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Canine hip dysplasia, a debilitating orthopedic disorder that leads to osteoarthritis

and cartilage degeneration, is common in several large-sized dog breeds and shows

moderate heritability suggesting that selection can reduce prevalence. Estimating

genomic breeding values require large reference populations, which are expensive

to genotype for development of genomic prediction tools. Combining datasets from

different countries could be an option to help build larger reference datasets without

incurring extra genotyping costs. Our objective was to evaluate genomic prediction

based on a combination of UK and US datasets of genotyped dogs with records

of Norberg angle scores, related to canine hip dysplasia. Prediction accuracies using

a single population were 0.179 and 0.290 for 1,179 and 242 UK and US Labrador

Retrievers, respectively. Prediction accuracies changed to 0.189 and 0.260, with an

increased bias of genomic breeding values when using a joint training set (biased

upwards for the US population and downwards for the UK population). Our results show

that in this study of canine hip dysplasia, little or no benefit was gained from using a joint

training set as compared to using a single population as training set. We attribute this to

differences in the genetic background of the two populations as well as the small sample

size of the US dataset.

Keywords: canine hip dysplasia, genomic selection, labrador retrievers, genomic best linear unbiased prediction,

joint reference population

INTRODUCTION

Canine hip dysplasia results from malformation of the coxo-femoral joint, which leads to hip
laxity and often results in hip joint degeneration, painful arthritis, and lameness (Lewis et al.,
2010a; Comhaire, 2014). Although surgical intervention can improve a dog’s condition, the disorder
cannot be cured and is a major health concern of dog owners, breeders, and organizations. It has
been shown to have a heritable genetic basis (0.30–0.37; Lewis et al., 2013; Sánchez-Molano et al.,
2015) and may thus be target for selection in order to reduce its prevalence.

In many countries, dogs are routinely evaluated for canine hip dysplasia on the basis of
radiographs. From the radiograph, the Norberg angle on each hip can be measured, which reflects
the laxity of the hip joint, although not perfectly (Dennis, 2012; Gaspar et al., 2016). In the British
Veterinary Association (BVA)/Kennel Club (KC) Hip Dysplasia Scheme, a scale of 0–6 is used to
categorize nine different components including the Norberg angle, where a healthy, unaffected hip
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(Norberg angle >105◦) receives a score of 0. Scores increase
with the severity of hip dysplasia, with the most severe score 6
(Norberg angle <79◦) corresponding to the most extreme joint
laxity (Dennis, 2012). Although quantitative measurements of
Norberg angles contain more information than scores and are
preferable for genetic evaluation (Woolliams et al., 2011), the
latter are often used in aggregate scores with other hip traits
which rely on qualitative scoring (Lewis et al., 2010b).

Breeding programs against canine hip dysplasia based on
phenotypic thresholds and/or pedigrees have had only moderate
success (Malm et al., 2008; Lewis et al., 2010a; Hou et al., 2013;
Oberbauer et al., 2017). Genomic selection, which has been
highly successful in dairy cattle (Hayes et al., 2009) and is being
introduced into other livestock species (Cleveland and Hickey,
2013), has been suggested as a means for improved breeding
against canine hip dysplasia (Malm et al., 2008; Guo et al., 2011;
Woolliams et al., 2011). Sánchez-Molano et al. (2015) found
that the prediction accuracies of genomic selection methods for
Norberg angle, and related hip scores, were generally better than
pedigree-based prediction in a study of Labrador Retrievers even
with a reference set of fewer than 1,200 dogs.

The quality of genomic prediction depends on the size,
structure, and relationship of the reference set, which are
influenced by the effective population size of the reference
population (Daetwyler et al., 2010). The UK population of
Labrador Retrievers has an effective population size of NE =
81.75–200 (Lewis et al., 2015;Wang et al., 2016), similar to that of
cattle breeds such as Holsteins under intense selection (NE≈100)
(Schöpke and Swalve, 2016). Where agricultural systems, such
as those for cattle, have appropriate infrastructures to record
and obtain large reference sets, dog breeding programs do not,
and must rely on voluntary programs such as the BVA/KC Hip
Dysplasia Scheme. Increasing the reference set by adding other
datasets from related breeds or other countries is an option that
has been investigated in cattle (Lund et al., 2014; Schöpke and
Swalve, 2016) for improving the quality of genomic prediction.
In these cases, when combining data from a large breed with
data from a small breed, the prediction accuracy was improved
for the small breed, while it was suggested that the larger breed
might benefit from “a stronger persistence of the accuracy over
generations” (Lund et al., 2014). Thus, one option for genomic
selection against hip dysplasia is to explore the possibility of using
a joint cross-country reference set.

In this study, we combine genotypic and phenotypic data
from 1,179 UK Labrador Retrievers (Sánchez-Molano et al., 2014,
2015) and 242 US Labrador Retrievers (Hayward et al., 2016a,b).
The aim of this study was to evaluate benefits of using a joint
reference set of the two Labrador Retriever populations to predict
Norberg angle scores to assess canine hip dysplasia.

MATERIALS AND METHODS

Datasets
The data in this study consists of two distinct datasets. The first
dataset (“UK dataset”) is from our previous research by Sánchez-
Molano et al. (2014, 2015) and dogs from this dataset will be
referred to as “UK dogs.” The second dataset (“Cornell dataset”)

is from the study of Hayward et al. (2016a) and dogs of this
dataset will be referred to as “Cornell dogs.” The two datasets
were also combined into one, referred to as “Joint.” An overview
of the dataset is summarized in Table 1.

Ethics Approval and Consent to Participate
This study did not conduct new procedures for collecting
genotype or phenotype information. For full discussion of data
collection, we refer to the original studies of Sánchez-Molano
et al. (2014, 2015) and Hayward et al. (2016a). For the UK dataset
(Sánchez-Molano et al., 2014, 2015), approval for buccal swab
sampling of dogs was provided by the University of Edinburgh,
Royal (Dick) School of Veterinary Sciences, Veterinary Ethical
Review Committee and consent was provided by dog owners via
completion of a questionnaire. For the Cornell dataset (Hayward
et al., 2016a), blood samples were collected in accordance with
the protocol approved by the Institutional Animal Care and Use
Committee of Cornell University.

UK Dataset
Genomic data from 1,179 Labradors Retrievers of both sexes
were from Sánchez-Molano et al. (2014, 2015); among these
Labradors, 1,178 had Norberg angles scored for left and right
hip, and all dogs were <5 years old. Dogs were evaluated for
hip dysplasia based on radiographs according to the UK scoring
method (Willis, 1997; Sánchez-Molano et al., 2014), which
evaluates nine components, including Norberg angle scores. The
Norberg angle scores are whole integers in the range of 0 for
a good hip to 6 as the most severe score for hip dysplasia
(Dennis, 2012). The Pearson correlation between the Norberg
angle scores of left and right hip in the current dataset was 0.60.
For combining with the Cornell dataset, the average Norberg
angle score of left and right hip was used. The majority of dogs
hadNorberg angle scores of 2 or below, with the remaining scores
roughly equally spread onNorberg angle scores 2.5 to 6, as seen in
Figure 1A. Due to using the average Norberg angle score, scores
were multiples of 0.5.

Genotypes were obtained from buccal swabs and genotyped
using the Illumina Canine High Density Beadchip. A total of
106,282 single nucleotide polymorphism (SNPs) remained after
quality control procedures for low call rate, low reproducibility,
low or confounded signal, significant deviations from Hardy-
Weinberg equilibrium, and removal of SNPs with minor allele
frequency (MAF) <0.01 (Sánchez-Molano et al., 2014, 2015).

TABLE 1 | Overview of dataset and phenotype.

Origin Sex No. NA NA score NA score

≤ 1(%)

NA score

≤ 2(%)

Cornell Male 116 104 ± 8.56 0.96 ± 1.47 78 88

Female 126 103 ± 9.02 1.02 ± 1.60 79 87

UK Male 293 - 0.95 ± 1.34 78 88

Female 885 - 1.03 ± 1.24 71 87

±, Standard deviation. No., Number of dogs; NA, Norberg angle.
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FIGURE 1 | Histogram of Norberg angle scores in datasets. For UK dogs

(A, n = 1,178), the Norberg angle score is the average of the Norberg angle

score of left and right hip. For Cornell dogs (B, n = 242), the Norberg angle

score is the score associated with the average Norberg angle of left and right

hip. Bars are color coded by sex of dogs.

Cornell Dataset
Data was downloaded 18th May 2016 from the Dryad repository
(Hayward et al., 2016b) containing genotype and phenotype data.
The canine hip dysplasia phenotype provided in this dataset was
the mean Norberg angle of right and left hip for 242 Labrador
Retrievers of both sexes. The dataset contained records that were
restricted to Norberg angles above 75◦ and dogs more than 5
months of age to reduce outlier effects (Hayward et al., 2016a).
We converted the mean Norberg angles assessed by Cornell to
the UK scheme Norberg angle scores in accordance with Dennis
(2012). Correlations between Norberg angles and Norberg angle
scores was −0.97. The distribution of Norberg angle scores of
the Cornell dogs (Figure 1B) was similar to that of the UK dogs
(Figure 1A).

Genotyping was performed on blood samples using the
Illumina CanineHD array with an additional 12,143 custom
SNPs. Quality control was previously described by Hayward et al.
(2016a) and the downloaded dataset contained 160,727 post-
quality control SNPs. The current study carried out no further
quality control.

Joint Dataset
Data of the 242 Cornell Labrador Retrievers were combined
with the data of the 1,179 Labradors from the UK dataset.
Genotypes were merged using the merge function of PLINK

v1.90b1g (Chang et al., 2015). All SNP positions were defined on
the canFam3.1 assembly (Hoeppner et al., 2014). 105,848 SNPs
were in common between the two datasets. SNPs defined in the
UK dataset but not the Cornell dataset, and vice versa, was due
to quality control performed in separately in each dataset and
the addition of custom SNPs to the Cornell dataset. Of the SNPs
in common, 104,430 had a minor allele frequency above 0.01 in
the joint dataset and these were brought forward for all further
analyses.

Relationships
We estimated relationships in the joint dataset by computing
a genomic relationship matrix as per VanRaden’s Method 1
(VanRaden, 2008); G=ZZ′/2

∑

pi(1 − pi) where Z was the
centered genotype matrix, and pi are the allele frequencies
estimated from the joint dataset. The average diagonal value
was 1.019 (sd: 0.053) and 1.137 (sd: 0.101) for UK and Cornell
dogs, respectively. The average off-diagonal value between UK
dogs was 0.003 (sd: 0.077), between Cornell dogs 0.083 (sd:
0.107), and between UK and Cornell dogs −0.018 (sd: 0.050).
The average FST between the two populations was estimated as
0.03 with PLINK v1.90b1g (Chang et al., 2015), consistent with
intra-breed values for other dog populations (Quignon et al.,
2007). Correlation between linkage disequilibrium of the two
populations was estimated as 0.86, cf. Zhou et al. (2013).

Genomic Prediction Accuracy
The prediction accuracy was evaluated by using a genomic best
linear unbiased prediction (GBLUP) model, as follows:

y = Wα + u+ e (1)

where y is the vector of Norberg angle scores, W is a matrix of
covariates with the α vector of associated fixed effects including
intercept, u ∼ MVN

(

0,Gσ 2
u

)

is a vector of random genomic
effects and e ∼ MVN

(

0, Iσ 2
e

)

is a vector of residual errors.
The genomic relationship matrix was calculated as described
above, with an added small value (0.01) to the diagonal to allow
inversion. The intercept, sex, and origin of the dogs (UK, Cornell)
were used as covariates.

The Average-Information Restricted Maximum Likelihood
(AI-REML) algorithm (Madsen et al., 1994; Johnson and
Thompson, 1995), as implemented in DMU v. 5.1 (Madsen and
Jensen, 2000), was used to fit the model to a subset of the
data (training set), estimate variance components, and predict
genomic effects in a separate data subset (validation set), which
we henceforth refer to as predicted scores.We define convergence
of the AI-REML algorithm based on the change of variance
components,

∣

∣θ (t+1) − θ (t)
∣

∣ < 10−5, where θ (t) is the vector
of normalized variance components estimated at step t (Jensen
et al., 1997).

The prediction accuracies were calculated as the Pearson
correlation (ρ) and mean-squared-error (MSE) between the true
Norberg angle scores and predicted scores, and the slope of the
linear regression of the observed Norberg angle scores onto the
predicted scores (bias or inflation). A good prediction has a large
ρ, small MSE, and a slope close to 1. A slope closer to 1 indicates
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a smaller prediction bias, with slopes> 1 (< 1) indicating under-
(over-) estimation.

The heritability was calculated as h2 = σ 2
g /(σ 2

g +σ 2
e ). Standard

errors (se) of the heritability estimates were calculated as

s.e.
(

h2
)

= √
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with partial derivatives given as ∂h2

∂σ 2
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= σ 2
e

(
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−σ 2
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(
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(

σ̂ 2
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2
e

)

.

Prediction Accuracy Using 5-fold Cross-Validation
A 5-fold cross-validation scheme was used to estimate prediction
accuracies. The UK dogs were randomly split into 5 groups (235–
236 dogs per group), and the Cornell dogs were randomly split
into 5 groups (48–49 dogs per group). Following this division,
groups were defined as training (4 of the 5 groups) and validation
(last of 5 groups) sets in three different ways: both UK and
Cornell dogs as the training set (Figures 2A,D), only UK dogs as
the training set (Figure 2B), or only Cornell dogs as the training
set (Figure 2C). Prediction accuracies were then calculated in the
remaining (validation) UK group and Cornell group, as indicated
by arrows in Figures 2A–D. Reported prediction accuracies are
averages across each 5-fold cross-validation. The 5-fold cross-
validations were replicated 10 times, each time randomly splitting
the dogs into 5 groups, giving an overall prediction accuracy
average across the 10 replicates. For investigating the effect of

increasing training set size, the above-mentioned 5-fold cross-
validations were also performed on subsets of UK and Cornell
dogs (Figure 2D). For these training sets, an equal number of
dogs was sampled from each group to ensure a balanced setup.

Prediction Accuracy Between Groups Defined by

Principal Component Analysis
Aprincipal component analysis (PCA) was conducted to evaluate
how the population structure of the combined dataset could
affect the prediction accuracy. A PCA of the joint dataset was
performed using PLINK v1.90b1g (Chang et al., 2015). The first
two principal components explained 5.4 and 2.3% of the total
variance, with remaining principal components each explaining
<1%. The UK dogs were primarily stratified along the first
principal component, as seen in the bottom band of Figure 3,
while the Cornell dogs were stratified along both first and second
principal components. The stratification of UK dogs corresponds
roughly to the dogs’ working class, i.e., with “gun dogs” primarily
with positive values of PC1 (Group A, Figure 3) and showdogs
primarily with negative values, co-clustering with a group of
Cornell dogs (Group B and C, Figure 3). Pets were distributed
across the entirety of the PC1 axis. The stratification of Cornell
dogs was also found to be related to the provenance of the
dogs: the group co-clustering with UK dogs (Group C, Figure 3)
was primarily composed of dogs seen in the Cornell veterinary
clinic, while dogs with high values of PC2 (Group E, Figure 3)
were primarily from a closed colony. The cluster with remaining
Cornell dogs (Group D, Figure 3) was comprised of both clinic
and colony dogs.

We defined 5 PCA groups based on the first and second
principal components, highlighted in Figure 3. The UK dogs
were divided into two groups A and B of equal size (n = 589)
by ranking the dogs by their first principal component values.
The Cornell dogs were divided into three groups; group “C”

UK

Cornell

UK

Cornell

A B

C D

FIGURE 2 | Schematic of 5-fold cross-validation using single origin or joint training set. (A–D) Dark shades displays training set, while arrows indicate prediction in the

validation set in the disjoint group to the right. (A) Joint training set. (B) UK dogs as training set. (C) Cornell dogs as training set. (D) Subset of joint training set.

Frontiers in Genetics | www.frontiersin.org 4 March 2018 | Volume 9 | Article 101

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Edwards et al. Joint Genomic Prediction in Dogs

Cornell

UK
AB

C

D

E

0.00

0.05

0.10

−0.050 −0.025 0.000 0.025

1st principal component (~ 5%)

2
n
d
 p
ri
n
c
ip
a
l 
c
o
m
p
o
n
e
n
t 
(~
 2
%
)

FIGURE 3 | Plot of 1st and 2nd principal components of the joint dataset.

Principal component analysis conducted with PLINK v1.90b1g (Chang et al.,

2015). Dogs were split into 5 principal component groups (A-E) by visual

inspection, and color coded accordingly.

comprises 54 dogs that appear to be genetically similar to the
UK dogs, while groups “D” and “E” comprise 128 and 60 dogs,
respectively, that cluster together. The Norberg angle scores
in each group are summarized in Supplementary Figure 1.
The mean genomic relationship between UK groups A and B
was −0.047; the mean genomic relationships between Cornell
groups were 0.033, 0.008, and 0.08 (C-D, C-E, and D-E,
respectively).

The PCA groups defined by the principal component analysis
were also used for defining training and validation sets, in
this case with no cross-validation. Both single groups and
different combinations of the PCA groups were used as training
sets. Prediction accuracies were calculated separately for each
remaining group not used in the training set.

Preselecting SNPs With Genome Wide Association

Analysis for Prediction Accuracy
Prediction accuracies were estimated using subsets of SNPs,
corresponding to 1, 5, 10, . . . , 98, 100% of all SNPs in the merged
dataset. SNPs were selected either at random (“random SNPs”)
or as the leading SNPs when ranked by the statistical significance
of association in a genome-wide association (GWA) analysis
(“pre-selected SNPs”). The GWA analyses were performed as in
Sánchez-Molano et al. (2014), using the software GEMMA (Zhou
and Stephens, 2012), described below for completeness.

Briefly, the GWA analysis was performed using the linear
mixed model

y = Wα + xiβi + u+ e (2)

which is similar to the GBLUP, but with the addition of the
estimation of each SNP effect βi ∼ N(0, σ 2

β ). The statistical
significance of the association was estimated using theWald’s test

(ti = β̂i/se
(

β̂i

)

), which is assumed to be χ2 distributed with 1

degree of freedom. Based on this test, a p-value for each SNP-trait
association was calculated.

For the pre-selected SNPs, a 5-fold cross-validation scheme
was used to estimate p-values and prediction accuracies. The
5-fold cross-validation is as described above but with no
replication. For each iteration of the cross-validation, the same
training set was used for the GWA analysis to rank SNPs and
to train the GBLUP model to avoid inflating the prediction
accuracy (Wray et al., 2013). The genomic relationship matrix
for the GBLUPmodel was constructed on the subset of SNPs. We
emphasize that the SNP effects estimated in the GWA analysis
were not used for predicting genetic values, but solely for ranking
the SNPs. Instead, SNP effects were estimated jointly in the
GBLUP model (unlike the GWA analysis, which estimates them
independently).

For randomly selected SNPs, the same approach was used,
except the SNPs were selected at random from across the genome.
20 replicates of each subset size of SNPs were performed.

RESULTS

Genomic heritabilities, calculated using AI-REML estimated
variance components without 5-fold cross-validation, were 0.24
(se: 0.15) when calculated using only UK dogs, 0.73 (se: 0.21)
when calculated using only Cornell dogs, and 0.28 (se: 0.14)
when calculated using the joint training set. The heritabilities
estimated as part of the 5-fold cross-validations had average
values of 0.24 (UK dogs, range: 0.19–0.32), 0.66 (Cornell dogs,
range: 0.36–0.99), and 0.28 (joint, range: 0.20–0.36). The genetic
correlation of Norberg angle scores between the two populations
was estimated as 0.52 (se: 0.28), as estimated using a bivariate
GBLUP model.

Predictive Ability
Using the joint training set with both UK and Cornell dogs,
validation in the Cornell dogs achieved a higher correlation (0.26)
than the UK dogs (0.19) (Table 2). Converting these to accuracy
of selection (ρ/

√
h2), they are similar in size, 0.36 and 0.34, for

UK and Cornell respectively.
Using only UK dogs for the training set (second column of

Table 2) the correlation for UK dogs was similar (0.18) to that
of the joint training set, while the correlation for the Cornell dogs
dropped substantially to 0.14. Using only Cornell dogs as training
set, the correlation for the Cornell dogs increased to 0.29, while
the correlation for the UK dogs dropped to 0.061.

The mean-squared-errors were similar across the three
training sets (UK, Cornell, and joint) and substantially higher for
the Cornell dogs than the UK dogs (Table 2).

The slope of a linear regression of the observed Norberg angle
scores onto the predicted scores were all except one close to 1, i.e.,
there was little bias. Using Cornell dogs to predict UK dogs, the
slope was 0.25 (Table 2), i.e., the bias increased. The smallest bias
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TABLE 2 | Overall prediction accuracies (correlation, MSE, and slope of linear

regression) of 10 replicates of 5-fold cross-validations with different training sets.

Training

UK (n = 943) Joint (n = 1,137) Cornell (n = 194)

CORRELATION

UK 0.18 (0.16–0.21) 0.19 (0.17–0.20) 0.06 (0.05–0.07)

Cornell 0.14 (0.10–0.18) 0.26 (0.21–0.31) 0.29 (0.23–0.33)

MSE

UK 1.55 (1.53–1.57) 1.54 (1.52–1.56) 1.67 (1.65–1.70)

Cornell 2.24 (2.21–2.27) 2.16 (2.08–2.22) 2.13 (2.05–2.24)

SLOPE

UK 0.96 (0.84–1.12) 0.88 (0.80–0.97) 0.25 (0.17–0.33)

Cornell 1.18 (0.89–1.56) 1.19 (1.08–1.38) 1.00 (0.72–1.20)

Figures in parentheses are minimum and maximum of the 10 replicates of 5-fold

cross-validations. n refers of average size of training set.

was seen when using Cornell dogs to predict Cornell dogs, or UK
dogs to predict UK dogs.

Effect of Increasing Training Set Size
Increasing the number of dogs in the training sets increased the
correlations (Figures 4A,B). Using only UK dogs for the training
set (blue squares, Figure 4A), the overall average correlation
for the UK dogs showed a steady increase from 0.06 (–0.03–
0.09) using 96 dogs to 0.18 (0.16–0.21) using 943 or 944 dogs
(blue, Figure 4A). Using only Cornell dogs for the training
sets (red diamonds, Figure 4B), the average correlations for the
Cornell dogs also showed an increase from 0.18 (0.10–0.28),
using 48 dogs, to 0.29 (0.23–0.33), using 194 dogs (red, in
Figure 4B).

Using a joint training set with equal proportions of UK
and Cornell dogs (yellow triangles), increasing the number of
dogs in the training set increased the correlations for both UK
dogs (Figure 4A) and Cornell dogs (Figure 4B). When using all
Cornell dogs (except dogs in the validation set) for the training
sets and an increasing number of UK dogs (green circles), the
increase in correlations for UK dogs (Figure 4A) matched the
increase when using only UK dogs as training set (blue squares,
Figure 4A). The correlations for Cornell dogs were not improved
compared to using only Cornell dogs as the training set (green
circles vs. red triangles, Figure 4B).

The mean-squared-errors of the prediction (Figures 4C,D)
were affected minimally by increasing the size of the training
set. The bias of the prediction (slope of the linear regression of
the observed Norberg angle scores onto the predicted scores,
where a slope closer to 1 indicates a smaller bias) is shown in
Figures 4E,F. There are two things to note regarding the bias;
training set sizes above 500 have slopes close to 1, while slopes for
training set sizes below 500 vary widely, and with some estimates
(substantially) >2, as indicated by the arrows. For training set
sizes above 500, using a joint training set to predict Cornell
dogs displays smaller variation than using only UK dogs. For
predicting UK dogs, the slope converges toward 1 with increasing
training set size.

For the smaller training sets, the correlations for the UK dogs
are close to zero. This is largely coupled to estimates of slopes of
regressions that are either close to zero or are orders ofmagnitude
>2, as may be expected with zero correlation. The slope estimates
for the Cornell dogs as predicted by Cornell dogs also display
some cases with very large estimates, but these are not coupled
with correlations close to zero.

Effect of Composition of Training Set
Increasing the training set size by adding Cornell dogs to a
training set of UK dogs (green and yellow lines, Figure 4A), had
a similar positive effect on correlations as adding additional UK
dogs (blue line, Figure 4A) but the slope of regressions deviated
more from 1 (i.e., larger biases) compared to the addition of UK
dogs (Figure 4E, blue vs. green line).

Increasing the training set size by addingUK dogs to a training
set of Cornell dogs (green and yellow lines, Figure 4B), did not,
however, increase the correlation for the Cornell dogs compared
to the use of only Cornell dogs (red line, Figure 4B). The slope
of the regressions, when ignoring extreme values, deviated more
from 1 when using a joint training set rather than only Cornell
dogs for predictions in Cornell dogs (Figure 4F).

Predictive Ability Between PCA Groups
To investigate how the genetic distances between dogs influenced
prediction accuracy, we divided the joint dataset into five
PCA groups, as defined by the principal component analysis
(Figure 3). We used each of these PCA groups as training
set and validated against remaining PCA groups. The results
are summarized in Figure 5, with box-plots corresponding to
correlations of the 5-fold cross-validations from the full datasets
(Figure 4).

Correlations using UK groups A or B as the training set,
each comprising 589 dogs, are summarized beneath the box-
plot 5-fold cross-validations of a mixed group of 584 UK dogs
(Figure 5A). Using UK group A to predict UK group B, and
vice versa, resulted in similar correlations (≈0.1), but both
correlations were lower than achieved by the 5-fold cross-
validations of the mixed group (0.18). Using groups A or B as
training sets to predict the Cornell groups gave variable results,
with highest correlations for groups D and E (>0.2) and lowest
for group C (< −0.05), despite the PCA clustering seen between
Cornell group C and UK group B.

Using Cornell groups C, D, and E as training sets is
summarized Figure 5B. The sizes of these training sets were
noted above for producing inferior predictions in UK dogs or
highly variable predictions in Cornell dogs. Using the small
groups C and E separately produced correlations for UK groups
A and B close to zero and resulted in estimated heritabilities of
1 (with very flat likelihood profiles, indicating very low power
for estimation). Group D, which was slightly larger than C and
E combined, produced higher correlations for group B (≈0.12)
than the 5-fold cross-validations (≈0.05), and adding either
group C or E had detrimental effects on the correlations of group
B (<0.1).
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FIGURE 4 | Predictive ability in UK and Cornell dogs with changing training set sizes and compositions. Columns correspond to predictions in UK dogs (left) and

Cornell dogs (right). Rows correspond to correlation (A,B) between observed Norberg angle scores and predicted scores, mean-squared-errors (C,D), and slope of

regression (E,F) of observed Norberg angle scores onto predicted scores. Composition of training set is displayed by color. Each point corresponds to the average of

a single 5-fold cross-validation (10 replicates), with solid lines connecting the overall average of the replicates. Upward pointing arrows denote where slope estimates

exceed the displayed scale.

Effect of Pre-selecting SNPs
Random selection of SNPs approached the same correlation as all
SNPs more quickly than pre-selecting SNPs based on strength of
phenotypic association (Figure 6). It can be seen that in all four
tested combinations of training set (UK, Cornell or joint) and
validation set (UK or Cornell), fewer than 20% of the random
SNPs achieved the same correlations as using all SNPs, whereas
more than 25% of pre-selected SNPs (90% for the UK validation
set) were required to reach the level of all SNPs. The only

case where pre-selected SNPs performed (marginally) better than
random SNPs was for a very small subset (1%) of SNPs, when
using the joint training set. The difference between pre-selected
and random SNPs was less pronounced for validation in Cornell
dogs than UK dogs. The estimates using all SNPs (based on a
single realization of the training and validation sets) are within
the range of 5-fold cross-validations (Table 2).

Random SNPs performed better than pre-selected SNPs in
terms of bias (Supplementary Figure 2), where even the smallest
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subset of random SNPs achieved the same slope of regression as
using all SNPs.

There are various differences between the use of random
and pre-selected SNPs in the context of genomic prediction.
We explored one of these, differences in genome coverage,
by calculating the proportion of the genome covered by
SNP subsets of increasing size for the UK dataset. The
proportion of the genome covered was estimated by calculating
haplotype blocks using PLINK v1.90b1g (Chang et al., 2015),
and summing the range of blocks with selected SNPs. The
coverage by haplotype blocks is consistently larger when selecting
random SNPs than pre-selected SNPs, up to approximately
60% of SNPs (Figure 7: blue line vs. green line). For example,
randomly selecting 25% of the SNPs results in haplotype
blocks covering 46% of the genome, while pre-selecting the
same number results in haplotype blocks covering 37% of the
genome.

DISCUSSION

In this study, we addressed the need for building training sets for
genomic prediction of hip dysplasia in canine breeds. Genomic
evaluation has transformed breeding structures of livestock in
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FIGURE 7 | Randomly selecting SNPs (blue) resulted in higher proportion of

chromosome coverage than pre-selecting SNPs (green). Genome coverage

among the UK dogs was estimated as the sum of spanned haplotype blocks

mapped by selected SNPs, compared to the total span of haplotype blocks.

Blue, thick line corresponds to average of 20 replicates of randomly selected

SNPs, with blue area displaying range between 10th and 90th percentile of

coverage. Thin gray lines correspond to coverage by pre-selected SNPs of

each chromosome (chromosome 35 showed unusually low coverage

compared to the other chromosomes, seen in the bottom gray line); thick

green lines display average of all chromosomes with 10th−90th percentile.

SNPs were pre-selected according to a single subset of the 5-fold

cross-validation.

populations with similar effective populations sizes to Labrador
Retrievers through delivering substantially greater accuracies
of predicting breeding values in unphenotyped animals, e.g.,
at birth. Sánchez-Molano et al. (2015) showed that for hip
dysplasia, genomic evaluation has the potential to accelerate the
reduction of hip problems, directly through greater accuracy,
and indirectly by increasing the selection intensity by making
accurate evaluations available at birth. The success in livestock
has however been built upon an infrastructure capable of
generating large training sets for predictions, typically several
thousand genotyped and phenotyped animals are required for
robust benefits beyond pedigree-based predictions (e.g., Jenko
et al., 2016), with the benefits continuing to accumulate beyond
these sample numbers. Despite the potential benefits, this will be
a challenge for pedigree dog populations in the absence of well-
supported breed initiatives. One option to address this challenge
would be to pool training sets across sub-populations and, as
here, across countries. However, the results did not provide
encouragement that this would be a fruitful way forward at
present.

The use of Norberg angle as phenotype for this study was
necessitated by the use of different scoring systems in the two
countries. With larger datasets in both countries, multivariate
approaches could be used to overcome this problem, whereby
the best indices for the risk of hip dysplasia could be used
within each country and then compared across countries.
However, the relatively small datasets prompted the use of
Norberg angles, which were available in both sets. This was
a robust choice as it is moderately heritable (h2≈0.3), as is
hip score (Lewis et al., 2010a,b), with a substantial genetic
correlation with hip score, and a major determinant of the
morphological indices explored by Lewis et al. (2010b), which
were shown to be near-optimum predictors of genetic risk.
Furthermore, a key underlying determinant of the utility of cross-
country predictions will be the genetic relationships between
the two populations, which will likely depend as much on
their population structures and relationships as on the choice
of traits. Nevertheless, the use of Norberg angle required
obtaining a common measure of the trait, as UK scores were
ordinal rather than nominal as in the Cornell dataset. In
principle, transforming the phenotype from a nominal to an
ordinal scale, as done here with Cornell’s Norberg angles, can
lower the resolution and impair the prediction. However, the
phenotypic correlation between Norberg angles and derived
scores for the Cornell data had a large magnitude (−0.97),
indicating that this transformation to scores is not responsible
for the low cross-country prediction accuracy observed here (see
Supplementary Figure 3). A corollary to this observation is that
although the ordinal scale used in the UK is an unnecessary
coarsening of a quantitative measure, its use in BLUP evaluations
(Lewis et al., 2010a) rather than the nominal angle may have little
effect on the accuracies achieved.

The lack of benefit from combining UK and Cornell training
sets was most evident when supplementing the Cornell training
sets with data from UK dogs where the prediction accuracy fell.
It would be expected that any potential for increasing accuracy
by combining data would have been most evident in this case
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as adding UK dogs increased the training set for Cornell dogs
six-fold. The small increase (0.18–0.19) in predicting phenotypes
of UK dogs by adding Cornell data may well have been due
to chance. Within countries, larger training sets did provide
more accurate predictions for dogs from their corresponding
populations, which is in accord with current literature (Goddard,
2009; Pszczola et al., 2012), and clearly points to the mixed origin
within the training and validations sets as the underlying reason
for the lack of benefit of combining datasets to increase training
set sizes.

The failure of the addition of foreign dogs to improve
correlations is most likely due to insufficient relationship between
the datasets. Estimation of relationship by calculating a genetic
relationship matrix also showed that the relationship between the
UK and Cornell populations was generally low (−0.018) and the
relationship between Cornell dogs (0.083) was generally higher
than among UK dogs (0.003). These values may also explain
the higher prediction correlations among Cornell dogs, as the
greater relationship represents more mutual information and
hence greater predictive ability per dog in the training set. In
comparison to similar studies in livestock (Danish and Chinese
Holstein cattle, Zhou et al., 2013) where the prediction improved
from joint training sets, there was a higher level of consistency
of the linkage disequilibrium in the two cattle populations (rLD
= 0.97 compared to 0.86 in ours). It is possible that specific sub-
populations within the Cornell and UK datasets were sufficiently
distinct to be responsible for the failure of the across-country
training sets, however there was no evidence that removing any of
the subsets would dramatically change the predictive outcomes.
In a related study using multi-breed dairy cattle (Karoui et al.,
2012), using multi-breed models did not increase accuracy of
predicted values for fertility, a low heritability trait. This was
explained by a low genetic correlation between the breeds
for the trait, indicating that linkage disequilibrium between
genetic markers and quantitative trait loci was not consistent
between the breeds. In comparison, we found a greater genetic
correlation between populations (0.53, se: 0.28), but as it was
estimated with a large standard error and not significantly >0
(Wald’s test, p = 0.06), this is not very informative. The use
of pre-selected SNPs that are enriched in causative variants or
markers very tightly linked to causative variants may be useful
for capturing shared variation across distant populations (e.g.,
Porto-Neto et al., 2015). However, the studies of pre-selected
SNPs conducted in this study were not encouraging, supporting
the results of Sánchez-Molano et al. (2015), showing that for
Labradors with the current state of genomic knowledge, the
use of random SNP provided more accurate results. The total
UK plus Cornell training set of 1,420 dogs used in this study
is large in the context of canine genomics, albeit with 83%
from UK, and prompts the conclusion that combining data
across these countries is unlikely to be very effective in boosting
prediction accuracies in the short to medium term. This places
the emphasis on initiatives within countries and within sub-
populations. One low-cost route to increase accuracies would
be to use single step methods (Legarra et al., 2014), which
combine the pedigree data and the genomic data in a single
analysis, hence exploiting all the data in recording schemes

to get maximum benefit from the phenotyped and genotyped
individuals. A second route is to increase genomic training
set sizes by developing affordable cost-efficient genotyping
schemes and two strategies can be implemented to deliver such
schemes. First, the use of imputation whereby cheaper low-
density genotyping is used for the majority of the population
but key individuals used widely in the population are genotyped
at higher target density and software such as AlphaImpute
(Hickey and Kranis, 2013; Antolín et al., 2017) is used to infer
the missing genotypes; such strategies have been demonstrated
to be effective in livestock populations, benefitting from their
low Ne. A second strategy is selective genotyping, following
Jenko et al. (2016) who demonstrated in Guernsey Island cattle
that more than 80% of the information could be captured
by genotyping only the top 25% and the bottom 25% of the
population.

We conclude that predicting Norberg angle scores in UK
Labrador Retrievers using a joint training set of both UK and
Cornell Labrador Retrievers was feasible, but the benefits were
negligible compared to using only training sets of a single
population, and the inclusion of UK dogs in the training set
worsened predictions for Cornell dogs. Improving the prediction
accuracy of Norberg angle scores requires large datasets that
are closely related to the target populations, which was not
the case with these two geographically distant countries. The
way forward will thus be to increase datasets within groups of
countries with well-connected pedigrees. We also found that
very small training sets did not contain enough information for
prediction and the use of SNPs preselected based on GWAS
results did not improve prediction accuracy. The difference
between the genetic backgrounds of the two populations
may require more nuanced models than univariate genomic
BLUP.
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Supplementary Figure 1 | (A–E) Distribution of Norberg angle scores in PCA

groups A–E.

Supplementary Figure 2 | Few randomly selected SNPs are necessary to

achieve same slope as using all SNPs. (A,B) show slopes of regression of

observed Norberg angle scores onto predicted scores in UK dogs using UK dogs

or joint training set, respectively. (C,D) show slopes of predictions in Cornell dogs

using Cornell dogs or joint training set, respectively. Selecting SNPs by GWA

requires all SNPs to achieve the same slope as using all SNPs. Points are

averages of 5-fold cross-validations. The red horisontal line indicates the average

correlation of 5-fold cross-validation using all SNPs (20 replicates), with standard

error of average indicated by the red ribbon.

Supplementary Figure 3 | Correlation between Norberg angle and Norberg

angle scores (top) and distribution of Norberg angles (bottom) for Cornell dogs.
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