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Abstract: Knowledge of a patient’s cardiac age, or “heart age”, could prove useful to both
patients and physicians for better encouraging lifestyle changes potentially beneficial for
cardiovascular health. This may be particularly true for patients who exhibit symptoms but
who test negative for cardiac pathology. We developed a statistical model, using a Bayesian
approach, that predicts an individual’s heart age based on his/her electrocardiogram (ECG).
The model is tailored to healthy individuals, with no known risk factors, who are at least
20 years old and for whom a resting ∼5 min 12-lead ECG has been obtained. We evaluated
the model using a database of ECGs from 776 such individuals. Secondarily, we also applied
the model to other groups of individuals who had received 5-min ECGs, including 221
with risk factors for cardiac disease, 441 with overt cardiac disease diagnosed by clinical
imaging tests, and a smaller group of highly endurance-trained athletes. Model-related
heart age predictions in healthy non-athletes tended to center around body age, whereas
about three-fourths of the subjects with risk factors and nearly all patients with proven heart
diseases had higher predicted heart ages than true body ages. The model also predicted
somewhat higher heart ages than body ages in a majority of highly endurance-trained
athletes, potentially consistent with possible fibrotic or other anomalies recently noted in
such individuals.
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1. Introduction

Starc et al. [1] recently developed a multilinear regression model that used electrocardiographic
(ECG) and other outputs such as body mass index to estimate the cardiac ages, or “heart ages”, of healthy
individuals. Such estimates might be useful to both physicians and patients for better encouraging
lifestyle changes that may be beneficial for cardiovascular health. Consider for example the case of
a middle-aged individual with no known cardiac risk factors and a normal conventional 12-lead ECG
and physical exam who is merely told that he appears to be “healthy” from a cardiovascular standpoint,
i.e., when being cared for by a physician under a typical “population based” clinical approach. While
from the perspective of population averages this patient may be considered healthy, it would be of greater
use to have a more detailed and relative measure of the individual’s cardiac health. The goal of this study
was to provide such a measure based on the individual’s electrocardiogram (ECG).

Currently, there are several “heart age”-type prediction tools available online [2–4], with their
predictions typically based on the answers to a series of questions regarding the subject’s age, weight,
health history, cholesterol level, blood pressure, etc. While some of these questionnaires attempt to take
advantage of the known utility that Framingham risk scoring has for predicting future cardiac event risk
on a population level [5], they are principally indirect and inferential tests that do not take any direct
physiological information from the heart into consideration. Herein, we propose a potentially more
straightforward and personalized approach that uses an extensive suite of advanced and conventional
electrocardiographic measurements to more directly estimate a subject’s “heart age”. Our current
approach was designed to further extend the recent work of Starc et al., especially from a statistical
modeling viewpoint.

The limitations of strictly conventional 12-lead ECG have been well-documented [6–8]. However,
more advanced techniques have been developed that, especially when used in combination, improve
the diagnostic power of the ECG [9–11]. Until this time, the specific strategy of diagnosis used by
Schlegel et al. [9–11] has employed a linear combination of outputs estimated by logistic regression or
discriminant analysis models to determine disease status. Given this background, the principal goal of the
present study was to predict a subject’s heart age based on ECG outputs only after a determination was
first made (clinically and by advanced ECG) that disease status was “negative”, i.e., that the subject was
“healthy” from the perspectives of both population-based cardiovascular medicine and advanced ECG.
The question was thus: “Given an individual who is healthy and without any traditional cardiovascular
risk factors other than (potentially) age itself, and given the individual’s ECG outputs, what is his/her
heart age (ECG age)?” The problem is that we do not observe heart age; we only observe the ECG
outputs and chronological age. Thus, we cannot utilize a simple regression-type model to predict
heart age. Instead we must find some means of inferring heart age based on the observables and prior
information. A Bayesian approach is a natural solution.
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2. Statistical Method

In the Bayesian paradigm, we first assume knowledge of a “prior” distribution on a parameter of
interest, we then collect data to modify this prior distribution into a “posterior” distribution, and then we
usually take the mean or the mode of the posterior distribution to be the point estimate of the parameter.
In this case, the parameter of interest is the subject’s heart age and the point estimate is the mean of the
posterior distribution of the subject’s heart age.

We assume that without other information, a healthy subject’s heart age (a) is approximately
normally distributed within 15 years of the subject’s body age (x) so the prior distribution of heart age,
p(a|x) = N(x, 7.52). The choice of σa = 7.5 is consistent with the work of Grundy [12], who considered
the use of effective age based on imaging measures of coronary artery calcium (CAC) instead of body age
as input to the Framingham risk model [5]. In [12], Grundy provides a table that directly relates body age
to an adjustment in Framingham risk points depending on the percentile of measured CAC for a subject’s
age group. From this table, average adjustments are about 4.5 risk points up or down for “greater than
the 75th” and “less than the 25th” percentile CAC scores, respectively. Using the approximation that
a unit increase in Framingham risk points is equivalent to about 2 years of age, one would conclude
that Grundy’s model would adjust age by about ±9 years at these extremes. Under the assumption that
“greater than the 75th percentile” roughly corresponds to the 87.5th percentile and “less than the 25th
percentile” roughly corresponds to the 12.5th percentile, then with a normal distribution, the standard
deviation of adjusted age would be about 7.8 years, about the same as our assumed 7.5 years.

For a given subject, let

x = body age

y = vector of k ECG outputs

a = heart age

By Bayes’ Rule, the posterior distribution for heart age is:

p(a|x,y) = p(a|x)p(y|x, a)∫
p(a|x)p(y|x, a)da

(1)

and the predicted heart age, â = E(a|x,y) =
∫
ap(a|x,y)da, is the estimated mean of the

posterior distribution.
Specifying the distribution of the vector of ECG outputs (y) given heart age (a) and body age (x) is

somewhat more challenging. Before including heart age (a) in the distribution, consider the distribution
p(y|x) when y is one dimensional (y = y and k = 1). As discussed previously, we do not have
measurements of heart age so we cannot perform a simple regression to predict heart age. However, we
do have measurements of body age, and we can use that information to help estimate the distribution of
the ECG outputs (p(y|x)).

Assume for the moment that we have data consisting of n observations of y and x, say {(yi, xi)} and
that we wish to build a regression model for yi conditional only on xi so that the mean of yi depends only
upon xi. Examination of plots of body age versus some of the more important ECG outputs revealed
slight non-linear trends so we assumed the following quadratic regression model:

yi|xi = β0 + β1xi + β2x
2
i + νi; νi ∼ N(0, σ2

ν) (2)
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for i = 1, 2, . . . , n. In vector notation, this model can be written ~y|X ∼ N(Xβ, σ2
νI), where

~y = (y1, y2, . . . , yn)
T , and where

X =


1 x1 x21
1 x2 x22
...

...
...

1 xn x2n


Provided that the quadratic model holds, the Gauss-Markov Theorem ensures that we obtain an

unbiased estimate of β with ordinary least squares. Therefore, β̂ = (XTX)−1XT~y is the best
linear unbiased estimator. It follows that an unbiased estimate of σ2

ν is σ̂2
ν = 1

n−3

∑n
i=1 e

2
i , where

e = (e1, e2, . . . , en)
T = ~y −Xβ̂ [13].

Given the estimates of β and σ2
ν , we now incorporate heart age into the model. The influence of heart

age (a) on the distribution of the ECG variable (y) is best illustrated with an example. Consider the case
where the ECG output increases as body age and heart age increase (y increases as x and a increase) and
suppose we look closely at subjects with a particular body age (keep x fixed). If heart age (a) were not
in the model, we would expect to see a normal distribution of y around E(y|x) = β0 + β1x + β2x

2. In
Figure 1, this distribution is represented by a black curve. In the case where heart age is greater than
body age, we would expect the mean of y to be shifted right (blue) and if heart age is less than body
age, we would expect the mean of y to be shifted left (red). This suggests the following model for yi
conditional on both xi and ai:

(yi|xi, ai) = β0 + β1xi + β2x
2
i + θ(ai − xi) + εi (3)

where given ai and xi, the residual error εi ∼ N(0, λ2).

Figure 1. Illustration of the effect of heart age on the mean of y.
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However, since we do not observe heart age, ai, how do we estimate θ? Comparing the
body-age-only model (2) with the model that incorporates body age and heart age (3), it can be seen that
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νi = θ(a−xi)+ εi, so that Var {νi} = Var {θ(ai − xi) + εi} = θ2σ2
a+Var(εi) when ai is independent of

εi. Recall that we have already assumed σ2
a = 7.52 and that we could estimate Var {νi} from the residuals

of the body-age-only model (2). If we could also estimate Var(ε) = λ2, we could solve for θ =
√

σ2
ν−λ2
σ2
a

,
but we must take the sign of θ into account. Notice that if y and x have a positive increasing relationship,
θ should be positive but, if y decreases as x increases, θ should be negative. This is evident by looking
at the sign of β1, therefore,

θ = sgn (β1)

√
σ2
ν − λ2
σ2
a

(4)

In order to estimate λ2 and thus, solve for θ̂ in Equation (6), we utilized data from a previous study
by Batdorf et al. [14] on the reproducibility and reliability of certain ECG-related outputs, which was
completed by members of our research group at Johnson Space Center in 2006. In this study, there were
two repeated ECG measures of y, taken a month apart, on m = 15 asymptomatic subjects (8 males and
7 females). We assumed that every subject had a fixed heart age which was not likely to change in one
month, thus, any variability we observed in y for the subject was due to Var(ε) = λ2. Thus, we used the
repeated measures to estimate Var(y|x, a) = λ2 from the differences d between the two measurements,
noting that E(d2) = 2λ2.

λ̂2 =
1

2m

∑
d2 (5)

Substituting estimates for actual parameter values in Equation (4), we were thus able to estimate θ by

θ̂ = sgn (β̂1)

√
σ̂2
ν − λ̂2
7.52

(6)

After substituting a N(x, 7.52) density for p(a|x) and the estimated normal density of (yi|xi, ai)
corresponding to the model (3) into the expression for p(y|x, a) in Equation (1) it can be shown that
(see [15], pp. 43–45) the posterior for a subject’s heart age is a Normal distribution with an estimated
mean equal to:

â = x+

 θ̂
(
y − β̂x

)
λ̂2


{

1

σ2
a

+
θ̂2

λ̂2

}−1

(7)

where σ2
a = 7.52 and x = [1, x, x2]

T .
Recall, the above formulation is for a single ECG output. To generalize for k ECG outputs, it can be

shown that the predicted heart age for the subject with body age x and vector of k ECG outputs y is:

â = x+
{
θTΛ−1 (y − βx)

}{ 1

σ2
a

+ θTΛ−1θ

}−1

(8)

Here, y = [y1, y2, . . . , yk]
T is now a vector of the k ECG outputs, θ = [θ1, θ2, . . . , θk]

T is a vector
of k different values of θ in Equation (3), β is a k × 3 matrix of regression coefficients satisfying
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E(y|x) = βx, and Λ is the k × k covariance matrix of the k-variate analog of εi in Equation (3). To
implement Equation (8) in practice, one can estimate β by multiple regression and Λ by the multivariate
analog of Equation (5). A relatively simple way of estimating the j-th component of θ is to apply
Equation (6) for the j-th component of (y) where λ̂ is replaced by λ̂jj . An example is given in Section 5.
Please see [15], pp. 45–48, for the mathematical details.

3. Demonstration Data

To demonstrate our method for predicting heart age, we used a database of de-identified advanced
12-lead ECG recordings from healthy individuals with no known cardiac risk factors other than
(potentially) age itself. Secondarily, mainly just to explore the method’s initial performance in other
groups, we then also applied the method to groups of individuals with risk factors, with proven heart
disease, or with a high level of endurance athletic training. All recordings were obtained under previous
Institutional Review Board (IRB) approvals or under updated IRB exemptions for previously collected
and de-identified clinical data. The included subjects consisted of healthy and diseased volunteers from
the Johnson Space Center and partner hospitals, for example from the University of Ljubljana hospitals
and clinics in Ljubljana, Slovenia, and elsewhere [11].

Each subject was classified according to their cardiac disease status and, if disease was present,
then also to the form and severity of disease. Disease status was diagnosed based on results from
clinical imaging tests (current “gold standards”) so that if a subject had heart disease, the form and
severity of heart disease was generally known [11]. Subjects were classified as “healthy” if they had no
cardiovascular or other systemic disease and also did not have other risk factors, such as hypertension,
smoking, or diabetes [11].

From this dataset, we identified 1,438 subjects who were at least twenty years old, from whom a
resting ∼5-min 12-lead ECG test had been obtained after written informed consent, and who were
categorized as healthy, diseased, or as having risk factors. Some of the subjects were endurance athletes,
and others had risk factors such as diabetes or high blood pressure and were not ultimately assigned
a definitive diagnosis because cardiac imaging was not specifically indicated. The subjects were thus
classified into 4 groups: healthy non-athletes (HNA); healthy athletes (ATH); subjects with risk factors
and no diagnosis (RFS); and subjects who had known disease by cardiac imaging (DIS). Originally,
there were 728 subjects in the HNA group; these were further subdivided into a training set (N = 545)
for estimating σ2

ν , β, and θ and a test set (N = 183) for validation of heart age predictions. Subjects in
the test set were chosen by a 25% systematic sample after ordering on age. We also made predictions
of heart age for the other groups to examine the effect of disease and risk factors on predicted heart
age. The athletes were asymptomatic volunteers of both genders who had no evidence of cardiac disease
based on a negative history and physical examination. They were all endurance-trained athletes, and a
majority also had cardiac magnetic resonance imaging scans demonstrating no evidence of hypertrophic
cardiomyopathy nor any other gross clinical pathology [10]. Descriptive statistics for all groups are
given in Table 1.
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Table 1. Descriptive statistics for healthy non-athletes (HNA), healthy endurance-trained
athletes (ATH), subjects with risk factors (RFS), and subjects with disease (DIS).

Group #Subjects %Females %20–40 %41–60 %60 and older

HNA(train) 545 41% 56% 36% 8%
HNA(test) 183 43% 55% 36% 9%

ATH 48 38% 92% 6% 2%
RFS 221 47% 10% 59% 31%
DIS 441 34% 7% 50% 43%

4. Gender Effects

Experts agree that women’s hearts age differently than men’s hearts [16–18]. Assuming that cardiac
aging in asymptomatic individuals can be construed as tantamount to the gradual acquisition of coronary
atherosclerotic plaque with time, then on average, the hearts of women tend to age more slowly than
those of men until after the female menopause, at which time cardiovascular aging in women quickly
catches up to that of men. As a result, we computed all predictions of heart age with gender-specific
estimates of σ2

ν , β, and θ. However, with the small amount of repeatability data available for estimating
Λ, we had to assume Λ was the same for both genders. Of course, if more data were available for both
genders, there is no reason why Λ could not also be estimated separately. We checked for a gender effect
by comparing the predicted heart ages from separate gender-specific (GS) models and a model with the
same ECG variables that does not take gender into account (NGS). We found that if we do not take
gender into account, the NGS model is, on average, biased upwards for males; 95% confidence for mean
(NGS − GS) = (0.86 years, 0.99 years) and biased downwards for females; 95% confidence for mean
(NGS − GS) = (−1.48 years, −1.22 years). The associated t-tests were significant (p-value < 0.0001
for both comparisons). Based on these results and also from the results of a comparison of the GS and
NGS models by use of the Bayes Factor [19], we made the decision to report gender-specific parameter
estimates in the sections that follow.

5. Model Estimation

To decide which ECG outputs should be included in the model, we drew on the results from [11].
The parameter estimates shown below, in Equation (10), were obtained from two ECG-derived outputs
y1 and y2 (k = 2). The first ECG-derived output, y1, varies with age and disease and y2 varies with
disease. To arrive at these linear combinations (y1 and y2), we performed a logistic regression with
v1,v2 as the explanatory variables and the response for healthy non-athlete group = 0 and the response
for subjects with heart disease = 1. We then extracted the coefficients (γ1,γ2) from the two logistic
regression equations.

y1 = γ1
Tv1 and y2 = γ2Tv2;y = [y1, y2]

T
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v1 =



1

Taxis
Pd

sin (FrQRSMax ∗ π/180)
log(HFP)

log(RMSsum)

log(SpatialJT)


,v2 =



1

IIQTVI
UnExQTVI

sin (QRSaxis ∗ π/180)
Pd

MeanQRS-T
log(IDR)


(9)

γ1 =



−33.0669357
−0.007471284
0.0524961

−3.977162174
−0.75406667
0.295048301

5.607131563


and γ2 =



−5.561987914
3.278798871

1.482313958

−2.6315664
0.090181799

0.048045487

1.426993361


(10)

In Equation (9), Taxis is the axis of the T wave in the conventional ECG frontal plane; Pd is the
P-wave duration on the conventional ECG; FrQRSMax is the axis of the QRS loop in the derived
vectorcardiographic frontal plane after transformation of the conventional ECG to the Frank X-Y-Z leads
through use of Kors et al.’s regression transform [20]; HFP is the high frequency power of beat-to-beat
RR interval variability as measured through the Lomb periodogram technique [11]; RMSsum is the
sum of the high frequency QRS root mean squared voltages across all 12 signal-averaged leads after
bandpass filtering between 150–250 Hz [11]; SpatialJT is the JT interval as measured “spatially” from
the vector magnitude of the derived vectorcardiographic (Frank X-Y-Z) leads; IIQTVI is the so-called QT
variability index in lead II and UnExQTVI is the “index of unexpected QT variability” in lead V5 [11,21];
QRSaxis is the axis of the QRS wave in the conventional ECG frontal plane; MeanQRS-T is the spatial
mean QRS-T angle as obtained from the derived vectorcardiogram [11]; and IDR is the “intradipolar
ratio” of T-wave complexity as derived from singular value decomposition and signal averaging of the
T wave [11]. A more detailed description of most of the above ECG-derived outputs can be found in
Supplemental Table 1 of the supplementary material corresponding to [11].

The resulting parameter estimates for the gender-specific model (1 corresponds to males, 2
corresponds to females) were:

θ̂1 = [0.170889, 0.265498]T

θ̂2 = [0.1428490.245966]T

β̂1 =

[
−5.951124 0.133771 −0.000538
−10.382251 0.210635 −0.001508

]

β̂2 =

[
−4.880738 0.072246 −0.000052
−7.993616 0.092820 −0.000220

]
and

Λ̂−1 =

[
4.649546 −0.064033
−0.064033 0.519129

]
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For a given subject with

j = 1 if male and j = 2 if female

x = body age

x =
[
1, x, x2

]T
y = [y1, y2]

T where y1 = γ1Tv1, y2 = γ2Tv2

the predicted heart age for the subject is

â = x+
{
θ̂Tj Λ̂−1

(
y − β̂jx

)}{ 1

σ2
a

+ θ̂Tj Λ̂−1θ̂j

}−1

. (11)

6. Results

The results of the main gender-specific model are shown in Figures 2 and 3 below. Normally, when
making predictions, we want the predicted values to be equal to the observed values. In the figures
below, this is symbolized by heart age equals body age (red line) where the x-axis is the subject’s body
age and the y-axis is the subject’s predicted heart age. If the subject’s body age equals the subject’s
predicted heart age, it will fall on the red line. If the subject’s predicted heart age is higher than the
subject’s body age, it will be above the red line, and if the subject’s predicted heart age is lower than the
subject’s body age, it will be below the red line. In this case, we want predicted heart age to be centered
around the subject’s body age, but not necessarily equal to the subject’s body age because we want to
take the subject’s ECG into account when computing heart age. In the training data, we see this for both
females and males (Figure 2). Predicted heart ages are centered around the red line with some variability
according to each subject’s ECG. We also observe this phenomenon in the test set, Figure 3.

Figure 2. Body age versus predicted heart age in the training set. Black circle = male. Blue
dot = female.
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Figure 3. Body age versus predicted heart age in the test set. Black circle = male. Blue
dot = female.
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While the assumptions of the model are based on a healthy non-athlete population, it is also interesting
to preliminarily explore how the model performs under other conditions, for example, in subjects with
risk factors or known heart disease, or in endurance-trained athletes. In subjects with risk factors
(Figure 4), we expect that most will have higher predicted heart ages than their respective body ages
but this should not be the case for everyone. Just because a person has a risk factor does not mean that
he/she also has heart disease. And, in subjects with heart disease (Figure 5), we expect most subjects to
have a higher predicted heart age than their body age. Indeed, these results bear this out.

Figure 4. Body age versus predicted heart age for subjects with risk factors. Black
circle = male. Blue dot = female.
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Figure 5. Body age versus predicted heart age for subjects with disease. Black circle = male.
Blue dot = female.
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Regarding the healthy athlete group (Figure 6), interestingly, we did not find that athletes had lower
predicted heart ages than their body age. In fact, 56.25% of the athletes had a predicted heart age higher
than their body age whereas 51% of subjects in the healthy non-athlete training set had a predicted heart
age higher than their body age. Recall that these athletes are endurance-trained elite athletes. A recent
Mayo Clinic publication [22] found that intense endurance athletic activity may often induce subtle
fibrotic and other cardiac damage through excessive training. Our predictions appear to support this
hypothesis.

Figure 6. Body age versus predicted heart age for athletes. Black circle = male. Blue
dot = female.
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7. Discussion and Conclusions

Our heart age model was designed for healthy individuals at least 20 years old. Thus, it should be
considered for use only in such individuals, wherein the predicted heart age is centered around body age
and yet takes the variability of each subject’s ECG into account. It was, however, additionally interesting
just to briefly examine what the model revealed for other groups, including those with risk factors or with
proven heart disease, and for highly endurance–trained athletes. About three-fourths of the subjects with
risk factors, almost all of the subjects with proven heart disease, and 56.25% of the athletes had higher
predicted heart ages than body ages. Regarding the athletes, our ECG-based model therefore potentially
supports recent findings showing relatively more cardiac fibrosis and coronary calcifications in such
individuals [22], changes that historically have more frequently been construed as signs of aging [23,24].

Given the lack of any true gold standard for “heart age”, we did not attempt to compare the veracity of
our ECG-based heart age predictions to that of online calculators or other methods that utilize less direct
inputs similar to those used in the more traditional Framingham risk score calculators. Such comparisons
must await future studies, ideally studies wherein an acceptable gold standard result for “heart age” has
also been simultaneously obtained.

We believe our model can provide patients and their physicians with potentially useful additional
personalized cardiac health information that, in sufficiently motivated patients, might potentially lead to
earlier institution of heart-healthier lifestyles. For example, for any patient who has not been diagnosed
with heart disease, but who nonetheless has a higher predicted heart age than chronological body age, the
overt demonstration of the relatively high heart age by a simple and “heart-direct” technique like ECG
might sufficiently motivate many such patients to institute better dietary, exercise, sleep and other habits.
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