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ABSTRACT: Electron and charge transfers are part of many vital
processes in nature and technology. Ab initio descriptions of these
processes provide useful insights that can be utilized for
applications. A combination of the embedded cluster material
model and nonorthogonal configuration interaction (NOCI), in
which the cluster wave functions are expanded in many-electron
basis functions (MEBFs) consisting of spin-adapted, antisymme-
trized products of multiconfigurational wave functions of fragments
(which are usually molecules) in the cluster, appears to provide a
compromise between accuracy and calculation time. Additional
advantages of this NOCI−Fragments approach are the chemically
convenient interpretation of the wave function in terms of
molecular states, and the direct accessibility of electronic coupling between diabatic states to describe energy and electron transfer
processes. Bottlenecks in this method are the large number of two-electron integrals that have to be handled for the calculation of an
electronic coupling matrix element and the enormous number of matrix elements over determinant pairs that have to be evaluated
for the calculation of one matrix element between the MEBFs. We show here how we created a reduced common molecular orbital
basis that is utilized to significantly reduce the number of two-electron integrals that need to be handled. The results obtained with
this basis do not show any loss of accuracy in relevant quantities like electronic couplings and vertical excitation energies. We also
show a significant reduction in computation time without loss in accuracy when matrix elements over determinant pairs with small
weights are neglected in the NOCI. These improvements in the methodology render NOCI−Fragments to be also applicable to treat
clusters of larger molecular systems with larger atomic basis sets and larger active spaces, as the computation time becomes
dependent on the number of occupied orbitals and less dependent on the size of the active space.

1. INTRODUCTION
A detailed description of inter- and intramolecular transport of
electrons or energy in the form of electronically excited states
is essential to understand many processes in nature and in
technological applications.1−4 For a theoretical understanding
of the electronic structure of the molecules involved in these
processes, one can opt for ab initio methods using either
density functional theory (DFT)5,6 or wave function-based
approaches. Often, such calculations are performed within the
molecular orbital (MO) approximation, and DFT is typically
accurate and computationally cheap enough to cover most
applications. However, when high accuracy is required or the
electronic structure cannot be reasonably described with a
single electronic configuration, wave function-based ap-
proaches like coupled cluster7−9 and multiconfigurational
self-consistent field (SCF)10−12 come into play. Moreover, it
is not straightforward to calculate matrix elements between
diabatic states with DFT.
The use of one set of orthogonal one-electron functions

(orbitals) to construct all Slater determinants in which the
many-electron wave functions are expanded simplifies
tremendously the computational procedure and is nowadays

the dominant choice for wave function-based calculations.
Alternatively, electronic structure calculations can also be
performed within the valence bond (VB) approach,13 a
computationally more complex, but chemically more intuitive
method that is based on nonorthogonal orbitals. The VB
description of chemical bonding remains very close to the
concepts derived from the Lewis structures of molecules and is
therefore very attractive to translate computational results into
simple, chemically relevant concepts. A drawback is that
accurate VB calculations are, in many cases, not feasible or
extremely costly. Our NOCI approach is aimed at combining
conceptual attractiveness with accuracy and computational
feasibility.
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Coming back to the charge and excitation transfer processes
mentioned before, significant changes can be expected when
comparing the electronic structures of initial and final states of
charge and excitation transfer processes such as

A B A B+ → ++ − (1)

and

A B A B* + → + * (2)

with A and B representing the ground-state electron
distributions of two different molecules (or two fragments of
the same molecule), A+ and B− are the cationic and anionic
states of A and B, and A* and B* denote excited states
localized at the fragments or molecules. Not only do the initial
and final states differ in their leading electronic configuration
but also in the shape of the optimal orbitals that describe the
electron distributions.14 A multiconfigurational approach can
certainly take into account the change in the leading electronic
configuration, but the restriction of one set of orthogonal
orbitals to describe both initial and final states makes it difficult
to find an unbiased orbital description. Optimizing the orbitals
for the A−B state may result in a poor description of the A+−
B− charge transfer state and similar A*−B optimized orbitals
are not very well suited to describe the A−B* exciton-transfer
state. The alternative, and more commonly used, choice of a
state-average optimization of the orbitals is also not free of
problems. Normally, the average cannot be restricted to the
two states of interest only. The excited state is typically not the
lowest excited state and has other electronic states close in
energy, implying that the state-average procedure necessarily
includes more states than strictly required.
In this study, we aim to combine the advantages of VB and

MO theories and apply a strategy denoted NOCI−Fragments
that, to some extent, can be characterized as a divide-and-
conquer scheme. Instead of directly heading for accurate
approximations of the many-electron states of the A−B system,
we separately calculate wave functions of the A and B
fragments applying one of the standard (orthogonal) MO-
based approaches. Following the two examples from above,
this implies six separate calculations: two to determine the
wave functions of the ground states of A and B; then the ionic
states A+ and B−; and, finally, the excited states A* and B*.
Each of these fragment wave functions is expressed in their
own optimal set of orthogonal orbitals and, therefore, the
orbitals of different sets may have nonzero mutual overlap.
Next, we construct wave functions for the full system by
making spin-adapted linear combinations of antisymmetrized
product wave functions from the fragment wave functions.
These so-called many-electron basis functions (MEBFs) are
then used to build a configuration interaction (CI) matrix,
which allows us to calculate the coupling between the diabatic
states and, upon diagonalization of this nonorthogonal CI
(NOCI) matrix, also to obtain the N-electron wave functions
and energies of the electronic states of the full system. Note
that when the fragment wave functions used to build the
MEBFs (or diabatic states) are calculated through a CASSCF
procedure, there is no need to have the same active space size
for the different wave functions of a fragment.
Computational approaches with nonorthogonal orbitals have

recently generated renewed interest among several groups.
Olsen and co-workers have developed an efficient implemen-
tation of multiconfigurational SCF in terms of nonorthogonal
orbitals describing both an efficient algorithm for the CI and

the orbital optimization steps.15 This was later extended by the
implementation of a perturbative treatment of the dynamic
correlation16,17 and an orbital localization scheme.18 A second
important recent contribution to the field was made by the
group of Head-Gordon, who developed a spin-flip variant of
nonorthogonal CI19 and a scheme based on Generalized
Hartree−Fock reference wave functions,20 followed by the
extension to MP221,22 and core−hole excitations.23,24 Here, we
also mention the important contributions to the non-
orthogonal approaches recently made within the framework
of the valence bond theory of Wu et al., giving an important
boost to the efficiency of VB calculations.25−28 Other recent
contributions to the field were reported by Burton, Gross, and
Thom,29,30 and Nite and Jimeńez-Hoyos.31 They present
nonorthogonal CI schemes to calculate multiconfigurational
excited states using resonating Hartree−Fock32 or holomor-
phic Hartree−Fock33 reference wave functions.
Our implementation of NOCI has two important advantages

in comparison to standard orthogonal MO approaches. First,
all of the many-electron states are described in an unbiased
way; each state is expressed in its own optimal orbitals. Second,
the final wave function expansion of the electronic states
remains very short, with typically less than 10 MEBFs, which
by themselves are neat representations of easily identifiable
electronic configurations. Hence, the interpretation of the final
wave function is rather simple and stays close to the intuitive
language of the VB theory.
Obviously, lifting the restriction of orthogonal orbitals

comes at a cost. The calculation of two-electron matrix
elements between multiconfigurational wave functions ex-
pressed in one and the same set of orthogonal orbitals is
relatively easy. The Slater−Condon rules state that only
determinant pairs with at most two differences in the orbital
occupancy have a nonzero contribution to a matrix element of
two-electron operators. There is no such rule when separately
optimized orbitals are used. Now, in principle, all bra−ket
determinant pairs contribute to the matrix element between
the two multiconfigurational wave functions. A spin singlet
fragment wave function obtained with a (small) CAS(6,6)SCF
calculation contains 400 determinants (no spatial symmetry is
considered). Combining two such fragment wave functions in
a NOCI−Fragments study leads to an MEBF with 160 000
determinants and, hence, there are in principle 2.56 × 1010

determinant pairs that need to be considered to calculate an
element of the NOCI matrix. Although many determinant
pairs can be safely discarded based on the small product of the
CI coefficients, there is still a huge amount of contributions
that need to be calculated. Moreover, the evaluation of these
contributions to the matrix elements is less straightforward
than that in the orthogonal case. Following the outline of
Löwdin34 on how to calculate the interaction between
nonorthogonal determinants, several algorithms have been
developed35−46 to speed up the procedure as much as possible.
We follow here the general nonorthogonal matrix elements
(GNOME) algorithm outlined in refs 35, 47, 48. To ensure
that the diabatic character of the fragment wave functions is
exactly maintained in the MEBFs of the NOCI calculation, we
perform a singular value decomposition of the orbitals for each
determinant pair of bra- and ket-MEBFs.
Parker and co-workers49 introduced an active-space

decomposition CASSCF method, ASD-CASSCF, for molec-
ular dimers that allows for the efficient computation of the
dimer complete-active-space wave function while only
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constructing the monomer active-space wave functions. Dimer
states are formed from linear combinations of direct products
of localized orthogonal monomer states, analogous to our
MEBFs, and Hamiltonian matrix elements are computed
directly without explicitly constructing the product space. This
procedure gives rise to problems in covalently linked
chromophores that hamper applications of ASD-CASSCF to
such systems, but Kim et al.50 eliminated this problem by
applying orbital optimization. In both approaches, all
configurations, including, for example, CT configurations, are
expressed in one common set of orthogonal orbitals. If the
different MEBFs are expressed in different, mutually non-
orthogonal, orbital sets, this procedure is not possible.
Now, one could misdoubt the necessity of using different

orbitals to describe the electronic states involved in the
phenomenon under study. As illustrated above, state-specific
orbital relaxation plays an important role in many cases and
describing different electronic states with one set of average
orbitals is not always the most appropriate procedure. In the
first place, it leads to reference wave functions for dynamic
electron correlation treatments that can be far from optimal
(see for, example, refs 51−53), making the estimate of the
dynamic correlation effect unreliable. Second, expressing the
final wave function in a limited number of MEBFs greatly
facilitates an intuitive interpretation of the physics of the
system.
As reported recently, the calculation of the different

contributions to the elements of the NOCI matrix can be
efficiently parallelized, leading to a linear scaling of the method
with the number of cores.47,48 This has set the fundamentals
for NOCI calculations on larger systems, but there is still an
important bottleneck that needs to be resolved before large-
scale applications can be run with the above-outlined approach.
So far, our NOCI calculations have used an atomic orbital
(AO) basis to express the integrals. For efficient handling of
the different determinant pairs, these integrals have to be kept
in memory, putting rather severe requirements on the
computer resources when it comes to anything but the
smallest test systems. In ordinary CI calculations with one set
of orbitals, the integrals undergo a transformation and are
written on the basis of the MOs occupied in any of the
configurations considered in the wave function. This drastically
reduces the size of the two-electron integrals file, but a similar
procedure is not straightforward in the NOCI method because
the electronic states involved are described with different sets
of MOs. Here, we reduce the integrals file by a transformation
from the AO basis set to a new MO-based one-electron basis,
common to all states, which is only slightly bigger than the
number of MOs with nonzero occupation and therefore
enormously reducing the computational cost in comparison
with what is needed when the integrals are expressed in the
original AO basis (which is, of course, also a common basis for
all of the states).
After describing the procedure to construct the common

MO basis, we discuss in detail the trade-off between accuracy
and computational resources (memory and wall-clock time) of
transforming the integrals to this new common basis. To
complete the picture, we also report the dependency on the
thresholds that are used to decide whether a determinant pair
is relevant for the matrix element between two nonorthogonal
states. The introduction of a common MO basis and the
selection of the determinant pairs based on the product of their

CI coefficients have significantly put forward the limit of
application.

2. GENERATION OF THE REDUCED COMMON
MOLECULAR ORBITAL BASIS

Consider K different electronic states of one of the molecules
(or fragments) of the cluster under study. Typically, each
molecular state Ψμ is described by a multiconfigurational self-
consistent field (MCSCF) wave function expanded in terms of
Slater determinants. The determinants themselves can be
written in terms of antisymmetrized products of MOs. The
MOs are linear combinations of all N AO basis functions in the
fragment

ci
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N
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= (3)

where μ is one of the electronic states from the set K and cij
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the orbital coefficients optimized for state μ. The MOs of each
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where skl is the atomic orbital overlap and cki
μ are the MO

coefficients (k, l run over the AOs and i, j are the MO indices).
By grouping together the MOs with nonzero occupation of all
K states, a common basis for the given set of electronic states
of the molecule can be formed.
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where ϕi
μ is the ith MO in the μth electronic state and nμ is the

number of MOs with nonzero occupation for each state μ. The
matrix of MO coefficients C has dimensions (M × N), with M
= ∑μ=1

K nμ. Although the orbitals of different electronic states
are different, they are still similar enough to make that such a
common basis has linear dependencies that need to be
removed before further processing. To do so, we first
diagonalize the overlap matrix S, dimension (M × M), of the
common MO basis defined in eq 5.

S U SU′ = † (6)

The matrix of eigenvectors (U) defines a new set of MOs to
describe the electronic states, and linear dependencies are
removed by only considering the L vectors whose eigenvalues
(S′) are larger than a given threshold (τMO).

U VMO⎯ →⎯⎯
τ

(7)

We now have a reduced common basis V, of dimension (L ×
M), from U of dimension (M × M), where L < M. Next, we
express V in the atomic orbital basis by

B C S V( ) 1/2= ″ − (8)

where S″ contains the L largest eigenvalues of S′ and B
constitutes a set of orthogonal vectors of dimension L × N for
the fragment under consideration. Finally, matrices Dμ with
dimension (nμ × L) are constructed to express the MOs of
each electronic state μ in the common compact basis B.
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D B sC=μ μ† (9)

where Cμ is the matrix of MO coefficients for each electronic
state μ. In a strictly orthogonal approach with one set of MOs
to express all of the electronic states, the Dμ matrices are unit
matrices, but this is no longer the case here. The MOs are
written in terms of the new compact basis for the molecule
under consideration as

d bi
j

L

ij j
1

∑ϕ| ⟩ = | ⟩μ μ

= (10)

In the standard NOCI approach where only one molecule is
considered, this is the end of the transformation procedure. In
the case of NOCI−Fragments, the procedure is repeated for all
other molecules (fragments) in the system and, after collecting
the resulting basis sets of all molecules, the one- and two-
electron integrals are transformed to the common MO basis of
the whole cluster. Increasing the value of the threshold τMO
leads to a loss of information about the nonorthogonality
between the states in the common MO basis. To what extent
this affects the elements of the NOCI matrix is the subject of
the first part of the Results and Discussion section.
The number of determinant pairs that needs to be

considered in the calculation of an element of the NOCI
matrix scales roughly with the fourth power of the number of
determinants in the CAS used to generate the molecular/
fragment wave functions. This makes the application of any but
the smallest CAS prohibitive. There is, however, a simple
solution to this bottleneck, realizing that the contribution of
each determinant pair in the NOCI matrix element is weighted
by the product of the CI coefficients of the two determinants.
Hence, the contribution of two determinants, each having a
coefficient of the order of 10−6, is multiplied by 10−12, which
will make it most probably negligible. To explore the
possibilities of neglecting a large portion of the determinant
pairs, we have introduced a second threshold in the NOCI
procedure, τdet, which eliminates all determinant pairs whose
product of CI coefficients is smaller than the threshold.
Before putting the influence of the new thresholds to the

test, we first stress that the NOCI implementation based on
the GNOME algorithm35,54 is not meant to be a general
electronic structure method. In fact, from the very beginning,
the method is known to perform rather poorly in the
description of covalent bonds.55 The Supporting Information
(SI) summarizes the NOCI−Fragments results on the
dissociation of F2 reported in ref 55. When building the
MEBFs of the NOCI from atomic wave functions for F, F−,
and F+, i.e., using the individual atoms as fragments, the energy
rises too steeply at short internuclear distances, the equilibrium
distance of ∼1.7 Å is too long, and the dissociation energy is
too small. These inaccuracies are a direct consequence of the
way in which the orbitals of the “fragments” are optimized (in
the isolated atoms), leading to a large Pauli repulsion between
the fragments. A slightly better description is obtained with a
standard NOCI calculation where the |...σg

2| and |...σu
2|

determinants (both expressed in their own optimal set of
MOs) are used, but with this choice of MEBFs expressed in
delocalized MOs, it is better to follow a standard MCSCF
approach with these two configurations.
Instead, the NOCI−Fragments method compares very well

to other approaches for the calculation of electronic couplings
between weakly coupled states.56 Furthermore, the direct

comparison of the excitation energies in a benzene dimer as a
function of the intermolecular distance compares well with a
standard CASSCF approach for the dimer, although deviations
are getting larger when the two molecules approach each other.
Test calculations in which the fragment MOs are optimized in
the presence of a frozen density of the other molecule show a
reduction of these deviations at a short distance (see Figure
S13 of the Supporting Information).

3. COMPUTATIONAL DETAILS
The first test case that we considered was the slip-stacked
pyridine dimer as depicted in Figure 1. This dimer is small

enough to perform a large set of test calculations within a
reasonable time, yet showing the most relevant many-electron
states that play a role in intermolecular electron and energy
transfer processes. The geometry of the molecule was
optimized with B3LYP/6-311G** and the dimer was formed
by placing the second unit (with identical internal coordinates)
at a perpendicular distance of 4a0 to the first and sliding it by
7a0 along the x-axis and then by 5a0 along the y-axis. In
addition to the ground state (S0), we also considered the
following molecular functions: first excited singlet (S1), the
lowest triplet excited state (T1), and the cationic (D1

+) and
anionic (D1

−) states. The optimal MOs of these states (|ϕi
μ⟩ of

eq 3) are generated from CASSCF calculations with an active
space formed by either four electrons in four active orbitals
(CAS(4,4)) or six electrons in six orbitals (CAS(6,6)). The
common MO basis (eq 8) was generated with a program
written in f95, which also expresses the molecular wave
functions in the new basis (eq 9). All of the single-molecule
calculations and the transformation of integrals to the common
MO basis for the dimer were performed with the GAMESS-
UK package.57

The construction of the MEBFs and the subsequent
calculation of the matrix elements were done with the
GronOR code47,48 on the Summit supercomputer at Oak
Ridge National Laboratory (Tennessee). The 4608 nodes of
this machine are composed of two CPUs (totaling 44 cores)
that share 512 GB of memory and six GPUs with 16 GB each.
All runs, unless otherwise specified, were run on 32 nodes,
each with six ranks per node. GronOR scales linearly with the
number of cores up to the machine limit.
Test calculations were done on the following systems

following the same procedure as that outlined for the pyridine
case: 1pyridine dimer cc-pVTZ, 2pyridine dimer 6-
311G**, 3naphthalene dimer cc-pVDZ, 4pyridine
tetramer 6-311G**, 5pyridine tetramer cc-pVTZ, and 6
tetracene dimer cc-pVDZ. The pyridine tetramer test cases
were constructed by placing one pyridine molecule 7a0

Figure 1. Ball and stick representation of the slip−stack-arranged
pyridine dimer. Dark spheres show carbon, blue represents nitrogen,
and the lighter spheres show hydrogen.
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vertically above and one 7a0 below the dimer geometry. The
results for systems 2−6 can be found in the Supporting
Information. The coordinates of all test systems are given in
the Supporting Information.
The test cases have been chosen with the latest applications

of our group in mind.56,58−61 These focus mainly on inter- and
intramolecular electron and energy transfer processes that
occur in singlet fission,62−65 donor−acceptor charge trans-
fer,66−68 and exciton delocalization and dispersion.69−71 In all
of these cases, several diabatic states with different electronic
configurations play a fundamental role and, hence, orbital
relaxation is an important factor for obtaining an accurate
theoretical description. This organic playground is, of course,
not the only area of chemistry where NOCI can be applied;
systems with transition metals have also been studied but have
usually been restricted to rather small (model) com-
plexes.15,35,72−74 The approach presented here will certainly
also make the study of more realistic transition metal systems
within reach. Roughly speaking, the transformation of integrals
to the common MO basis means that our NOCI
implementation no longer scales with the size of the atomic
orbital basis but rather with the number of electrons in the
system, as the dimension of the common MO basis is only
slightly larger than half the number of electrons in the system.
Different from orthogonal CI approaches, we only need to
consider the MOs with nonzero occupation in the integral
transformation.

4. RESULTS AND DISCUSSION
Figure 2 shows the eigenvalues of the molecular orbital overlap
matrix of the pyridine molecule for the five states S0, S1, T1, D1

+,

and D1
−. The first 23 basis functions of the common MO basis

with eigenvalues close to five describe the common part of the
occupied (19 inactive and four active) orbitals of the five
electronic states. The next functions with smaller eigenvalues
(the first 15 are depicted in Figure S12 of the Supporting
Information) are responsible for the description of the
nonorthogonality, or the difference, in the orbitals of the
different electronic states. Although not easily interpreted,
basis functions 1−4 and 6 seem to describe differences in the
π-orbitals of the different electronic states and functions 5, 7−
10 can be considered to take into account possible changes in

the C−H bonds. It becomes more difficult to assign a role for
functions 11−15.
In fact, the functions with the smallest eigenvalues are just

linear dependent counterparts of the basis functions with larger
eigenvalues and, hence, going to the right in Figure 2, the
functions with eigenvalues smaller than 1 gradually change
their role from describing the nonorthogonality between the
states to being simple linear dependent vectors not carrying
any significant information. In the next section, we determine
the optimal value for truncating the common MO basis to
remove the linear dependencies but still maintaining the basis
flexible enough to express the differences between the
electronic states.

4.1. Determination of the Optimal τMO. As expected,
increasing the value of the threshold for eliminating vectors
from the common MO basis increases the difference in the
total energies of the MEBFs of the pyridine dimer with respect
to the reference values obtained with the AO basis. A roughly
linear increase is observed on a double-log plot for all of the
systems that we looked at. Thresholds of 10−8 lead to energy
differences of the order of 10−8 Eh, while the much bigger
threshold of 10−3 eliminates so many functions from the basis
that the calculated total energy deviates by approximately 10−3

Eh. Such large deviations are, of course, unacceptable if
accurate total energies are required, but the total energy is not
exactly the property that defines the physics of the system
under study. For a better insight into what can be considered
as a safe threshold for eliminating functions from the common
MO basis, we have to look into other quantities. The first one
that we have analyzed is the electronic coupling Vij between
the S0S1 and T1T1 MEBFs. These two electronic configurations
play a fundamental role in the rationalization of singlet
fission58,62,63 and the matrix element ⟨S0S1|Ĥ|T1T1⟩ is a key
element in the calculation of the electronic coupling Vij
between the two configurations:

V
H

1ij
i j

H H
i j

i j

( )

2
2

i i j j

=
⟨Ψ| ̂ |Ψ⟩ − ·⟨Ψ|Ψ⟩

− ⟨Ψ|Ψ⟩

⟨Ψ| ̂ |Ψ⟩ + ⟨Ψ| ̂ |Ψ⟩

(11)

Figure 3 compares Vij obtained with the AO basis to those
calculated with the common MO basis, varying the threshold

for linear dependencies. Pyridine CAS(4,4) molecular wave
functions with the cc-pVTZ basis set were used to construct
the MEBFs. Moving to the right along the τMO axis, more basis
functions are eliminated from the common MO basis with an
increasing threshold.

Figure 2. Eigenvalues of the MO overlap matrix of the five electronic
states considered for the pyridine molecule.

Figure 3. Electronic coupling Vij (in meV) between |S0S1⟩ and |T1T1⟩
for the pyridine dimer test system as a function of the threshold τMO
for removing basis functions from the common MO basis. AO refers
to the value obtained with the AO basis.
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Although the coupling is much smaller than that in systems
with singlet fission properties, for example, the calculated
NOCI−Fragments coupling for a tetracene dimer is around 50
meV,56 it allows us to draw conclusions about the dependence
of the coupling on the threshold. It is seen that for τMO smaller
than or equal to 10−4, the coupling is exactly the same as the
one calculated with the AO basis. A small deviation of less than
0.1 meV is found when τMO = 10−3 and, even with the 10−2

threshold, a reasonable coupling is obtained. From Figure 4, it

can be noted that this behavior is general to all 15 off-diagonal
elements of the NOCI matrix. The mean absolute error (α)
and the maximum absolute deviation (δ) in the electronic
coupling plotted in the figure are calculated with the
corresponding values in the AO basis as a reference. Negligible
differences are observed up to τMO = 10−3, and increasing the
threshold by a factor of 10 introduces small deviations.
Having established that the results of the AO basis can be

reproduced with a common MO basis, we now focus on the
computational savings. Keeping the number of nodes and
other computational parameters constant, we have compared
the wall-clock time and the size of the integral file for the
calculation of the 21 unique elements in the 6 × 6 NOCI
matrix for different values of τMO.
Figure 5 shows a dramatic drop in the computer time when

the AO basis is replaced by the common MO basis with τMO =

10−7. The use of larger thresholds only slightly reduces the
time. On smaller machines, the decrease in the computer time
continues to larger thresholds as can be seen in Figure 6.
The size of the integral file and, hence, the memory

requirements decrease more steadily as functions of the
threshold and are about 3 orders of magnitude smaller for τMO
= 10−3 than that for the integral file using the AO basis. In
comparison to the original AO basis of 570 basis functions, the
maximum size of the common MO basis set is 230: 10
electronic states (S0, S1, T1, D1

+, and D1
− on both molecules),

each with 19 inactive + 4 active = 23 occupied orbitals. This is
already reduced to 148 basis functions by applying a threshold

of 10−7, and less than one-third of the basis functions are
retained when τMO increases to 10−3.
The last element that we checked was the performance of

the common MO basis to reproduce the relative energies of
the MEBFs taking the S0S0 configuration as the reference
energy. The first feature that strikes the eye in Figure 7 is the

fact that the pyridine dimer is definitely not a candidate to
show singlet fission. The T1T1 configuration lies way too high
in energy with respect to the S0S1 state, while they should be
close in energy for singlet fission. More important for the
present study is that the relative energies are not affected by
the change from the AO basis to the common MO basis unless
the threshold for linear dependencies is very high, although the
differences with the AO basis are marginal even for τMO = 10−3.
We performed the same set of tests for the other molecules

mentioned in the computational details and obtained the same
trend in the results. The mean errors α and maximum
deviations δ in electronic coupling given in Figure 8 are small
in all cases, except for the tetracene dimer (6), for which we
observe a deviation of around 10 meV in a coupling that is as

Figure 4. Mean absolute error (α) and maximum absolute deviation
(δ) (both in meV) of the electronic couplings among the five MEBFs
of the NOCI with respect to the values obtained with the AO basis.

Figure 5. Integral file size in MB (left) and computer time in seconds
(right) as functions of the threshold τMO.

Figure 6. Computer wall-clock time (in seconds) as a function of τMO
when performed using two GPUs on the computer cluster.

Figure 7. Excitation energies ΔE (in eV) for three states calculated
using different τMO values. AO refers to the value obtained with the
AO basis.

Figure 8. Mean absolute error (α) and maximum absolute deviation
(δ) (both in meV) of the electronic couplings among the five MEBFs
of the NOCI with respect to the values obtained with the AO basis,
with τMO = 10−4 for the six different test systems.
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large as 77 meV in the reference calculation (see SI). From the
ratios of integral file sizes depicted in Figure 9, we can see that

the integral file size is reduced by approximately 2 orders of
magnitude in all systems, which is especially important for
calculations on larger systems. Finally, the speed-up (reduction
of the wall-clock time) is also close to 2 orders of magnitude in
systems 1, 3, and 4. For system 2, we find a slightly smaller
reduction because this system is rather small anyway and the
impact of expressing the integrals in the common MO basis is
not so well seen in the large-scale computer used in this study.
For systems 5 and 6, we have not been able to perform the
NOCI calculation in the AO basis due to the excessive size of
the integral file (reference calculations for α and δ are the ones
with τMO = 10−9). The reduced number of basis functions
implies shorter summations in the evaluation of nonorthogonal
matrix elements compared to the AO basis. The reduced
common MO basis also now makes it possible to have multiple
ranks processing the integrals in GPUs for large systems, hence
accelerating the calculation even more.
To close the discussion of the influence of the truncation of

the common MO basis, we would like to stress that the analysis
of the underlying physics of the system under study is not done
at the one-electron level in our implementation of NOCI but
rather at the many-electron level by looking at the relative
importance of the different MEBFs in the final N-electron
wave functions obtained by diagonalizing the NOCI matrix.
Since the initial diabatic character of the functions is strictly
maintained during the calculation, the coefficients in the
NOCI wave function give a direct indication of the importance
of the MEBFs, which can univocally be assigned to physical
concepts such as charge transfer, local excitation, relaxed hole
states, etc. The threshold for reducing the common MO basis
must be chosen such that only the linear dependencies are
removed from the basis. Making the threshold too large will
lead to a removal of functions that are needed to account for
the nonorthogonality between the different electronic states
and, therefore, too large a value of τMO will lead to a basis that
is not flexible enough for a proper description of the fragment
wave functions.
4.2. Selection of Determinant Pairs. Starting again with

the matrix element between the T1T1 and S0S1 states of the
pyridine dimer (CAS(6,6)/6-311G**) with the integrals
already expressed using a common MO basis with τMO =
10−4, Figure 10 shows how the size of the coupling varies with
increasing determinant pair threshold τdet.
The calculated values are virtually the same for τdet smaller

than or equal to 10−5. For larger thresholds, we see very small
deviations and filtering out all determinant pairs with a CI
coefficient product smaller than 10−3 affects the NOCI matrix
element by not more than 0.3 meV. Figure 11 compares the

number of determinant pairs that were considered in the
calculation of these matrix elements to the time it took to
process all of the pairs and calculate the matrix elements for
the NOCI matrix.
These calculations were performed on 256 Summit nodes

with six ranks per node and show how the number of
determinant pairs decreases steadily with increasing τdet.
Taking a threshold of 10−4, the reduction in the number of
determinant pairs is almost 4 orders of magnitude compared to
the smallest threshold that we have used. From Figure 10, it
can be seen that using a threshold of 10−4 does not
significantly affect the calculated coupling, but reduces the
computer time by more than 2 orders of magnitude Figure 11.
The same behavior is observed for the other matrix

elements. Figure 12 represents the mean absolute error and

the maximum absolute deviation (both in meV) as functions of
τdet. The results remain basically stable up to τdet = 10−5; for
higher thresholds, we start to observe small deviations. The
excited state energies in Figure 13 are hardly sensitive to the
value of the threshold; even with a value of 10−3, the changes
are minimal.
The figures show that up to τdet = 10−5, there is nearly no

loss in accuracy, while the computational time is drastically
reduced. The introduction of the threshold for determinant

Figure 9. Ratio of the integral file size (in %) in the MO basis (ωMO)
and the AO basis (ωAO) for the test systems at τMO = 10−4.

Figure 10. Electronic coupling Vij (in meV) between |S0S1⟩ and |
T1T1⟩ as a function of the determinant threshold τdet.

Figure 11. Number of determinant pairs that were used to construct
the NOCI matrix and the time for the NOCI calculation (in seconds)
as functions of τdet.

Figure 12. Mean absolute error (α) and maximum absolute deviation
(δ) (both in meV) of the electronic couplings among the five MEBFs
of the NOCI with respect to τdet = 10−9, which was the smallest value
that we chose to examine.
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pairs τdet makes the NOCI much less dependent on the size of
the active space employed for the calculation of the molecular
wave functions. As illustrated in Figure S11 of the Supporting
Information, the largest part of determinants introduced by
enlarging the active space turn out to have rather small
coefficients in the CAS wave function. These are effectively
filtered out by the threshold on the determinant pairs and
although the calculation time of the NOCI matrix becomes
longer when a larger CAS is applied in the fragment, the
increase is much less prominent than the quartic dependence
(N4, with N being the number of determinants in the fragment
CAS wave function) that can be expected without filtering.
This one case study is likely not enough to establish τdet =

10−5 as a universally applicable threshold for all systems, but
this very straightforward method used to reduce the number of
determinant pairs that needs to be evaluated in the calculation
of the matrix elements clearly pushes forward the border of
applicability of the NOCI method. For a more general
approach, it is most probably unavoidable to leave behind
the complete active space expansion of the fragment functions.
We are currently investigating the use of the ICE-CI approach
developed by Neese and co-workers based on the CIPSI
approach of Huron, Malrieu, and Rancurel.75 In this approach,
the multiconfigurational wave function is constructed
iteratively to only include the most important configurations.
Hence, the final wave function does not, by definition, contain
any “configurational deadwood”.

5. CONCLUSIONS
In a NOCI, each state is expressed in its own optimal
molecular orbital set and this complicates the transformation of
the integrals to an MO basis, commonly applied in
configuration interaction calculations with one set of
orthogonal MOs. Instead, we have introduced a common
MO basis constructed by grouping together all of the MOs of
the different electronic states, followed by an orthogonalization
and the removal of the linear dependencies through a
threshold that can be varied to find the optimal trade-off
between accuracy and computational cost.
The introduction of a common MO basis set to express the

wave functions of the different electronic states effectively
reduces the computational cost of NOCI calculations. The
transformation of the one- and two-electron integrals to this
common MO basis drastically reduces the size of the integral
files and allows to keep the integrals in memory, either using
the shared memory of a group of CPUs (GPUs), or multiple
copies, each on a single CPU (GPU), depending on the
amount of memory available. Furthermore, the reduced
number of basis functions in the common MO basis makes
the summations in the calculation of the nonorthogonal matrix

elements much shorter than that for the AO basis that has
been applied so far in NOCI.
Test calculations on the pyridine dimer (and on the larger

systems presented in the Supporting Information) show that
the threshold for removing the linear dependencies in the
common MO basis (τMO) can be safely taken to be 10−4 and, if
needed, even 10 times larger to generate some additional
savings (for example, on smaller computers). A consequence of
rewriting the integrals in the common MO basis is that it has
become much more efficient to apply AO basis sets of good
quality in the calculations of the fragments, as the NOCI cost
no longer directly scales with the size of the AO basis but
rather with the number of electrons.
The second important bottleneck in the NOCI is the huge

number of matrix elements over determinant pairs that needs
to be evaluated for the calculation of a single matrix element
over MEBFs. The introduction of a second parameter in the
method, τdet, allows the consideration of much larger active
spaces in the fragment calculations. The τdet parameter
removes all of the determinant pairs whose product of CI
coefficients in the MEBFs is smaller than the threshold and
effectively removes what is sometimes called the configura-
tional “deadwood”. While the values of the matrix elements of
MEBFs do not critically depend on the threshold for the linear
dependency in the common basis (unless very large thresholds
are used), the screening of the determinant pairs has a larger
impact on the results. A threshold of 10−5 turns out to be the
largest one for reliable matrix elements, but checking with
smaller (or larger) thresholds is advised.
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