80.57 86.32 –

*, P value of the Delong test in comparing the predictive performance of mass with that of other clinical and CT features. CT, computed 
tomography; IAC, invasive adenocarcinoma; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; GGN, ground-glass 
nodule; AUC, area under the curve; CI, confidence interval. 
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Figure 3 Receiver operating characteristic curve of nodule mass in predicting (A) ILs and (B) IACs. AUC, area under the curve; IL, invasive 
lesion; IAC, invasive adenocarcinoma.

Table 4 The cutoff value of nodule mass in detecting ILs (MIAs and IACs) in different lung lobes 

Nodule location Nodule mass (mg) Sensitivity Specificity AUC (95% CI) P value

Right upper lobe 203.12 0.695 0.867 0.831 (0.783–0.879) <0.001

Left upper lobe 167.78 0.749 0.843 0.831 (0.781–0.882) <0.001

Right lower lobe 217.21 0.692 0.897 0.838 (0.768–0.908) <0.001

Left lower lobe 114.68 0.8 0.606 0.777 (0.686–0.868) <0.001

Upper lobes 229.165 0.66 0.908 0.832 (0.797–0.866) <0.001

Lower lobes 217.215 0.642 0.847 0.809 (0.753–0.865) <0.001

Total 225.25 0.643 0.892 0.821 (0.792–0.847) <0.001

IL, invasive lesion; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; AUC, area under the curve; CI, confidence 
interval.

Table 5 The cutoff value of nodule mass in detecting IACs in different lung lobes 

Nodule location Nodule mass (mg) Sensitivity Specificity AUC (95% CI) P value

Right upper lobe 325.80 0.863 0.832 0.889 (0.847–0.932) <0.001

Left upper lobe 365.50 0.874 0.883 0.918 (0.881–0.956) <0.001

Right lower lobe 335.18 0.853 0.843 0.877 (0.809–0.946) <0.001

Left lower lobe 390.65 0.727 0.871 0.84 (0.751–0.929) <0.001

Upper lobes 325.955 0.868 0.844 0.905 (0.877–0.933) <0.001

Lower lobes 335.18 0.806 0.824 0.858 (0.802–0.914) <0.001

Total 390.4 0.806 0.863 0.883 (0.858–0.904) <0.001

IAC, invasive adenocarcinoma; AUC, area under the curve; CI, confidence interval.
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Figure 4 CT images of malignant GGNs which were similar in size but significantly different in mass. An artificial intelligence-assisted 
diagnosis system was used to automatically recognize and segment the GGNs from CT images and subsequently measure the nodule mass. 
(A) A 59-year-old woman with AIS. A transverse thin-section CT image showed an irregular and ill-defined PSN located in the right upper 
lobe with a size of 11 mm × 10 mm and a mass of 120.19 mg. (B) A 70-year-old man with MIA. A transverse thin-section CT image showed 
a round and ill-defined PSN located in the left upper lobe with a size of 11 mm × 11 mm and a mass of 295.11 mg. (C) A 59-year-old woman 
with IAC. A transverse thin-section CT image showed an irregular and ill-defined pGGN located in the right upper lobe with a size of  
11 mm × 10 mm and a mass of 629.55 mg. CT, computed tomography; GGN, ground-glass nodule; AIS, adenocarcinoma in situ; PSN, part-
solid nodule; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; pGGN, pure ground-glass nodule.

the number of these signs present in GGNs, the higher 
likelihood is that they are being invasive lesions (ILs). 
Although the findings in this study were consistent with 
previous reports (16,24), the sensitivity in distinguishing 
GGNs was generally low because most of these features 
were less common in GGNs than in solid nodules. 
Additionally, differences in radiologists’ interpretation 
of these signs might have introduced subjective bias. 
Therefore, using CT features alone to predict ILs or IACs 
may not be optimal.

Nodule size is an important quantitative indicator 
for determining the invasiveness of GGNs. The larger 
diameter of a nodule is, the higher likelihood of it being an 
IL (25). Previous research suggests that the optimal cutoff 
value of size in all GGNs for distinguishing MIA from AIS 
and atypical adenomatous hyperplasia (AAH) is 7.50 mm, 
that for distinguishing IAC from MIA is 12.50 mm (26), 
and that for distinguishing IACs from AAHs/AISs/MIAs 
is 10.09 mm in pGGNs (27) and 12.55 and 14.4 mm in all 
GGNs, respectively (28,29). Our results are similar to those 

CBA
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of previous studies, but there are significant differences in 
cutoff values, which may be due to the heterogeneity in 
samples from the different studies. 

Besides nodule size, the density can also be used for 
assessing the invasiveness of neoplastic GGNs (30). A 
higher CT attenuation and emergence or development 
of solid components are all indicators of invasiveness 
(31,32). Reported cutoff values of mean CT attenuation in 
predicting the invasiveness of GGNs are −484, −495.7, and 
−515.95 HU (5,28,29). Additionally, the presence (>5 mm) 
and the new emergence or development (≥2 mm) of solid 
component in GGNs have been shown to be predictors of 
invasiveness (33). Although density and solid components 
are related to ILs and IACs, the heterogeneity of GGNs in 
density and the difficulty in accurately measuring the size 
of solid components can limit their value in distinguishing 
between GGN types (28).

The nodule mass as a parameter that combines size and 
density for characterizing nodules has been identified as an 
earlier and more stable and accurate indicator compared 
to other parameters (5). Nodule mass has been shown 
to be a superior indicator for assessing invasiveness as 
compared to parameters such as diameter, density, and 
volume (13). However, despite its reliability, nodule mass 
measurement is typically performed manually, which can be 
time-consuming and lack consistency. In recent years, AI 
has been increasingly used in the detection and evaluation 
of pulmonary nodules. AI-based semisegmentation and 
autosegmentation methods have proven to be rapid, 
accurate, and less variable compared to assessments made by 
experienced pathologists. However, the use of AI-derived 
nodule mass for evaluating the invasiveness of GGNs 
has not been thoroughly validated. In our study, nodule 
mass as measured by AI performed best in distinguishing 
ILs and IACs among all the parameters. This supports 
the potential of AI-driven nodule mass measurements in 
improving the assessment of GGN invasiveness. Further 
studies are needed to validate these findings and determine 
the full potential of AI in this context. However, in clinical 
practice, correctly evaluating the invasiveness of neoplastic 
GGNs cannot rely solely on the nodule mass, and it is best 
to conduct a comprehensive evaluation combining nodule 
mass and other morphological features.

In addition to automatic measurement, AI can also 
recognize and learn abstract high-level features that reflect 
the intrinsic characteristics of GGNs that are invisible to 
the human eye. AI modalities such as fusion mode and the 
image-based DL models can help radiologists differentiate 

between benign and malignant lesions and to identify 
organizing pneumonia, focal fibrosis, focal pneumonia, etc. 
(34,35). AI-based vessel suppression in LDCT can improve 
the detection of subsolid nodules and their classification 
into GGNs and PSNs (36). The image-based deep learning 
transfer learning (IBDL-TL) model can also effectively 
distinguish between benign and malignant GGNs (37). 
Meanwhile, deep CNNs and ML can distinguish different 
pathological subtypes of lung adenocarcinoma appearing 
as GGNs and identify mutations in specific genes, such as 
epidermal growth factor receptor (EGFR) mutations (38,39). 
Additionally, AI has been used in lung cancer staging, 
prognostic assessment of GGN-type lung adenocarcinoma, 
and detecting lung adenocarcinoma cells in pleural fluid, 
among other contexts (40,41). 

Certain limitations to this study should be acknowledged. 
First, all the data were obtained from devices of the 
same brand of CT scanner, and thus the results may lack 
robustness. The results should be verified by using data 
from different devices. Second, we did not assess density 
in discriminating neoplastic GGNs with varying degrees 
of invasiveness due to the inconsistent diagnostic efficacy 
reported across different studies, with nodule size being 
considered as a more reliable and superior parameter than 
mean density. Third, the large vessels in lesions were also 
considered as being within the mass of nodules because 
they could not be completely separated, which might 
have affected the analysis of the mass results. Finally, the 
diagnostic performance of AI-based nodule mass requires 
further validation through the use of external, large-scale 
datasets.

Conclusions

For neoplastic GGNs, AI-measured nodule mass based 
demonstrated superior diagnostic performance in 
distinguishing ILs and IACs compared to other CT features. 
The optimal cutoff values for mass in distinguishing ILs 
and IACs were 225.25 and 390.4 mg, respectively. Being an 
easily acquired and objective indicator, AI-measured nodule 
mass has the potential to play a crucial role in accurately 
evaluating the invasiveness of neoplastic GGNs and 
providing information for directing further treatment.
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