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Simple Summary: Climate change has a significant impact on the quantity and distribution of
vectors and may thus threaten the health of the population. We used the maximum entropy model
to predict the near-current distribution of potentially suitable areas for Anopheles philippinensis and
Anopheles nivipes in the world, as well as the distribution of potentially suitable areas in China under
future climate scenarios. We also constructed a vector risk assessment system to assess the possibility
of the two mosquito species invading China. Among the meteorological factors, the precipitation in
September makes the greatest contribution to the distribution of areas suitable for the two mosquito
species, which have a moderate risk of invading China. The relevant management departments
should formulate scientific prevention and control measures for the two mosquitoes according to
meteorological factors and the risk level of invasion.

Abstract: Background: Anopheles philippinensis and Anopheles nivipes are morphologically similar and
are considered to be effective vectors of malaria transmission in northeastern India. Environmental
factors such as temperature and rainfall have a significant impact on the temporal and spatial
distribution of disease vectors driven by future climate change. Methods: In this study, we used the
maximum entropy model to predict the potential global distribution of the two mosquito species
in the near future and the trend of future distribution in China. Based on the contribution rate of
environmental factors, we analyzed the main environmental factors affecting the distribution of the
two mosquito species. We also constructed a disease vector risk assessment index system to calculate
the comprehensive risk value of the invasive species. Results: Precipitation has a significant effect on
the distribution of potentially suitable areas for Anopheles philippinensis and Anopheles nivipes. The
two mosquito species may spread in the suitable areas of China in the future. The results of the risk
assessment index system showed that the two mosquito species belong to the moderate invasion
risk level for China. Conclusions: China should improve the mosquito vector monitoring system,
formulate scientific prevention and control strategies and strictly prevent foreign imports.
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1. Introduction

Global climate change has a profound effect on natural ecosystems [1]. According
to the fifth assessment report of the United Nations Intergovernmental Panel on Climate
Change (IPCC AR5), global land and ocean temperatures rose by 0.89 ◦C (0.69~1.08 ◦C)
from 1901 to 2012. Climate change will alter the suitable range of species [2], which is
directly related to biological invasion, and may expand the negative impact of alien species
in many areas [3].

Malaria is a vector-borne disease caused by Plasmodium spp. and is endemic in
102 countries and regions, which are mainly located in Africa, Southeast Asia, and Central
and South America. The pathogens (etiological agents, Plasmodium parasites) are transmit-
ted through the bite of Anopheles mosquitoes [4,5]. According to the World Malaria Report
2020, there are nine malaria-endemic countries in the Southeast Asian region, accounting
for about 3% of the global morbidity burden of malaria, of which India accounts for 88%.
In India, in addition to the three main malaria vectors, Anopheles baimaii (formerly An. dirus
species D), An. minimus s.l. and An. fluviatilis s.l., there aresome other mosquito vectors,
such as Anopheles philippinensis and Anopheles nivipes, which are considered to be potential
vectors of malaria parasites in this area [6–8].

Both An. philippinensis and An. nivipes belong to the subgenus Cellia, Anopheles annularis
group [9]. They are very similar in morphology, and it is difficult to distinguish them as
adults. Therefore, researchers usually refer to them as the Anopheles philippinensis-nivipes
complex [10]. Molecular-based research has clarified the potential importance of the
Anopheles philippinensis-nivipes complex in the transmission of malaria, which has aroused
the WHO’s attention to the spread of Plasmodium falciparum and/or Plasmodium vivax in
the states of northeastern India [10–13]. Northeast India borders China. China has a vast
territory, a complex geographic environment, and increasingly frequent trade exchanges,
which greatly increases the spread risk of An. philippinensis and An. nivipes. Once they
invade China without any precautionary measures in place, the risk of malaria transmission
willincrease. Therefore, it is necessary to assess the invasion risk of An. philippinensis and
An. nivipes to China.

The maximum entropy model (MaxEnt v3.4.1 (Robert Schapire’s Home Page; http:
//rob.schapire.net/; accessed on 29 March 2021.)) is a species distribution prediction model
based on the maximum entropy theory and has shown a strong predictive ability among
many species distribution prediction models [14], especially when the species distribution
point data are insufficient; it is often better than other analogous prediction models [15–20].
We imported into the model the current distribution point data of the species and the
environmental variable data required for prediction, and simulated the possible distribution
of the target species by calculations [21]. In this study, the MaxEnt model was used to
predict the areas potentially suitable for An. philippinensis and An. nivipes under current
and future climatic conditions. Then we constructed a vector risk assessment index system,
and evaluated the invasion risk of An. philippinensis and An. nivipes into China from three
aspects, including invasion risk, colonization and spread risk as well as damage effect. The
results could provide a basis for the relevant departments to develop effective surveillance
measures and reasonable prevention and control policies.

2. Materials and Methods
2.1. Data Collection and Preprocessing
2.1.1. The Selection of Occurrence Points

The occurrence points of An. philippinensis and An. nivipes were acquired mainly
from the Global Biodiversity Information Facility(GBIF; GBIF.org (5 March 2021) GBIF
Occurrence Download https://doi.org/10.15468/dl.mhtg6g and GBIF.org (7 May 2021)
GBIF Occurrence Download https://doi.org/10.15468/dl.xmzmd9) database and related
research literature of CNKI, Web of Science, PubMed, MEDLINE, Embase, and other
databases. We obtained 80 and 53 valid records of An. philippinensis and An. nivipes,
respectively. By valid records, we mean that we established strict inclusion criteria for the

http://rob.schapire.net/
http://rob.schapire.net/
https://doi.org/10.15468/dl.mhtg6g
https://doi.org/10.15468/dl.xmzmd9
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selection of distribution sites of the two mosquito species. First of all, when we downloaded
the distribution points from the GBIF database, we deleted the duplicate distribution
points and the distribution points without accurate information (such as the exact location,
the missing person who uploaded the data, andserious location deviation). Secondly,
when collecting the literature from databases with the key words [Anopheles philippinensis
or Anopheles nivipes] AND [Climate change or Global warming or Climate scenarios]
AND [Monitor or Distribution or ENMs or SDMs], we selected the literatures with exact
geographical location (as accurate as possible below the county) and specific mosquito
species and population density information in the monitoring data of the two mosquito
species. Then, we used Google Maps to represent the collected distribution points in
latitude and longitude (Tables S3 and S5). In addition, ArcGIS was used to display all
the collected data on the world map, deleting points that deviated significantly from the
actual points (such as in a certain sea area). We also used the ENMTOOLs to keep only one
distribution point in the same grid based on the 5 km × 5 km meteorological data grid
and deleted the redundant distribution points to avoid overfitting of the results [22]. We
used the above steps to obtain valid records. Finally, we organized the collected results
into CSV files (Tables S4 and S6) of species name, longitude and latitude, which were
used to import the MaxEnt model. After screening and processing, 59 distribution sites of
An. philippinensis and 42 distribution sites of An. nivipes were preserved (Figure 1).
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Figure 1. Global distribution of Anopheles philippinensis and Anopheles nivipes.

2.1.2. Environmental Variables

Environmental variables were collected from Worldclim (http://www.worldclim.
org/; accessed on 1 June 2021) with a spatial resolution of 5 arc-minutes, including biocli-
matic variables (bio1-bio19), monthly maximum temperature (tmax1–tmax12), monthly
minimum temperature (tmin1–tmin12), monthly precipitation (prec1–prec12) and ele-
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vation (ele). We imported environmental data under the near-current climate scenario
(1970–2000) and future climate scenarios (2021–2040, 2041–2060, 2061–2080, 2081–2100)
into the model, which included four climate scenarios (ssp126, ssp245, ssp370 and ssp585)
of the BCC-CSM2-MR global climate model, which represents different social sharing
economic paths of future climate change. The downloaded data were transformed into
ASC format which could be recognized by MaxEnt software through ArcGIS (version10.6;
Esri, Redlands, CA, USA).

To avoid the overfitting of environmental variables, the Pearson correlation anal-
ysis was used to analyze the correlation between the environmental variables using R
(version4.0.3; https://www.r-project.org/; accessed on 1 June 2021) software. Variables
with the absolute value of correlation coefficient more than 0.8 were regarded as highly
correlated, and variables with the absolute value of correlation coefficient less than 0.8
were retained. According to the results of the first run of the MaxEnt model, variables
with the highest contribution rate were included in the model, and variables with less than
1% contribution rate were deleted. Finally, seven variables were selected as predictors of
An. philippinensis, and four variables were selected as predictors of An. nivipes (Table 1).

Table 1. Percentage contributions and permutation importance of the bioclimatic variables included in the Maxent models
for Anopheles philippinensis and Anopheles nivipes. Variables with contribution less than 1 (indicated by ×) were removed
because of high cross-correlations.

Symbol Bioclimatic Variables Anopheles philippinensis Anopheles nivipes

Contribution (%) Permutation
Importance

Contribution
(%)

Permutation
Importance

Prec9 Precipitation inSeptember 46.7 6 71 43.5
Prec5 Precipitation in May 35.1 64.8 × ×
Bio15 Precipitation Seasonality 7.5 0.1 × ×
Bio19 Precipitation of Coldest Quarter 5.9 2.6 17.2 14.6
Prec12 Precipitation in December 2.2 0.4 × ×
Prec3 Precipitation in March 1.6 2 6.9 6.9
Bio4 Temperature Seasonality 1 24.2 4.3 32.9

2.1.3. Map Data

We obtained a digital map of China (scale: 1:4,000,000) from National Geomatics
Center of China (http://www.ngcc.cn/ngcc/; accessed on 30 May 2021) and downloaded
the distribution map (scale: 1:10,000,000) of the world from Natural Earth (https://www.
naturalearthdata.com/downloads/; accessed on 30 May 2021).

2.2. Methods
2.2.1. Prediction of Areas Suitable for Anopheles philippinensis and Anopheles nivipes

MaxEnt was used to predict the areas suitable for An. philippinensis and An. nivipes
under near-current and future climate scenarios. We used ArcMap software, DIVA-GIS
software v7.5.0 (https://www.diva-gis.org/; accessed on 4 March 2021), and R software
to calculate the regularization multiplier (RM). The packages, including ENMeval, dismo,
dotCall64, fields, grid, knitr, maps, maptools, raster, rgeos, sp, spam, and spTh in R software
were used to optimize the model parameters [23]. The Akaike information criterion(AIC)
value in the ENMeval package was used to measure the goodness of the statistical model fit,
and a lower AIC value was preferred. According to the test, the best parameter combination
for An. philippinensis was Q (quadratic), H (hinge) and P (product) with the RM value of 4.
Similarly, the best parameter combination for An. nivipes was L (linear), Q (quadratic) and
H (hinge) with the RM value of 2.5. The distribution points and environmental variables
were imported into the model with 25% of the distribution points as the test set. The model
was run with the selected optimal parameters. The prediction results were all output
in ASC grid data format with values ranging from 0 to 1. The predicted grid value was

https://www.r-project.org/
http://www.ngcc.cn/ngcc/
https://www.naturalearthdata.com/downloads/
https://www.naturalearthdata.com/downloads/
https://www.diva-gis.org/
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converted into the species-suitable area level by using the ArcMap reclassification module.
This study used the lowest presence threshold (LPT) to define the suitable distribution area
and unsuitable distribution area [24]. The contents of the potential distribution areas were
divided into four categories including non-suitable areas (0–LPT), poorly suitable areas
(LPT–0.4), moderately suitable areas (0.4–0.6), and highly suitable areas (0.6–1.0).

2.2.2. Risk Assessment of Anopheles philippinensis and Anopheles nivipes Invading China

This risk assessment system comprehensively analyzes the possibility of invasion
and colonization of invasive species, and their impact on the environment and society, by
referring to the main pest risk assessment index system [25]. The system integrated the
source and consequence factors that could promote the formation of alien species invasion
risk in the whole process of invasion with a starting point of whether the vector could
invade mainland China (Table S1). The risk assessment index system is divided into four
levels. The first level is the target level, which is expressed by the comprehensive risk index
(R). It describes the final result of the risk assessment of the invasion of vectors into China.
The second level is the project level. According to the general process of vector invasion,
namely “invasion risk, colonization and diffusion risk, and damage effect”, all risk factors
affecting vector invasion are divided into three categories, including introduction risk
(P), colonization and diffusion risk (E) and damage risk (I). The third level is the factor
level, which determines the risk factors of each project level. The fourth level is the index
level, which is the specific index to describe each evaluation factor. To facilitate a unified
calculation, according to the principle of fuzzy mathematics, referring to cases of biological
invasion risk assessment [25,26], the specific value of the index that can be quantified was
set, and the index that cannot be quantified was evaluated and scored by experts according
to their own experience. The R value is determined by the risk of P, E and I. The logical
relationship between them conforms to the principle of multiplication. The calculation
formula can be expressed as Equation (1).

R = 3
√

P× E× I (1)

The calculated comprehensive risk value should be between 0 and 1. The contents
of comprehensive risk value were divided into five categories including very low (0–0.2),
low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and very high (0.8–1.0). According to the
algorithm principle, the calculation formula of P, E and I is expressed as Equations (2)–(4)

P = t
√

∏ Pi (i = 3), (2)

E = t
√

∏ Ei (i = 7) (3)

I = max(Ii), (4)

The input pathway (P1) and the evaluation indexes P11, P12 and P13 conform to the
multiplication principle. Therefore, the calculation formula is given as Equation (5).

P1 = 3
√

P11 × P12 × P13, (5)

E2,, E6 and E7 are in accordance with the additive relationship with the corresponding
indicators, and Equation (6) is the calculation formula is Equation (6) (ωAi is the weight
value of the corresponding index, n is the corresponding index level, and A = 2, 6, 7). The
weight coefficient ωAi is determined by the analytic hierarchy process (AHP).

EA =
n

∑
i=1

ωAiEAi/ ∑ ωAi, (6)
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3. Results
3.1. Prediction of Suitable Areas for Anopheles philippinensis and Anopheles nivipes
3.1.1. Suitable Areas under Near-Current Climate Scenarios

The potentially suitable areas for An. philippinensis under near-current climate scenar-
ios were mainly located in Asia (including Nepal, Bhutan, Bangladesh, Myanmar, Vietnam,
Laos, Thailand, Cambodia, Philippines and the southern border of China), Africa (includ-
ing Guinea, Sierra Leone, Nigeria, Cameroon and the Central African Republic), North
America (including Nicaragua, El Salvador, Honduras and Cuba), and South America
(Venezuela). The areas suitable for An. nivipes were mainly located in Asia (including
Nepal, eastern India, Bangladesh, Vietnam, Laos, Thailand, Cambodia, Philippines, and
the southern border of China), Africa (including Guinea and Central African Republic),
and North America (Cuba and western Mexico; Figure 2).
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current time using the MaxEnt model.

3.1.2. Suitable Areas in China under Future Climate Scenarios

According to the prediction results for different periods and climate scenarios in the
future, we extracted the suitable areas for An. philippinensis and An. nivipes in China. The
potentially suitable areas for An. philippinensis under future climate scenarios in China are
mainly distributed along the southwest border of Tibet and in southern Yunnan, southern
Guangxi, southern Guangdong, Hainan, Chongqing, Guizhou and central and southern
Taiwan. Moreover the area potentially suitable for An. philippinensis under various climate
scenarios in the future shows an overall increasing trend (Figures 3 and 4), especially under
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the SSP585 climate scenario from 2081 to 2100, An. philippinensis had the most suitable area
in China (Figure 5).
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Figure 3. Potentially suitable areas for Anopheles philippinensis at the future climate scenarios using
the MaxEnt model.

The potentially suitable areas for An. nivipes under future climate scenarios in China
are mainly distributed along the southwest border of Tibet and in southwestern and
southeastern Yunnan, southern Guangxi and Guangdong, Hainan and the south-central
part of Taiwan. The area of potentially suitable for An. nivipes under various climate
scenarios in the future shows an overall increasing trend (Figures 6 and 7), especially under
the SSP585 climate scenario from 2061 to 2080; the area suitable for An. nivipes has the
largest range in China (Figure 8).
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3.2. Risk Assessment Results

By consulting experts on biological invasion and consulting the literature, we obtained
the risk assessment index level scores of An. philippinensis and An. nivipes (Table S2). The
comprehensive risk value of Anopheles philippinensis and Anopheles nivipes was 0.49 and
0.44, respectively, which belong to the moderate risk invasive species (Table 2).
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Table 2. Project level and comprehensive risk value of risk assessment indicators of An. philippinensis and An. nivipes.

Species
Project Level

Comprehensive
Risk Value

Invasion Risk
LevelIntroduction Risk (P) Colonization and

Diffusion Risk (E) Damage Effect (I)

An.
philippinensis 0.47 0.47 0.50 0.49 Moderate

An. nivipes 0.42 0.41 0.51 0.44 Moderate

3.3. The Predictive Accuracy of the Maximum Entropy Model

Based on the data of occurrence points of species and environmental variables, we
used the maximum entropy model to predict the worldwide potential distribution area
of An. philippinensis and An. nivipes. The accuracy of the predicted results was estimated
using the AUC value. The AUC value of An. philippinensis and An. nivipes was 0.992 and
0.995, respectively (Figure 9), which showed that the accuracy of the model is very high.
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4. Discussion

In this study, we found that areas highly suitable for An. philippinensis and An. nivipes
are along the southern border of China. Under the climate scenario of the 21st century,
the highly suitable areas may spread to former unsuitable areas and moderately suitable
areas. As vectors threatening human health, An. philippinensis and An. nivipes have been
monitored in Yunnan and Hainan, China in recent years. Combined with the analysis of
geographical location, climate conditions, and the southwest monsoon of the Indian Ocean
and the Himalayas, northeast India has become one of the regions with the highest rainfall
in the world, which further proved the rationality of prec9 as the environmental factor
with the highest contribution rate to the distribution of An. philippinensis and An. nivipes.
Considering future climate change and the suitability of temperature and rainfall for the
survival of mosquitoes, the risk of mosquito spread and breeding would increase along the
southern border of China, which would further endanger the health of people.

4.1. Relationship between Environmental Variables and Potential Spread of Anopheles
philippinensis and Anopheles nivipes

We found that the most important environmental variable affecting the potential dis-
tribution of An. philippinensis and An. nivipes is precipitation in September (prec9), which
contributes most to the survival suitability of these two species. Then, the order in which
environmental factors influence the distribution of the suitable area of An. philippinensis
according to contribution rate is as follows: precipitation in May (prec5), precipitation
seasonality (bio15), precipitation of the coldest quarter (bio19), precipitation in Decem-
ber (prec12), precipitation in March (prec3), and temperature seasonality (bio4), respec-
tively. By contrast, the order in which environmental factors influence the distribution of
An. nivipes is as follows: precipitation of the coldest quarter (bio19), precipitation in March
(prec3), temperature seasonality (bio4) and altitude (ele). By observing the distribution
records of An. philippinensis and An. nivipes, we found that the longitude and latitude of
the distribution points of the two species were roughly the same, and they were located in
the tropical monsoon climate area with abundant rainfall, which was consistent with our
findings that precipitation has a great influence on the survival of An. philippinensis and
An. nivipes.

4.2. Invasion Risk and Control Suggestions of Anopheles philippinensis and Anopheles nivipes
under Future Climate Conditions

Comparing the range of potentially suitable areas for the two mosquito species in
China under future climate conditions with that under near-current climate conditions,
the total suitable area for the two mosquito species showed an increasing trend. The total
suitable area for An. philippinensis increased the most under the SSP585 climate scenario
for the period 2081–2100, and the predicted total suitable area increased from 78.48 × 104

km2 to 116.42 × 104 km2. Under SSP585 climate scenario for the period of 2061–2080, the
total suitable area for An. nivipes increased the most, and the predicted total suitable area
increased from 24.38 × 104 km2 to 81.53 × 104 km2.

Referring to the rainfall data of China in recent years, we found that the eastern part
of the Sichuan Basin in the upper reaches of the Yangtze River has abundant rainfall in
September every year. The prediction of the maximum entropy model showed that this
region is moderately and highly suitable for An. philippinensis and An. nivipes under some
future climate scenarios. Mosquito monitoring data in recent years have shown that An.
philippinensis and An. nivipes are found in the Lancang River Basin and the Hainan Island
in China. Moreover, we creatively constructed the risk assessment index system of vector
biology and the reference standard of index assignment to comprehensively evaluate
the invasion risk of the two mosquito species. The above research results show that
An. philippinensis and An. nivipes are moderately invasive risk species for China. That is to
say, the tow species have high potential invasion harmfulness in China, so it is necessary to
strengthen monitoring measures to prevent further spread.
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Affected by the future global climate change, An. philippinensis and An. nivipes are
likely to spread to inland China, so we need to be vigilant against import. Although local
malaria cases in China have been reported for three consecutive years, the situation of
cases imported from abroad continues to pose a risk. We suggest that for the prevention
and control of the spread of malaria vector mosquitoes, we take the following measures:
(1) control the breeding of mosquitoes and remove their larvae and eggs from riverbeds
and ponds around September, because Prec9 has made an important contribution to the
distribution of mosquitoes; (2) improve the construction of mosquito-monitoring and
early-warning platforms and grasp the dynamics of the mosquito population. Especially in
areas that are moderately or highly suitable for the two mosquitoes, mosquito surveillance
and investigation should be strengthened; (3) further assess the risk of malaria and malaria
vectors with a multi-model system because the impact of climate change on malaria is very
important, ; (4) actively deal with imported cases to prevent malaria from spreading again.

4.3. Advantages and Limitations

The advantage was that the simulation accuracy of the maximum entropy model is
greater than 0.9, and we also used the ENMeval datapacket to optimize the RMvalue. Gen-
erally, AUC values greater than 0.9 indicated that the model has high accuracy (Figure 9).
On the other hand, we applied the updated Worldclim database, which contains the latest
version of current and future representative environmental data. The prediction results
have a certain reference significance for the use of different versions of climatic data.

To increase the reliability of the distribution points used in the study, we not only
deleted the duplicate distribution points and the distribution points with serious lack
of information, but also further screened the distribution points. First, we checked the
specific source of the sample geographic coordinates obtained in the GBIF database. If
the coordinate point information came from the molecular database, it was verified by
the molecule. Second, the coordinate points from the literature in some GBIF databases
provide specific references, so we download the corresponding references to check whether
the samples were verified by molecules. Similarly, when collecting species distribution
points in the process of literature retrieval, we also reviewed the relevant literature in
detail and excluded the literature that did not identify species accurately [27]. Finally, we
gave priority to selecting the distribution sites of the two mosquito species with molecular
identification results, and excluded the literature that failed to accurately identify the two
mosquito species and the distribution sites with unknown species information.

However, our study has some limitations . Firstly, the climate data used in our
study were from 1970 to 2000 to simulate t near-current climate conditions. There is still
a 20-year gap from the current timetable, which means that there are still limitations in
predicting potential areas for the species because researchers do not have access to the
latest climate database. Secondly, wrong species identification information affects the
accuracy of the prediction results of the model. Considering the morphological similarity
of the two mosquito species, it is very difficult to accurately identify the species in the
field. Although specific information about mosquito species is given in some references,
the researchers in that literature may not have made an accurate molecular identification of
the species, thereby resulting in misrecognition. All this these will affect the reliability of
the geographical distribution points of the two mosquito species used for model training.
Thirdly, we used only the maximum entropy model to predict the potentially suitable
habitat for the two species; other species distribution models, such as GARP and CLIMEX,
would be considered in our next step to provide more evidence.

This study constructed a vector biological risk assessment index system based on the
clear vector Anopheles mosquitoes. The highly suitable area and comprehensive risk value
of invasive species delineated by the maximum entropy model and the risk assessment
index system can be used as a reference for risk assessment of other species. Through the
comprehensive analysis of the invasion risk, colonization and diffusion risk and damage
effect of the species, this risk assessment index system involves not only the biological
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characteristics of the species, but also ecological adaptability, human controllability, social
and public health hazards and so on. Although many related indicators are involved, they
are still not enough to represent the true evaluation results of species. In future research,
further optimization needs to be performed in the selection of indicators.

5. Conclusions

In this study, we used the maximum entropy model to predict the distribution of
potentially suitable areas for An. philippinensis and An. nivipes under the near-current and
future climate scenarios. The area potentially suitable for An. philippinensis and An. nivipes
under various climate scenarios in the future shows an overall increasing trend. The results
showed that the two species may spread in suitable areas of China in the future and that
rainfall would have a great influence on the suitable areas. Combined with the vector risk
assessment index system, we found that the two species are moderately invasive due to
many indicators, such as characteristics of the species and the impact of future climate
change. China needs to formulate targeted early-risk management measures to achieve
early detection and early management so as to prevent the spread of the two mosquito
species.
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