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Background: Nephroblastoma, also known as Wilms’ tumor (WT), remains one of the major causes of 
tumor-related deaths worldwide in children. Cancer stem cells (CSCs) are considered to be the main culprits 
in cancer resistance and disease recurrence, which are reported in multiple types of tumors. However, the 
research on CSCs in WT is limited. Therefore, our study aimed to identify the key genes related to CSCs in 
WT to provide new ideas for treating WT.
Methods: The RNA-seq and clinical data of WT samples were obtained from the University of 
California Santa Cruz (UCSC) Xena database, which included 120 WT and six para-cancerous tissues. 
The mRNA stemness index (mRNAsi) based on mRNA expression was calculated to evaluate tumor stem 
cell characteristics in WT patients. A Kaplan-Meier (KM) analysis was performed to explore the clinical 
characteristics of the mRNAsi in WT. A weighted gene co-expression network analysis (WGCNA) was used 
to identify the key modules and genes related to the mRNAsi. A Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis was performed to explore the signaling pathways based on the key genes. The expression 
levels of the key genes were validated by the Gene Expression Omnibus (GEO) database. Further, the 
important upstream genes were identified by DisNor and gene co-expression analyses.
Results: The mRNAsi was significantly upregulated in WT (P=7.2e-05) and showed an upward trend in 
line with the pathological stage. Patients with lower mRNAsi scores had better overall survival (OS) than 
those with higher mRNAsi scores (P=0.0087). Eleven genes were defined as the key genes associated with 
the mRNAsi based on our WGCNA analysis [cor.MM (correlation. Module membership) >0.8 and cor.
GS (correlation. Gene significance) >0.45] and were closely related to cell proliferation-related signaling 
pathways (P<0.05). Moreover, using protein interaction analysis, we identified ATM and CDKN1A as the key 
upstream regulatory genes of the 11 key genes.
Conclusions: Our study showed that the mRNAsi score was a potential prognostic factors in WT and 
identified the upstream genes ATM and CDKN1A and 11 genes closely related to the mRNAsi, which may 
provide new insights for CSC-targeted therapy in WT and improve clinical outcomes for WT patients.
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Introduction

Nephroblastoma, also known as Wilms’ tumor (WT), is 
the primary pathological type of renal tumor in children, 
accounting for 6.4% of childhood cancers (1). In recent 
years, significant achievements have been made in WT 
treatment, and more than 80% of children with WT can be 
cured by modern multisystemic treatment (2,3). However, 
5~10% of patients still suffer from cancer metastasis or 
chemotherapeutic resistance, which seriously threatens 
their lives (4). Therefore, new and promising treatments are 
needed to improve the prognosis of these patients. 

In recent years, significant progress has been made in 
understanding the relationship between stem cells and 
cancer (5,6). Cancer stem cells (CSCs) have been identified 
as the driving forces for tumor initiation, proliferation, 
and recurrence (7,8). Senanayake et al. reported that the 
pluripotent renal stem cell regulator SIX2 was activated in 
WT, influencing cellular proliferation and migration (9). 
Raved et al. found that CSCs were significantly associated 
with poor survival in WT and could be used for risk 
stratification (10). The discovery of specific biomarkers in 
CSC research would facilitate targeted treatment of the 
disease, which could significantly reduce tumor metastasis 
and drug resistance (7,11-13). Malta et al. defined stem 
cell characteristics using an innovative logistic regression 
algorithm based on mRNA expression analysis, which 
effectively evaluated the degree of dedifferentiation of 
cancer and provided a novel concept for targeted cancer 
treatment (14). However, in-depth studies of CSCs at 
the WT transcriptome level have not been conducted, 
and related targeted therapies are lacking. Therefore, a 
therapeutic target study of WT based on the mRNA stem 
index (mRNAsi) is warranted to extend the use of CSCs in 
WT therapy to provide new perspectives in treatment. 

Weighted gene co-expression network analysis 
(WGCNA) is a systems biology method that describes 
the pattern of gene associations among disparate samples. 
This method obtains different gene modules with highly 
coordinated changes and can be used to construct gene co-
expression networks, calculate the weighted correlation of 
genes, and perform hierarchical clustering analysis (15). 
Moreover, WGCNA can be used to identify alternate 
biomarker genes or therapeutic targets according to 
the intrinsic correlation of gene sets and the association 
between gene sets and phenotypes. Gene expression analysis 
is now widely applied in studies of various cancers, including 
esophageal squamous cell cancer, endometrial cancer, and 

myeloid leukemia (16-19). In this study, we aimed to use 
WGCNA to systematically investigate CSC characteristics 
based on the mRNA level in WT and identify related 
targeted genes in the hope of offering a foundation for 
targeted WT treatment. 

Methods

Data download and pre-processing

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The fragments 
per kilobase of exon model per million mapped reads 
(FPKM) RNA-seq data and clinical data of 120 WT 
and six para-cancerous tissues were obtained from the 
UCSC Xena (http://xena.ucsc.edu) database (Table S1). 
The Ensemble IDs were converted to Human Gene 
Nomenclature Committee (HGNC) symbols based on the 
Ensemble database using the “biomeRt” R package (http://
asia.ensembl.org/index.html). The Ensemble IDs with the 
highest expression value were retained when more than one 
Ensemble ID matched the same HGNC symbol. Using the 
R platform, we calculated the mRNAsi score of each tissue 
using the methodology outlined in previous reports (14).  

Acquisition of differentially expressed genes (DEGs)

The identification of DEGs in WT and normal controls 
was established using the “edgeR” R package, with the 
cut-off threshold of the false discovery rate (FDR) set at 
<0.05 and |log2fold change| >1.5. Before analysis with the 
“edgeR” R package, the low-expression genes with <1 count 
per million (CPM) in less than a third of samples were 
filtered to improve the accuracy of the results. 

WGCNA

The expression profiles of the DEGs were constructed 
to perform WGCNA using the “WGCNA” R package. 
Specifically, The RNA-FPKM data were firstly filtered to 
reduce outliers. The correlation matrices were performed 
for pairwise DEGs. Next, the weighted adjacency matrix 
was constructed using the power function amn= | cmn|β. 
Specifically, the β represented the exponential parameter 
for power law distribution, which was used to characterize 
the likeness to a scale-free network. We chose a suitable 
β to transform the adjacent matrix into a topological 
overlap matrix (TOM), which displayed the network sum 

http://xena.ucsc.edu/
https://cdn.amegroups.cn/static/public/ATM-22-4477-supplementary.pdf
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connectivity of DEGs with other DEGs for the network 
generation. We calculated the average linkage hierarchical 
clustering based on the TOM-based dissimilarity measure 
to identify genes with similar expression profiles in the gene 
modules. The TOM-based dissimilarity measure with a 
minimum size of 50 was identified for the gene dendrogram. 
A cut line (<0.35) was chosen for merging the dendrogram 
module.

Identification of mRNAsi-related modules

Module eigengenes (MEs), gene significance (GS), and 
module significance (MS) were calculated to identify the 
significant mRNAsi-related modules. The MEs indicated 
the major component in the principal component analysis 
for each DEG module. The expression pattern of all 
DEGs could be condensed into a single characteristic 
expression with a given module. Moreover, the correlation 
between MEs and clinical characteristics was performed 
to identify the relevant module. The GS was identified as 
the log10 transformation of the P value (GS = lg P) in the 
linear regression between the gene expression and clinical 
information. In addition, MS indicated the average GS for 
all the genes in a module.

Selection of hub genes

The hub genes were identified by the correlation between 
expression profiles and MEs. Genes with an MM threshold 
>0.8 and a GS threshold >0.45 were defined as the hub 
genes.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis

A KEGG analysis was performed for the key genes and key 
gene modules to explore the signaling pathways associated 
with the mRNAsi. The threshold was set to an adjusted P 
value <0.05.

Validation of key gene expressions

To validate the differentially expressed pattern of hub 
key genes associated with WT, expression profiles from 
the GSE66405 dataset, which included 28 WT samples 
and four non-tumor samples, were acquired using the 
“GEOquery” R package. The probes were converted to 
gene symbols based on the annotation file of GPL17077 

platform. Next, we validated the expressions of key gene in 
GSE66405 validation dataset using the t-test.

Causal relationship and protein interactions

A DisNor (https://disnor.uniroma2.it/) analysis was 
performed to explore the protein interaction networks 
linking the disease genes with the causal interaction 
information annotated in SIGNOR database (https://signor.
uniroma2.it/) and the protein interaction data in Mentha 
database (http://mentha.uniroma2.it/). We used STRING 
(https://www.string-db.org) analysis to validate the protein 
interaction relationships.

Gene co-expression analysis

According to the gene expression level, the co-expression 
relationship between the key gene and the upstream gene 
was calculated, and the expression levels of the key gene 
and the upstream gene were determined. The R package 
“corrplot” was used to calculate the Pearson correlation 
between the genes.

Statistical analysis

All statistical analyses were performed in R 3.6.1 (http://
www.r-project.org/) and its corresponding R packages. 
The Kruskal-Wallis test was performed to determine 
differences in the mRNAsi between normal and tumor 
tissues. A Kaplan-Meier (KM) analysis was conducted 
using the “survival” R package, and a KEGG analysis was 
completed using the “clusterProfiler” R package. A gene co-
expression analysis between the key genes and the upstream 
genes was performed based on the gene expression levels 
using Pearson’s correlation coefficient in the “corrplot” 
R package. The P value of less than 0.05 indicated a 
statistically significant difference in all analysis.

Results

Clinical characteristics of the mRNAsi in WT

The mRNAsi was defined as a quantitative representation 
of CSCs and indicated the degree of similarity between 
tumor cells and stem cells. The mRNAsi scores of normal 
and tumor tissues showed significant statistical differences 
(Figure 1A, P=7.2e-05). Moreover, based on the KM 
analysis, we observed that patients with lower mRNAsi 

https://www.string-db.org/
http://www.r-project.org/
http://www.r-project.org/
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scores had a better OS than those with higher mRNAsi 
scores (Figure 1B, P=0.0087).

We further explored the relationship between the 
mRNAsi score and pathological stage. The results indicated 
that the average mRNAsi score tended to increase in 
line with the pathological stage, although no significant 
differences were shown between stages. The T3 stage had 
the highest mRNAsi score (Figure 1C,1D, P=0.39).

Identification of mRNAsi-related modules in WGCNA

We identified 2,408 DEGs between the normal and 
WT tissues (Figure 2A,2B) and used these to identify the 
mRNAsi-related modules. In our analysis, we chose β=3 
(scale-free R =0.85) as a soft threshold to establish a scale-
free network after filtering the outlier samples (Figure S1). 
Finally, 13 modules were built to identify the relationships 
between the modules and the mRNAsi (Figure 3A). We 
used MS as each module’s overall gene expression level 

to calculate the correlations between clinical phenotypes 
and the mRNAsi. Intriguingly, the blue module was most 
significantly associated with the mRNAsi, with a correlation 
close to 0.6 (Figure 3B). In addition, the brown, pink, green, 
yellow, and turquoise modules exhibited relatively high 
correlations with the mRNAsi (Figure 3B,3C).

Identification of mRNAsi-related key genes

A total of 11 genes with a threshold of cor.MM >0.8 and 
cor.GS >0.45 were defined as the key genes associated with 
the mRNAsi, including CCNB1, CDK, MAD2L1, CENPK, 
ACSL1, TPX2, SPAG5, ARHGAP11A, FANCI, NCAPH, 
and BLM (Figure 3D-3H).

KEGG analysis 

The KEGG analysis showed that cell proliferation-
related signaling pathways were closely associated with the 
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Figure 2 The differentially expressed gene analysis results between normal and WT tissues. The volcano plot (A) and heatmap (B) of the 
differentially expressed genes. WT, Wilms’ tumor.

mRNAsi, including cell cycle, p53 signaling pathway, and 
cellular senescence (Figure 4A,4B).

Validation of key gene expression

Nine genes overlapped with the above 11 key genes in the 
GSE66405 dataset, and the nine overlapped key genes were 
all verified as WT DEGs using the t-test (Figure 5, P<0.05).

Causal relationships and protein interactions 

The DisNor analysis revealed the first neighbor genes 
of six key genes, among which ATM and CDKN1A were 
identified as important upstream genes that directly or 
indirectly affected at least two key genes (Figure 6A). The 
protein interaction relationships between the key genes 
and upstream genes were also validated using STRING, 
which revealed that ATM and CDKN1A were significantly 
associated with most of the key genes (Figure 6B).

Co-expression of key genes and upstream genes

Most of the key genes and upstream genes were significantly 
related to each other, with a P value <0.05 in the co-
expression analysis (Figure 6C). Our results indicated that 
the protein interaction relationship between the key genes 
and upstream genes was accurate and reliable. Further, 
the upstream gene ATM directly or indirectly upregulated 
the expression of the key genes, whereas CDKN1A 
downregulated the expression of the key genes. This finding 

was also validated by the co-expression analysis of the key 
genes and upstream genes (Figure 6C).

Discussion

Emerging stem cell theory has shown that CSCs are 
characterized by self-renewal and limitless proliferation, 
which significantly affects the diagnosis and treatment 
of cancer (20-23). Previous studies have also confirmed 
that  CSCs are s ignif icantly associated with poor 
clinicopathological parameters and prognosis in WT 
(9,10). Our analysis also revealed significant changes in the 
mRNAsi score of WT samples, thus justifying our quest to 
elucidate the role of CSCs in WT.

Our KM analysis indicated that the mRNAsi was closely 
associated with OS in WT, and a higher mRNAsi score had 
a poorer OS. At the same time, through the observation 
of WT staging, we found that the mRNAsi score showed 
an upward trend in line with the pathological stage. This 
suggests that the mRNAsi score may serve as an important 
clinical parameter to guide clinical decision-making in WT. 
But further research is still needed.

As an unsupervised data mining method, WGCNA can 
closely link gene modules to clinical phenotypes (15), and 
this method has been used in several previous studies (24,25). 
In this study, we used WGCNA to identify 11 key genes 
associated with the mRNAsi, including CCNB1, CDK1, 
MAD2L1, CENPK, ACSL1, TPX2, SPAG5, ARHGAP11, 
FANCI, NCAP, and BLM. Jin et al. (26) reported that an 
increased expression of CDK1/CCNB1 could regulate the 
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cell cycle, inhibit apoptosis, and promote the invasion 
of cancer cells, which is also consistent with our KEGG 
signaling analysis results of the close associations with CSC 
characteristics. In addition, another study reported that 
CCNB1 can provide a survival advantage and escape the 
host immune response in non-small cell lung cancer (27). 

Notably, CDK1-mediated phosphorylation of TFCP2L1 
has been shown to be necessary for stem cell pluripotency 
and bladder carcinogenesis (28), and CDK1 can also inhibit 
∆Np63α to promote epithelial-mesenchymal transformation 
and the migration of head and neck squamous cell 
carcinoma cells (29). MAD2L1 is a key component of the 
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mitotic checkpoint complex protein and has been shown 
to play an important role in the proliferation of gastric 
cancer cells (30). CENPK is a cancer-promoting factor in 
ovarian cancer that is associated with poor prognosis (31) 
and promotes gastric cancer cell proliferation and migration 
by interacting with XRCC5 (32). Ma et al. indicated that 
ACSL1 promoted the development of prostate cancer by 
increasing the accumulation of lipids and enhancing fatty 
acid β oxidation (33). TPX2 has been shown to promote 
the epithelial-mesenchymal transition of prostate cancer by 
increasing the expression of CDK1 and the phosphorylation 
of the ERK/GSK3β/SNAIL pathway (34). Wang et al. found 
that the inhibition of NCAPH expression could inhibit 

the proliferation, in vitro migration, and in vivo xenograft 
tumor formation of cervical carcinoma cells. In addition, 
the knockdown of NCAPH also promoted apoptosis and 
cell cycle arrest in the G2/M phase (35). SPAG5 plays an 
essential role in anaphase mitosis and has been identified as 
a proliferation marker and predictor of chemotherapeutic 
sensitivity (36,37), playing a driving role in various cancers 
(38-41). Dai et al. showed that ARHGAP11A promotes the 
malignant progression of hepatocellular carcinoma through 
its interaction with RAC1B (42). It is also associated with 
the malignant progression of gastric adenocarcinoma and 
poor prognosis in lung adenocarcinoma (43,44). FANCI 
and BLM have also been implicated in the development 
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of various cancers (45-48). NCAPH reportedly regulates 
the progression of gastric cancer through DNA damage 
response, promotes cell proliferation via the MEK/ERK 
signaling pathway, and inhibits apoptosis in bladder cancer 
cells (49,50). The above explanation indicates that these 
11 genes play an important role in the occurrence and 
development of cancer. Most of them are closely related to 
cell proliferation and cell cycle, and this finding provides 
a foundation for identifying biomarkers related to CSC 
characteristics in WT.

Enrichment analysis is used to ascertain whether a set of 
genes is over-represented at a specific functional node (51).  
The KEGG signaling analysis was used to explore the 
enrichment nodes of 11 key genes and identify the 

biological processes most related to biological phenomena. 
The KEGG result showed that these biological processes 
were closely related to CSC characteristics, including cell 
cycle, cell senescence, p53 signaling pathway, etc. The cell 
cycle is a carefully regulated and highly organized process 
that ensures stable replication of genetic material and 
normal cell division (52). Disruption of the cell cycle is the 
basis of abnormal cell proliferation, and uncontrolled cell 
cycle checkpoints contribute to genetic instability (53). 
Cancer is characterized by a disturbance in the cell cycle, 
and many studies have shown that cell cycle disturbance 
drives the occurrence and progression of cancer (54,55). 
Cell senescence is a type of stable cell cycle arrest in diploid 
cells, which restricts the infinite proliferation of cells (56).  
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Activation of oncogenes in mammalian cells induces 
senescence, thereby limiting tumor growth. However, 
recent studies have revealed that cellular senescence has 
dual roles in tumorigenesis and suppression. The induction 
of senescence in cancer cells may exert pro-tumorigenic 
effects and contribute to the processes of cancer invasion, 
metastasis, and disease recurrence, resulting in a negative 
impact. Thus, targeted drugs that selectively clear 
residual cancer cells after therapy-induced senescence 
are being developed (57). The transcription factor p53 is 
an important tumor suppressor that has important roles 
in apoptosis, growth inhibition, inhibition of cell cycle 
progression, differentiation and acceleration of DNA 
repair, genotoxicity, and senescence after cell stress (58,59). 
However, some studies have shown that p53 can promote 
tumor regeneration under the induction of chemotherapy 
drugs (60). In recent years, an increasing number of studies 
on p53 have revealed the complexity and connectivity of the 
p53 pathway, many of which have extended beyond cancer 
research into the field of stem cell biology and other diverse 
aspects of health and disease (61). Our KEGG analysis 
further elucidates the potential biological functions of these 
11 key genes and verifies their close correlations with stem 
cells, cell proliferation, and other characteristics at the 
functional level.

Further, using Disnor and gene co-expression analyses, 
we found that ATM and CDKN1A were key upstream genes 
that directly or indirectly affected at least two key genes. 
Relevant studies have also shown the importance of these 
two genes in cancer. The mutation of ATM could cause 
ataxia telangiectasia, which is an autosomal recessive genetic 
disease with radiation sensitivity and cancer susceptibility, as 
well as mammary carcinoma and WT (62,63). In addition, 
ATM mutation carriers are predisposed to a higher risk 
of cancer, including breast cancer, pancreatic cancer, 
gastric cancer, and prostate cancer (64). Additionally, the 
ATM signal is enhanced in some advanced tumors and 
promotes the invasion and metastasis of cancer cells and 
increases the resistance of cancer cells to radiotherapy and  
chemotherapy (65). CDKN1A is a universal cell cycle 
inhibitor (66). Previous studies have shown that CDKN1A 
has an effect on proliferation, invasion, and metastasis in 
various types of tumors, including breast cancer (67,68), 
bladder cancer (69), thyroid cancer (70), and gastric 
cancer (71,72). In addition, CDKN1A also plays a role in 
regulating tumor response to treatment (22). Liu et al. have 
illustrated that downregulation of CDKN1A promotes 
cisplatin resistance in human lung adenocarcinoma (73), 

and Zamagni et al. have shown that CDKN1A silencing 
increased apoptosis and G1/S cell cycle arrest, thereby 
improving the efficacy of the cisplatin-pemetrexed 
combination (74). These studies indicate that these two 
upstream genes are closely related to the occurrence and 
development of cancers, providing a specific basis for WT 
CSC-targeted therapy. 

Despite our specific key findings, this study has some 
limitations. First, in vitro or in vivo experiments are 
imperative to verify the reliability of our analytical results. 
Second, combining the mRNAsi index with multiple 
genomic data, such as mutant and methylation data, could 
improve its credibility. Therefore, a well-designed clinical 
trial to validate our observations is warranted, which will 
provide new insights into targeted therapies for WT 
patients.

Conclusions

In this study, we evaluated the CSC characteristics of WT 
at the transcriptome level and identified 11 key genes and 
two upstream genes related to CSCs. Our findings provide 
a foundation for identifying biomarkers related to CSC 
characteristics in WT.
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