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CIA = collagen-induced arthritis; ER = endoplasmic reticulum; ERAD = endoplasmic reticulum-associated degradation; RA = rheumatoid arthritis;
RSC = rheumatoid synovial cells; siRNA = small interfering RNA; TNF = tumor necrosis factor; TUNEL = TdT-mediated dUTP nick end labelling;
UPR = unfolded protein response.
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Abstract
We introduce Synoviolin as a novel pathogenic factor in
rheumatoid arthritis (RA). Experimental studies indicate that this
endoplasmic reticulum (ER)-resident E3 ubiquitin ligase has
important functions in the ER-associated degradation (ERAD)
system, an essential system for ER homeostasis. Overexpression
of Synoviolin in mice causes arthropathy with synovial hyperplasia,
whereas heterozygous knockdown results in increased apoptosis
of synovial cells and resistance to collagen-induced arthritis in
mice. On the basis of these experimental data, we propose that
excess elimination of unfolded proteins (that is, ‘hyper-ERAD’) by
overexpression of Synoviolin triggers synovial cell overgrowth and
hence a worsening of RA. Further analysis of the hyper-ERAD
system may permit the complex pathomechanisms of RA to be
uncovered.

Introduction
There is a general agreement that synovial cells have a crucial
function in rheumatoid arthritis (RA) by forming a mass of
synovial tissue, which promotes the production of matrix-
degrading proteases and osteoclast activation that lead to
joint destruction [1-6]. In a series of experiments that focused
on synovial cells, we determined that human T cell leukemia
virus type I (HTLV-I) causes arthropathy [7], and that tax, the
viral transforming gene of HTLV-1, and its product, pp40Tax,
could transform synovial cells of patients as well as those of
tax-overexpressing mice [8-10]. These results suggest that
synoviocytes can acquire the ability to overgrow
autonomously in RA.

Here we discuss the role of a novel pathogenic factor for RA
named ‘Synoviolin’ (GenBank accession no. AB024690)
[11]. This novel molecule is an endoplasmic reticulum (ER)-
resident ubiquitin ligase and is involved in the ER-associated

degradation (ERAD) system [12-17]. ERAD is an important
processing system for ER homeostasis, and its disruption is
known to result in cellular apoptosis [18]. Surprisingly, both
the amount and enzymatic activity of Synoviolin regulate
synovial cell proliferation and apoptosis, at least in mice [11].

Cloning of Synoviolin
We identified Synoviolin from a human cDNA library of
rheumatoid synovial cells (RSC) by immunoscreening with
anti-RSC antibodies to isolate a molecule promoting the
autonomous proliferation and activation of synovial cells in RA
[11]. Structurally, Synoviolin has a putative six-trans-
membrane domain and a RING-H2 motif (Fig. 1). As reported
previously, proteins with a RING finger domain act as E3
ubiquitin ligases [19], Synoviolin also exhibits a clear auto-
ubiquitination activity [11]. By using immunostaining, we also
determined that Synoviolin is located in the ER of synovial
cells. We therefore concluded that Synoviolin is an ER-
resident E3 ubiquitin ligase [11].

Previous studies in yeast and human cells concluded that ER-
resident E3 ubiquitin ligases are important for ER homeo-
stasis [20]. Because it is estimated that 30 to 40% of the
newly synthesized proteins fail to fold properly in the ER [21],
these unfolded proteins eventually induce severe damage of
the ER (so-called ER stress) or even apoptosis of the cell (ER
stress-induced apoptosis) unless two biological processes,
unfolded protein response (UPR) and ERAD, work properly
[20,22,23]. In brief, UPR contains two systems involved in
the attenuation of global translation to stop the influx of
proteins into the ER and increasing the transcription of
chaperones to refold the unfolded proteins in the ER again. In
contrast, the ERAD system eliminates unfolded proteins that
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accumulate in the ER through the ubiquitin–proteasome
system (Fig. 2) [18,20].

Synoviolin transgenic mice and arthropathy
To study the role of Synoviolin in RA, we reported previously
the establishment of Synoviolin-overexpressing and Syno-
violin knockout mice [11]. Analyses of these mice demon-
strated both the induction of arthritis by overexpression and
the inhibition of arthritis by knockout of a single gene, that
encoding Synoviolin.

First, we established human Synoviolin-overexpressing mice
by using a β-actin promoter to drive systemic expression of

the gene, because a northern blot analysis demonstrated that
the tissue distribution of Synoviolin in the mouse is
ubiquitous. Surprisingly, 10 of 33 Synoviolin-overexpressing
mice developed spontaneous arthropathy after 20 weeks of
age [11], and a histological analysis of joints of these mice
demonstrated synovial cell hyperplasia and bone destruction,
which resembled typical pathological features of RA joints. It
should be noted that no other abnormalities are apparent in
these mice throughout their life.

Next, we attempted to verify the hypothesis that Synoviolin is
important for the development of arthritis using Synoviolin-
knockout mice; that is, a ‘loss-of-function’ study. Collagen

Figure 1

Synoviolin is a RING type E3 ubiquitin ligase. Top, schematic diagram of the primary structure of Synoviolin. a.a., amino acid residues; PR, proline-
rich domain; RING, RING finger domain; TM, transmembrane domain. Bottom, consensus sequence of the RING finger domain. Mutations in
consensus cysteine or histidine abolish the enzymatic activity of Synoviolin.

Figure 2

Schematic representation of the proposed biological functions of Synoviolin. Synoviolin has important functions in the endoplasmic reticulum (ER)-
associated degradation (ERAD) system. Synoviolin maintains ER function by eliminating unfolded proteins. ATF6, activating transcription factor 6;
IRE1, inositol-requiring enzyme 1; PERK, PKR-like ER kinase; Ub, ubiquitin; UPR, unfolded protein response.
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injection can induce arthritis in experimental mice, a model
known as collagen-induced arthritis (CIA). Because Syno-
violin homozygous knockout (syno−/−) mice die in utero [24],
the ‘loss-of-function’ experiments were conducted in Syno-
violin heterozygous knockout (syno+/−) mice. The incidence of
arthritis in syno+/− mice (7%) was significantly lower than that
in wild-type counterparts (syno+/+) (65%). Examination of the
joints by soft X-ray revealed that bone destruction in syno+/−

mice was much milder than that in syno+/+ mice. Immuno-
logical responses, including the production of type II collagen
antibody, inflammatory cell infiltration, and elevation of
inflammatory cytokine levels, were not impaired in syno+/−

mice. Histological analysis of synovial tissues showed marked
differences between syno+/+ and syno+/− mice. No advanced
synovial cell hyperplasia was detected in CIA-syno+/− mice,
even though inflammatory cell infiltration was clearly observed
in them. Detailed analysis of synovial tissues showed that the
number of proliferating-cell nuclear antigen (PCNA)-positive
cells in CIA-syno+/− mice was not different from that in
syno+/+ mice, but TdT-mediated dUTP nick end labelling
(TUNEL) analysis demonstrated a significant increment of
apoptotic cells in CIA-syno+/− mice. Consistent with these
results, synoviolin homozygous knockout was associated
with aberrantly increased apoptosis of liver and severe
impairment of erythrogenesis, and embryonic death [24].
These data suggested the importance of Synoviolin in
inhibiting apoptosis.

Synoviolin in human synovial cells
Because Synoviolin-overexpressing mice show synovial cell
hyperplasia, and syno+/− mice are resistant to CIA because of
increased apoptosis of synovial cells, we expected that
Synoviolin has both cell-proliferating and anti-apoptotic
effects. In a small-scale study we showed that suppression of
Synoviolin by small interfering RNA (siRNA) inhibited the
growth of RSC, even under mitogenic stimulation by tumor
necrosis factor (TNF)-α and interleukin-1β [11]. These results
suggested the possible role of Synoviolin in cell proliferation.
We also examined the effect of tunicamycin (a glycosylation
inhibitor that inhibits proper protein folding in ER) on RSC
treated with siRNA to test whether the downregulation of
Synoviolin increases their susceptibility to apoptosis caused
by disruption of ER function. TUNEL staining of RSC
revealed enhanced susceptibility to tunicamycin-induced
apoptosis, similar to Synoviolin knock-down [11], implicating
the anti-apoptotic effect of Synoviolin in ER stress. Further,
larger, studies are needed to confirm the relevance of
Synoviolin to human RA. It is also important to explain the
molecular basis of these Synoviolin-induced cellular
regulatory processes to determine the underlying patho-
mechanism of synovial cell overgrowth in RA.

Results of a preliminary study from our laboratories suggest
that RSC are basically refractory to ER stress-induced
apoptosis: the concentration of tunicamycin necessary to
induce apoptosis of RSC was about tenfold that required by

other human cell lines such as HEK-293 or HeLa cells. In
addition, among synovial cells, RA synovial cells (n = 5) were
more refractory to ER stress-induced apoptosis than OA
synovial cells (n = 5) (Yamasaki S, Yagishita N, Tsuchimochi
K, Kato Y, Sasaki T, Amano T, Beppu M, Nakamura H,
Nishioka K, Nakajima T, unpublished data). These results
suggest that RA synovial cells are refractory to ER stress-
induced apoptosis. Accordingly, our working hypothesis in
human RA is that Synoviolin promotes synovial cell
proliferation and inhibits ER stress-induced apoptosis,
leading to RA progression.

Hyper-ERAD in RA
It is generally accepted that ER-resident E3 ubiquitin ligases
including Synoviolin are inherently crucial in the ERAD
system, a process indispensable for elimination of unfolded
proteins in the ER [11-17]. Furthermore, other studies
showed that disruption of the ERAD system (a hypo-ERAD
system) causes cell apoptosis and can induce various human
diseases such as neurodegenerative diseases [25-27]. What
are the consequences of an aberrantly upregulated ERAD
(that is, a hyper-ERAD system), induced by Synoviolin
overexpression in synovial cells, on the pathological process
of RA?

First, a hyper-ERAD state could promote the excess secretion
of cytokines and proteases. That is, acceleration of the ERAD
system could more efficiently eliminate its client protein in ER
(Fig. 3), which could result in the indirect suppression of UPR
activation, because unfolded proteins that trigger UPR do not
exist any more in such cells, as reported previously in detail
[28,29]. The concept of a hyper-ERAD system in RA synovial
cells is conceivable because such cells have to keep
producing large amounts of proteins for the progression of
joint destruction. In other words, RA synovial cells require an
extremely efficient ERAD system to maintain ER functions for
disease progression. In addition, because UPR includes cell
cycle arrest in addition to global attenuation of translation
[30], UPR suppression indirectly induced by hyper-ERAD
might ultimately promote synovial cell proliferation (Fig. 3).
Taking these results together, a hyper-ERAD status could
provide favorable cellular conditions for synovial cell
overgrowth by escaping negative regulation by UPR.

Second, a hyper-ERAD status could keep synovial cell
functioning even in the hostile milieu of inflamed RA synovia
[31]. Elevated temperature, starvation, and hypoxia increase
the amount of unfolded proteins in organelles [32-35], which
has occasionally been observed in the RA joint. In fact, the
existence of ER stress in arthritic joints has been
demonstrated by the activation of activating transcription
factor 6 (ATF6), an ER-resident transcriptional factor, in the
nuclei of synoviocytes, because ATF6 is cleaved from ER
membrane after the induction of ER stress and is
translocated into the nucleus [11,36]. It is therefore possible
that hyper-ERAD could keep the ER of synovial cells
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functioning in inflamed joints by overcoming the environ-
mental challenges that cause ER stress.

Third, a hyper-ERAD system could work as an anti-apoptosis
system in RA synovial cells. Our previous experimental
studies conducted in mice with CIA demonstrated that the
downregulation of the synoviolin gene promoted the
apoptosis of synovial cells in the arthritic joints [11]. Studies
by other researchers also confirmed that several E3 ubiquitin
ligases (such as Parkin) exhibit a protective function against
ER stress-induced apoptosis in neuronal cells [26]. It is
possible that Synoviolin also acts as an anti-apoptotic factor,
and thus hyper-ERAD could prevent ER stress-induced
apoptosis. Support for this conclusion is also provided by
Synoviolin knockout; mouse embryonic fibroblasts lacking
Synoviolin showed increased susceptibility to ER stress-
induced apoptosis as observed in Synoviolin-ablated synovial
cells [11,24].

In all, there seems to be sufficient experimental evidence for
the following consequences of a hyper-ERAD status: first,
enhanced protein production and cell overgrowth; second,
maintenance of ER function of synovial cells despite ER
stress in the milieu of inflamed joints; and third, prevention of
apoptosis induced by ER stress. Consequently, these
processes could worsen the pathological process of RA.

Conclusion
The immunological aspects of RA have been studied
extensively over the past several years. However,

understanding these processes and their implementation in
the design of new therapies for RA have not been completely
successful [37-40]. Here we propose a novel hypothesis for
RA pathogenesis: ‘hyper-ERAD’, which may alter the
characteristics of synovial cells in RA. Because Synoviolin
knock-down does not affect the immunological pathway [11],
this novel concept might explain the underlying pathogenic
processes in RA, especially in patients with RA refractory to
anti-TNF-α therapies. It is therefore important to investigate
the expression of Synoviolin or the status of the ERAD
system especially in these patients.

Two questions have to be answered before the design of any
new therapies that target Synoviolin and the suppression of
the hyper-ERAD. First, what are the mechanism(s) that
activate Synoviolin? Second, by what mechanism(s) does
Synoviolin regulate cell proliferation and apoptosis? Because
the amount of Synoviolin is critical for arthritis [11], a detailed
analysis of Synoviolin production and/or activation is also
important for its quantity control (Fig. 4). With this in mind, we
recently identified the transcriptional regulation of synoviolin,
which could help in identifying the regulatory pathway that
leads to the activation of synoviolin in RA synovial cells [41].
Furthermore, these studies could allow the development of
decoy nucleic acid-based or siRNA-based therapies
(Fig. 4a,b). Thus, in the next step, we need to define the
molecular mechanism(s) that activate Synoviolin in RA
synoviocytes. The current thinking is that the enzymatic
activity of Synoviolin could be regulated by auto-ubiquitination
or other forms of post-translational modification, such as
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Figure 3

The concept of hyper-endoplasmic reticulum (ER)-associated degradation (hyper-ERAD). In cells with functional disturbance of the ERAD system
(hypo-ERAD), unfolded proteins accumulate in the ER (left). Conversely, in the hyper-ERAD status, unfolded proteins are promptly eliminated from
cells, thus enhancing the ability of the ER to synthesize new proteins (right).
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phosphorylation (Fig. 4c). In such processes, cofactors
required for Synoviolin activation (Fig. 4d) or interaction with
substrates could be crucial for the biological effects of
Synoviolin (Fig. 4e). A search for Synoviolin substrates is also
indispensable for the discovery of any as yet unknown
crosstalk between signaling pathways involved in the
regulation of the cell cycle and/or apoptosis and Synoviolin,
which could help to uncover the complex pathogenic
mechanism of RA.

In this review we have presented a new concept of the hyper-
ERAD system in the pathogenic process of RA. Although this
concept was formulated through several years of research
involving laboratory animals and a limited number of patients
with RA, the relevance to human disease remains somewhat
speculative at present. More time and efforts are needed to
understand the role of the ERAD system in human RA and to
define other as yet unknown aspects of RA before the design
of any ERAD-based therapy for the disease.
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