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Abstract 

Background:  Circular RNA (circRNA) is a novel type of RNA with a closed-loop 
structure. Increasing numbers of circRNAs are being identified in plants and animals, 
and recent studies have shown that circRNAs play an important role in gene regula-
tion. Therefore, identifying circRNAs from increasing amounts of RNA-seq data is very 
important. However, traditional circRNA recognition methods have limitations. In 
recent years, emerging machine learning techniques have provided a good approach 
for the identification of circRNAs in animals. However, using these features to identify 
plant circRNAs is infeasible because the characteristics of plant circRNA sequences 
are different from those of animal circRNAs. For example, plants are extremely rich in 
splicing signals and transposable elements, and their sequence conservation in rice, for 
example is far less than that in mammals. To solve these problems and better identify 
circRNAs in plants, it is urgent to develop circRNA recognition software using machine 
learning based on the characteristics of plant circRNAs.

Results:  In this study, we built a software program named PCirc using a machine 
learning method to predict plant circRNAs from RNA-seq data. First, we extracted differ-
ent features, including open reading frames, numbers of k-mers, and splicing junction 
sequence coding, from rice circRNA and lncRNA data. Second, we trained a machine 
learning model by the random forest algorithm with tenfold cross-validation in the 
training set. Third, we evaluated our classification according to accuracy, precision, and 
F1 score, and all scores on the model test data were above 0.99. Fourth, we tested our 
model by other plant tests, and obtained good results, with accuracy scores above 0.8. 
Finally, we packaged the machine learning model built and the programming script 
used into a locally run circular RNA prediction software, Pcirc (https​://githu​b.com/Lilab​
-SNNU/Pcirc​).

Conclusion:  Based on rice circRNA and lncRNA data, a machine learning model for 
plant circRNA recognition was constructed in this study using random forest algorithm, 
and the model can also be applied to plant circRNA recognition such as Arabidopsis 
thaliana and maize. At the same time, after the completion of model construction, the 
machine learning model constructed and the programming scripts used in this study 
are packaged into a localized circRNA prediction software Pcirc, which is convenient for 
plant circRNA researchers to use.

Keywords:  CircRNA, Machine learning, Plant, Random forest

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Yin et al. BMC Bioinformatics           (2021) 22:10  
https://doi.org/10.1186/s12859-020-03944-1

*Correspondence:   
glli@snnu.edu.cn 
National Engineering 
Laboratory for Resource 
Development of Endangered 
Crude Drugs in Northwest 
China, The Key Laboratory 
of Medicinal Resources 
and Natural Pharmaceutical 
Chemistry, The Ministry 
of Education, College of Life 
Sciences, Shaanxi Normal 
University, Xi’an 710119, 
Shaanxi, People’s Republic 
of China

https://github.com/Lilab-SNNU/Pcirc
https://github.com/Lilab-SNNU/Pcirc
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03944-1&domain=pdf


Page 2 of 14Yin et al. BMC Bioinformatics           (2021) 22:10 

Background
Circular RNA (circRNA) is a newly identified kind of noncoding RNA. In contrast to 
typical linear RNA, it has no 5′ terminal cap structure or 3′ terminal poly-A tail struc-
ture but instead a closed-loop structure formed by the end-to-end connection of the 
5′ terminus and 3′ terminus [1]. CircRNA was first found in plant viroids in the 1970s, 
but it was considered a by-product of transcription due to its low level of expression 
[1, 2]. In recent years, with the development of high-throughput sequencing and bio-
informatics technology, a large number of circRNAs have been found from prokary-
otes to eukaryotes, and some of them have been proven to encode proteins [3, 4].

Although there are many studies on circRNAs to date, most of them are concen-
trated in mammals and humans, and there are few studies on circRNAs in plants, 
such as Arabidopsis thaliana, Oryza sativa, Triticum aestivum, and Solanum lycoper-
sicum [5–8]. Similar to animals, plant circRNAs can act as miRNAs and RNA bind-
ing protein (RBP) sponges. For example, circRNAs in grapes can be used as miRNA 
sponges [9, 10]. In addition, circRNAs can also respond to biotic and abiotic stresses 
on plants [9, 11]. For example, 163 circRNAs were differentially expressed in tomato 
under low-temperature stress [6].

The recognition of circRNAs is the basis of studying the function and regulation 
of circRNAs. Currently, CIRI [12], CIRCexplorer2 [13], and find_circ [14] are popu-
lar software programs for the identification of circRNAs. One of the important com-
mon foundation for the ability of these three software programs to predict circRNAs 
from transcriptome data is the supporting number of reads covering circRNA back-
splicing junctions (BSJs). However, the empirical standard used for supporting the 
number of reads is different in each prediction software, which leads to a great dif-
ference in the number of predicted circRNAs, and only a small number of overlap-
ping circRNAs are obtained by different software programs [15]. At the same time, 
because the expression of circRNAs varies in different stages and tissues, it is easy 
to lose some circRNAs by using the number of junction reads as a vital standard 
to predict circRNAs. To overcome the above shortcomings, a new animal circRNA 
identification method, DeepCirCode, which is based on a machine learning method, 
was developed and achieved good results in mammals [16]. The characteristics used 
by DeepCirCode include GT-AG splicing sites, Alu repeat sequences upstream and 
downstream of the back-splicing site, and sequence directions at both sites of the 
circRNA splicing junction that are opposite to those on the genome. However, using 
these features to identify plant circRNAs is infeasible because the characteristics of 
plant circRNA sequences are different from those of animal circRNAs; for example, 
plants are extremely rich in splicing signals and transposable elements, and their 
sequence conservation in rice, for example is far less than that in mammals [17]. To 
solve these problems and better identify circRNAs in plants, it is urgent to develop 
circRNA recognition software using machine learning based on the characteristics of 
plant circRNAs.

In this study, we first took circRNAs and lncRNAs as positive and negative sets, 
respectively, and built a machine learning model based on the main characteristics of 
k-mers, ORFs, and coding information of sequences covering back-splicing sites. Then, a 
tool named PCirc, which can be used in the prediction of plant circRNA, was developed 
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and has achieved good prediction performance. Pcirc source code and installation 
instructions are available at https​://githu​b.com/Lilab​-SNNU/Pcirc​.

Implementation
Dataset

In this study, rice circRNA data were downloaded from PlantCircBase [18] (http://ibi.
zju.edu.cn/plant​circb​ase/), and lncRNA data were downloaded from GreeNC (http://
green​.scien​cedes​igner​s.com/) [19]. To make the data set more credible, we first com-
pared the circRNAs data with the lncRNA data, sifted out the sequences with sequence 
similarity higher than 95% in the two data sets, and then compared the sequences within 
each data set and removed those with similarity higher than 95%, keeping the longest 
one. Finally, we used the Box-whisker Plot method to remove the extreme data values 
(length too long or too short) from both data sets. In summary, 33,101 circRNAs and 
4656 lncRNAs were obtained as positive and negative data, respectively. We randomly 
selected 4000 sequences were from the positive and negative data, then got a total of 
8000 sequences as the training set, and the remaining data were used as an independent 
test set. The circRNAs and lncRNAs of Arabidopsis and maize were also downloaded 
from PlantCircBase and GreeNC, respectively, and then used to test the universality of 
Pcirc.

Random forest

Machine learning (ML) is a multidomain interdisciplinary subject. It is the fundamen-
tal way to make computers intelligent, and its application is widespread throughout the 
fields of artificial intelligence and in the fields of biology and medicine [20–22]. In gen-
eral, it is difficult for humans to obtain the required information directly from the origi-
nal data. There are many ML algorithms in ML, such as random forest (RF), k-nearest 
neighbors (KNN), Support Vector Machine (SVM) and Gaussian naive Bayes (GNB).

Random forest (RF) is an aggregation of multiple unpruned decision trees from sep-
arate bootstrap samples of the training data and every feature subset sampled inde-
pendently from the original feature space [23]. It can construct multiple independent 
decision trees from the original features of the training data set and then fuse all trees by 
voting to obtain an optimal classification model, which has been widely used in data pro-
cessing fields, including bioinformatics [24, 25]. K-nearest neighbors (KNN) is another 
popular algorithm in the field of ML; although KNN can also handle classification prob-
lems well, many parameters in the algorithm need to be adjusted [26]. With increasing 
numbers of key parameters in KNN, the amount of calculation will expand rapidly, while 
RF requires the adjustment of only a few model parameters to obtain a good prediction 
classification model [27].

Experimental setting in Pcirc

In this study, we first built the ML model by using a Python module named scikit-learn 
(https​://sciki​t-learn​.org/) [28], an ML module that includes many ML algorithms. Then, 
we developed the software Pcirc, which is based on the pipeline shown in Fig. 1.

In scikit-learn, we set the parameters for the ML algorithms as follows. For RF, the 
number of trees in the forest (n_estimators) was set to 100, and the other parameters 

https://github.com/Lilab-SNNU/Pcirc
http://ibi.zju.edu.cn/plantcircbase/
http://ibi.zju.edu.cn/plantcircbase/
http://green.sciencedesigners.com/
http://green.sciencedesigners.com/
https://scikit-learn.org/
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were kept at the default values. GNB, the default parameters were used. For SVM, the 
parameter hash was {C:10, gammer:0.001, kernel: ‘rbf ’}.For KNN, the parameter hash 
was {n_neighbors:7, weights: ‘uniform’, p:2} and the other parameters were set to the 
default values.

Feature extract

Extracting features with recognition ability from the training set is a key step in building 
an ML model. Some simple single features, such as GC content and sequence length, 
cannot easily and directly distinguish between circRNAs (positive data) and lncR-
NAs (negative data). In this study, k-mers, open reading frames (ORFs), and junction 
sequences covering back-splicing sites were selected as the main features of Pcirc.

k‑mers

Nucleotides are the most basic elements of gene and transcriptome sequences. The 
sequences of nucleotides in different genes and transcripts determine different func-
tions, and the corresponding recognition information also includes them, especially the 
frequency of trinucleotides. Therefore, we extracted the frequency of adjacent nucleo-
tide sequences from the sequence as one of the basic features in this study. For this type 
of feature, by taking different k-mer values, we first obtained 340 (Σ4k, k = 1, 2, 3, 4) 
features. The extraction method of each feature fi was as described by formula 1, where fi 
is the ratio of feature i to the total length of the sequence, xi is the number of times that 
feature i occurred, k is the k-mer length of feature i, and L is sequence length. Then, we 
extracted GC content as an extra feature and finally built a vector array with 341 features 
(formula 2).

Fig. 1  The process of PCirc
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ORFs

The open reading frame (ORF) is an important feature in a sequence. Usually, it is the part 
of a sequence with a protein-coding function. Many studies have shown that the ORF of 
circRNAs is significantly different from that of coding sequences [27]. Specifically, the ORF-
length of the circRNA sequence is shorter, and the ORF-coverage of the total sequence is 
smaller. Therefore, we use ORF-length and ORF-coverage as a set of features in this study 
(3). ORF-length refers to the length of the ORF in the sequence, and ORF-coverage refers to 
the ratio of the length of the ORF to the total length of the sequence.

We first used UGENE (http://ugene​.unipr​o.ru/downl​oad.html) to predict the ORF in the 
sequence and then used a Python script to extract the optimal ORF from the result file and 
calculate the length ratio of the sequence it occupies. For ORF-coverage, we standardized 
the value by * 10 when extracting features.

Splicing junction sequence coding (SJSC)

The process of gene transcription involves many alternative splicing events, and different 
splicing sites lead to different transcripts, especially in circRNAs. At present, the splice sig-
nal GT/AG in circRNAs can be recognized by RBP to form circRNAs. Because the binding 
regions of RBP are often located upstream and downstream of the back-splicing site, the 
sequence information upstream and downstream of the back-splicing site may be a useful 
feature to differentiate circRNAs from other sequences.

For the back-splicing site, we located two splicing sites in the genome because there are 
no back-splicing sites for lncRNAs, then extracted the sequences 50 bp upstream and 50 bp 
downstream of each splicing site in the genome sequence to form a data set, recoded the 
100 bp length junction sequence with {‘A’:1, ‘T’:− 1, ‘C’:2, ‘G’:− 2} (Fig. 2), and obtained a 
one-dimensional array matrix composed of a set of {1, 2, − 1, − 2} that can be recognized 
by a computer. After all data sets were recoded, a set of corresponding high-dimensional 
array matrices was generated for training and testing.

(1)fi = (xi ∗ k)/L

(2)Xk-mer = {A%, T%, G% . . .GAC% . . .TTTT%, GC content}

(3)XORF =
{

ORF-coverage ∗ 10, ORF-length
}

Fig. 2  Junction sequence coding with coding-hash {‘A’:1, ‘T’:− 1, ‘C’:2, ‘G’:− 2}

http://ugene.unipro.ru/download.html
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Model measurement

To evaluate our model, we selected some common evaluation parameters: recall rate, preci-
sion, accuracy, F1 score, MCC and ROC curve.

Recall indicates how many positive examples are correctly predicted as positive; pre-
cision indicates how many of the predicted positive examples are correct; accuracy 
indicates the accuracy of the model for all samples; and F1 score indicates the relative 
stability of the model for positive and negative samples. MCC can evaluate the stabil-
ity of the model, it will be used in the process of model building and evaluate in the 
test data. In the formula, TP (true positive) is the number of sequences that are actu-
ally circRNAs and correctly predicted as circRNAs; TN (true negative) is the number 
of sequences that are actually lncRNAs and correctly predicted as lncRNAs; FP (false 
positive) is the number of sequences that are actually lncRNAs and wrongly predicted as 
circRNAs; and FN (false negative) is the number of sequences that are actually circRNAs 
and wrongly predicted as lncRNAs.

Results
Algorithm comparison analysis

In this study, we chose four popular machine learning algorithms, the K-nearest neigh-
bor algorithm, Gaussian naive Bayes algorithm, support vector machine and random 
forest algorithm, for comparison. To select the most suitable algorithm, we tested the 
algorithms on three categories of features. For the modeling test of each type of fea-
ture data, we took the tenfold cross-validation, took the average value as the final result, 
repeated the tenfold cross-validation 10 times, and took the final average value as the 
final result for comparison (Table  1, Fig.  3). The results showed that the random for-
est algorithm had the best score, with a minimum score of 0.9433 and the maximum 
d-values between them less than 0.05, so it was chosen as the best and most stable model 
building algorithm.

(4)Recall =
TP

TP+ FN

(5)Precision =
TP

TP+ FP

(6)Accuracy =
TP + TN

TP + FP + TN + FN

(7)F1-score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(8)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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Feature combination analysis

In this study, we selected three kinds of features as the main distinguishing features of ML 
in software to build the model. To test whether the selected features could distinguish the 
positive and negative categories accurately, we tested the three categories of features sepa-
rately on the training set (Table 2, Fig. 4). It can be seen that the three categories of fea-
tures we selected have a good classification effect; the score of every feature was above 0.9, 
the score of each feature combination was above 0.99, and the parameter evaluation of the 
combined results was better than that of the single-feature analysis in the ROC curve. The 
score also increases with the number of features. To avoid overfitting of the model, we also 
carried out the corresponding test on the test set (Fig. 5). It can be seen that in the test set, 
the modeling results of the multifeature combination are better and more stable than those 
of any single type of feature.

Model evaluation and application

To obtain the best prediction results, we built the model according to the results of the fea-
ture combination. To avoid overfitting or underfitting, the fitting effect of the model was 
evaluated by the method of tenfold cross-validation and precision-recall curve (Additional 
file 1: Fig. S1, Additional file 2: file 1), and the final model was evaluated on the test set 
(Table 3, Fig. 6). The results show that our model achieved an accuracy of 0.9936, which 
shows that our model can classify circRNAs and lncRNAs well.

Besides only using lncRNA as negative test dataset, we also added the other three types 
of non-coding RNA including miRNA, snRNA and snoRNA in our negative dataset to test 
our model. The result showed that the accuracy was 0.8935, and the precision and recall 
rate reached more than 90% (Additional file 3: file 2.). To test whether our model is also 
reliable in other plants, we selected circRNA and lncRNA data from the dicotyledon plant 
Arabidopsis and the monocot plant maize to test our model (Table 3) and achieved accu-
racy of 0.8980 and 0.8130, respectively. In summary, our results show that our model not 
only obtains accurate results on the test set for model construction but can also effectively 
predict circRNAs in other plants.

Table 1  Algorithm selection

For each type of feature, the bold values in this table represent the best score for each evaluation parameter

Feature Algorithm ACC​ PRE REC F1-score

k-mers RF 0.9584 0.9448 0.9738 0.9590
KNN 0.8465 0.8081 0.9092 0.8556

GNB 0.8718 0.9279 0.8064 0.8627

SVM 0.9574 0.9589 0.9559 0.9573

ORFs RF 0.9716 0.9712 0.9721 0.9716
KNN 0.9717 0.9757 0.9676 0.9716

GNB 0.9681 0.9603 0.9767 0.9684

SVM 0.9663 0.9611 0.9720 0.9665

SJSC RF 0.9433 0.9494 0.9367 0.9429
KNN 0.7472 0.7233 0.8013 0.7601

GNB 0.8036 0.7925 0.8232 0.8074

SVM 0.8700 0.8553 0.8910 0.8726
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In order to facilitate plant circRNA researchers and make effective use of the plant cir-
cRNA recognition model developed in this study. After model construction, the machine 
learning model constructed and the programming scripts used in this study were pack-
aged into a locally run circRNA prediction software Pcirc, Pcirc source code and installa-
tion instructions are available at https​://githu​b.com/Lilab​-SNNU/Pcirc​, accompanied by its 
detailed information of code usage.

Fig. 3  Algorithm evaluation with ROC curve, the right Figure is the ROC curve which zoomed in at loop 
left of the left figure. a The ROC curve of the random forest algorithm. b The ROC curve of the Gaussian NB 
algorithm. c The ROC curve of the K-nearest neighbors algorithm

https://github.com/Lilab-SNNU/Pcirc
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Discussion
CircRNAs are a class of circular non-coding RNAs, most of which are larger than 200 nt 
in length, and lncRNAs are a class of linear noncoding RNAs with length greater than 
200nt. For circRNAs and lncRNAs, it is not easily distinguished with only sequence 
length because the length distribution of circRNA and lncRNAs are almost the same. 
Combining sequence features with machine learning have been reported to be an effec-
tive method for classification long noncoding RNAs [27]. Therefore, starting from the 
biological characteristics of circRNAs, we constructed a software named Pcirc for pre-
dicting plant circRNA by using the machine learning method.

In the process of building machine models, we selected three kinds of features, 
among which k-mers and ORFs have been widely used in the recognition and predic-
tion of lncRNAs and circRNAs [27, 29]. Because back-splicing sites play an important 
role in the formation of circRNAs, the upstream and downstream sequences of the 
back-splicing sites have attracted the attention of scientists. Now researchers began 
to investigate the formation of circRNAs by perform splicing junction sequence cod-
ing (SJSC) [16, 30], but the strategy of SJSC in our method is different from previous 
method.

In addition to the characteristics associated with splicing sites, we combined the 
widely used k-mer and ORF features to construct our ML model because they represent 
the basis of sequences. The k-mer is the basis of sequence diversity. As the value of k 
increases, it becomes increasingly difficult to find k-mer segments with the same high k 
values in the same sequence or even in the same genome. At the same time, in a certain 
range, the larger the k value, the more representative the k-mer fragment will be; how-
ever, the additional calculation required by the larger K value is exponentially increased, 
so we need to better balance the two problems of feature optimization and calculation 
cost. After several attempts, we chose kmax = 4 as the representative value for k-mers.

The order of the four nucleotides contains important biological information, and ORF 
is a representative type of information. In our study, although this kind of feature is com-
posed of two-dimensional vectors, ORFs also contain rich information after processing. 
It can be seen from the results of three major algorithm tests and a single-feature type 
test that this kind of feature has excellent classification ability (Tables 1, 2). Initially, this 
feature was widely used in the recognition of lncRNAs because the greatest difference 

Table 2  Feature combination test on training data

In this table, K is k-mers, J is SJSC, and O is ORFs

Feature number Feature 
combination

ACC​ PRE REC F1 score

One k-mers 0.958400 0.944822 0.973800 0.959044

ORFs 0.971588 0.971196 0.972075 0.971597

SJSC 0.943250 0.948866 0.937125 0.942887

Mean 0.957746 0.954961 0.961000 0.957843

Two K&O 0.995010 0.995036 0.999887 0.997455

K&J 0.992597 0.993063 0.999413 0.996227

J&O 0.995480 0.995401 1.000000 0.997695

Mean 0.994362 0.994500 0.999767 0.997126

All K&J&O 0.994818 0.994754 0.999976 0.997358
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between lncRNAs and mRNAs is in coding ability [31]. Currently, circRNAs are mostly 
regarded as ncRNAs; however, because some circRNAs have been proven to have cod-
ing ability, we used this feature for testing, and the results far exceeded our expectations. 
Probably because of the problem of alternative splicing, the inclusion of more exons in 
circRNAs than in lncRNAs makes it possible to obtain more ORFs. It is also possible 
that the circular structure, without clear start and termination sites, is much more trans-
latable than the linear sequence with clear start and termination sites, and thus the ORF 
feature has very strong classification ability to distinguish circRNAs from lncRNAs. In 

Fig. 4  Feature evaluation with ROC curves, the right Figure is the ROC curve which zoomed in at loop left 
of the left figure. a The ROC curves of one feature. b The ROC curves of two features combination. c The ROC 
curves of all features
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this study, the ORF feature obtained the best score in the algorithm selection process 
and the feature combination test (Tables 1, 2). In future research, we will carry out fur-
ther feature testing, coding analysis and corresponding experimental verification for 
predicted circRNAs.

Fig. 5  Feature evaluation with ROC curve for test data, the right figure is the ROC curve which zoomed in at 
loop left of the left figure

Table 3  The results of the model testing

Model test data are the data set from the primary data used to test the ML model

Ath test data are the data set of Arabidopsis thaliana used to test the ML model

Zma test data are the data set of Zea mays used to test the ML model

ACC​ PRE REC F1 score MCC

Model test data 0.9676 0.9904 0.9763 0.9833 0.8749

Ath test data 0.8980 0.9693 0.8220 0.9740 0.8053

Zma test data 0.8130 0.7406 0.9582 0.6644 0.6513

Fig. 6  ROC curve of test data
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Conclusion
In the context of the lack of tools specifically for plant circRNA prediction, based 
on rice circRNA and lncRNA data, a machine learning model for plant circRNA 
recognition was constructed in this study using random forest algorithm, and the 
model can also be applied to plant circRNA recognition such as Arabidopsis thali-
ana and maize. At the same time, after the completion of model construction, the 
machine learning model constructed and the programming scripts used in this study 
are packaged into a localized circRNA prediction software Pcirc, which is a flexible, 
lightweight, command-line tool that convenient for plant circRNA researchers to 
use.

Availability and requirements

Project name: Pcirc.
Project home page: https​://githu​b.com/Lilab​-SNNU/Pcirc​.
Operating system(s): Unix-based (MacOS, Linux).
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2.2.6 or higher, tophat2 2.1.1 or higher, samtools 0.1.19 or higher, UGENE 1.30.0 or 
higher, Biopython 1.72, Pandas 0.23.3 or higher, scikit-learn 0.21.2.

License: GGPLv3.
Any restrictions to use by non-academics: License needed.
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