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ABSTRACT: Reuse of alternative water sources for irrigation (e.g., untreated surface water) is a sustainable approach that has the
potential to reduce water gaps, while increasing food production. However, when growing fresh produce, this practice increases the
risk of bacterial contamination. Thus, rapid and accurate identification of pathogenic organisms such as Shiga-toxin producing
Escherichia coli (STEC) is crucial for resource management when using alternative water(s). Although many biosensors exist for
monitoring pathogens in food systems, there is an urgent need for data analysis methodologies that can be applied to accurately
predict bacteria concentrations in complex matrices such as untreated surface water. In this work, we applied an impedimetric
electrochemical aptasensor based on gold interdigitated electrodes for measuring E. coli O157:H7 in surface water for hydroponic
lettuce irrigation. We developed a statistical machine-learning (SML) framework for assessing different existing SML methods to
predict the E. coli O157:H7 concentration. In this study, three classes of statistical models were evaluated for optimizing prediction
accuracy. The SML framework developed here facilitates selection of the most appropriate analytical approach for a given
application. In the case of E. coli O157:H7 prediction in untreated surface water, selection of the optimum SML technique led to a
reduction of test set RMSE by at least 20% when compared with the classic analytical technique. The statistical framework and code
(open source) include a portfolio of SML models, an approach which can be used by other researchers using electrochemical
biosensors to measure pathogens in hydroponic irrigation water for rapid decision support.

1. INTRODUCTION

Escherichia coli (E. coli) is one of the most diverse and widely
distributed organisms on the planet. Pathogenic E. coli includes
Shiga-toxin-producing E. coli (STEC) such as O157:H7, and
enterotoxigenic E. coli, among others.1 The existence of STEC
in food, water, or in sporadic cases air poses a risk to human
health. STEC may enter the human body through food
consumption, water ingestion, or inhalation. After entering the
human body, STEC may cause damage to intestinal lining,
resulting in disruption of homeostasis within the gastro-
intestinal tract microbiota.2 In the United States alone, the
CDC reports that at least 47.8 million illnesses, 127,000
hospitalization, and more than 3000 deaths are caused by
known foodborne pathogens; STEC contributes more than

265,000 illnesses, 2100 hospitalizations, and 30 deaths
annually.3

The demand for food is increasing with a world population
growth. Increasing food demand causes water shortage in many
areas, as approximately 70%, perhaps as high as 90% of the
freshwater demand is from agriculture in most regions of the
world.4 Agricultural demand for freshwater competes with
other needs (e.g., drinking water), creating pressure on the

Received: August 7, 2023
Accepted: August 28, 2023
Published: September 10, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

34171
https://doi.org/10.1021/acsomega.3c05797

ACS Omega 2023, 8, 34171−34179

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hanyu+Qian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eric+McLamore"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nikolay+Bliznyuk"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c05797&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?fig=agr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?fig=agr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?fig=agr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05797?fig=agr1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/37?ref=pdf
https://pubs.acs.org/toc/acsodf/8/37?ref=pdf
https://pubs.acs.org/toc/acsodf/8/37?ref=pdf
https://pubs.acs.org/toc/acsodf/8/37?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c05797?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


agricultural industry to use alternative water sources for
irrigation. However, bacteria (often found in alternative
waters) may contaminate fresh produce and exacerbate public
health risks.5 Irrigation water, particularly treated wastewater,
is one of the main culprits of fresh produce contamination by
bacteria, including STEC.6 As few as 10 to 100 viable STEC in
or on fresh produce can cause human illness and in some cases
death.

To reduce the potential for disease burden in the U.S. food
supply chain, regulations call for regular monitoring. The
regulation for irrigation water applied in fresh produce
production is set by the produce safety rule (PSR).7 According
to PSR, agricultural water used during growing activities must
have a microbial water quality profile that meets the
following:8 for a rolling four-year data set of water testing,
the profile must not exceed ≤126 CFU of generic E. coli per
100 mL sample, with a statistical threshold value of ≤410 CFU
generic E. coli per 100 mL sample. Thus, effective detection of
E. coli is critical to modern food safety systems.

Biosensors offer rapid detection of bacteria, and most do not
require complex instrumentation or operator training.9 As
reviewed by many others,10 there are numerous types of
biosensors for detection of bacterial pathogens in food and
water samples. The most common biosensors for food safety
utilize various combinations of biomaterials and nanomaterials
on a conductive electrode, where binding of bacteria
transduces an electrochemical signal.11 Among the trans-
duction types used in bacteria sensing, impedimetric sensors
are common. For example, Soares et al.12 developed an
impedimetric immuno-sensor to detect S. enterica in chicken
broth. This immunosensor was tested in laboratory conditions,
and data analysis employed post hoc equivalent circuit
modeling (ECM) to determine charge transfer resistance
(Rct) by chi-squared fitting, a classic method of data analysis.
Another recent example is the aptasensor by Sidhu et al.9 This
aptasensor was developed to detect Listeria spp. in hydroponic
lettuce water under flowing conditions using platinum
interdigitated microelectrodes biofunctionalized with ap-
tamers.9 ECM was used to determine Rct, which was used to
estimate the target concentration. Expanding on these works,
Giacobassi et al.13 developed a partially automated label-free
impedimetric aptasensor based on net impedance (Z) as the
response variable. This aptasensor was designed to detect
generic E. coli in hydroponic water and used the output data
(Z) for water pump control based on a priori thresholds.

In these approaches above (and other electrochemical
techniques common for pathogen detection), data analysis
depends on either post hoc ECM or a priori establishment of a
response variable threshold. Neither of these techniques is
ideal for system operation in a dynamic environment with a
complex sample matrix as the prediction accuracy is either low
or unknown. The lumped circuit abstraction used for ECM is a
powerful tool for analyzing impedimetric data but may
oversimplify the complex biosensor system because the ECM
assumes a single and ideal circuit system to represent the
complex and dynamic iterations within the biosensor system,
potentially leading to decreased prediction accuracy.14

Furthermore, the computational burden associated with
ECM can be relatively high, which may restrict its practical
application in real-time biosensor monitoring systems. To
improve accuracy and working efficiency (particularly for large
data sets characterized by high data dimensionality), machine

learning has emerged as a powerful analytical tool for a wide
range of biosensor applications.15−17

Machine learning (ML) models can effectively learn from
large biosensor data sets without preprocessing or a priori
thresholds, reducing the data dimension and avoiding
assumptions made in ECM. ML is capable of partially
automating the extraction of new relevant information, in
addition to that available in the equivalent circuit summary
reduction, to improve the predictive performance (e.g., for
bacterial concentrations in water).18 When applied to
impedimetric biosensor data sets where equivalent circuit
analysis lacks desired resolution, ML can be a powerful tool for
improving prediction of target concentration. Statistical ML
(SML) techniques, an important subtype of machine-learning
research, are grounded in building and validating, with the help
of training data, a statistical predictive model for new
(unobserved) data. SML has the potential to provide direct
readout in a partially autonomous manner without requiring
the usage of ECM to preprocess the data, which is a major
improvement over the currently available technique.

The goal of this manuscript was to develop a framework for
applying and evaluating existing SML algorithms to analyze
electrochemical aptasensor data, which is a critical step toward
a real-time decision support for food safety diagnostics. One of
the most common aptasensors (gold interdigitated electrodes)
were applied for measuring the concentration of E. coli
O157:H7 in lettuce irrigation water. This work builds upon
previous aptasensors for irrigation water9,12,13,19 by applying
the framework herein to compare the candidate approaches
and, consequently, to identify the optimum analytical method
for (out-of-sample) prediction of E. coli O157:H7 concen-
tration. We investigated the operational characteristics (e.g.,
test set root mean squared error, RMSE) for a suite of SML
approaches20,21 for predicting E. coli O157:H7 concentration.
The developed framework includes data visualization, feature
selection, model validation, and refinement (hyperparameter
tuning and model comparison), establishing a systematic
approach to analyze aptasensor data for irrigation water. It
allowed us to investigate not only the impact of the selection of
the ML algorithm but also the relative utility of the data type,
i.e., ECM outputs, raw impedance curves, or both. In the
example case shown here, the use of SML yielded an
improvement over the conventional post hoc ECM used in
conventional aptasensing. The SML models were compared
with nonlinear models based on the ECM in terms of the
prediction ability. The best SML algorithm exhibited a
reduction in the test set RMSE of at least 20%. The data
and code used to establish the model are open access and may
be generalized to other biosensors used in water quality
diagnostics and may have application in other domains where
pathogen prediction in water is required.

2. METHODOLOGY
2.1. Biosensor Fabrication and Impedance Testing. E.

coli O157:H7 (ATCC 25922; FDA strain 1946) was cultured
on tryptic soy agar (TSA) slants at 4 °C and stored at 4 °C
when not in use. Before experiments, serial dilutions were
made to achieve concentrations from 1 to 107 CFU/100 mL.
All samples were confirmed using the Colilert Quantitray
method.22

Aptamer-based biosensors (aptasensors) were fabricated
using protocols described in our previous work.19,23,24 In
summary, aptamer P12−55 was thiol-terminated with a C6
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spacer for covalent binding to gold interdigitated electrodes
(IDE). Aptamers were refolded, decapped, drop cast on gold
IDE, and stored in a Petri dish at room temperature for 20
min. Electrochemical impedance spectroscopy (EIS) data were
recorded using a portable potentiostat.25 The analytical
sensitivity and limit of detection (LOD) of the aptasensors
are listed in Table S9.

A 50 L hydroponic lettuce system was irrigated with pond
water using an approach similar to Giacobassi et al.13 (see
supplemental for details). Hydroponic lettuce (Lactuca saliva)
was germinated in sterile foam cubes and then transferred to
CocoTek-lined grow cups (7.6 cm diameter) containing
expanded clay pellets (Stacky Hydroponic Center, Lake City,
FL, USA). Irrigation water was collected in sterile 5.0 L plastic
bottles at a site on the southern end of a reservoir in
Gainesville, FL (Lake Alice), with low algal growth. These
samples were used to exchange 10% of the irrigation water
each day in the 50 L hydroponic system. Samples (100 mL)
were taken from the reservoir tank, and each sample was
measured by 15 unique (replicate) IDE aptasensors based on
Giacobassi et al.13 An aliquot of cultured cells was added to
achieve bacteria concentration (contrived) ranging from 1 to
107 CFU/100 mL. After spiking bacteria, aliquots (5 mL) were
taken for validation via Quantitray. Aptasensors were directly
immersed in a 100 mL sample bottle.
2.2. Overview of Aptasensor Impedance Data. Eight

contrived E. coli O157:H7 samples were prepared with
concentrations from 0 to 7 log CFU/100 mL. After collecting
EIS data, ECM was used to determine charge transfer
resistance (Rct), solution resistance (Rs), Warburg impedance
(Zw), and double layer capacitance (Cdl) from complex plane
diagrams based on Sidhu et al. (2020).9 ECM parameters (Rs,
Rct, Cdl, and Zw) were determined by Chi2 fitting using the
Randles Ershler model.

Various combinations of raw EIS data (real and imaginary
impedance and net impedance) and/or ECM parameters were
input to the statistical models. For each EIS curve, the data
dimension was 146, which is the sum of the response variable
(either real or imaginary impedance) and the number of
unique frequencies for each EIS scan.

As our primary purpose is out-of-sample prediction using a
new sensor (sensor ID was a block in the statistical design), we
randomly sampled (without replacement) sensor IDs to assign
the data (on all eight concentrations for each ID) to the
training (80%) and test (20%) sets. We defined the scenario
where the training set and test set shared the same
concentration range as “observed concentration.” We also
used another sampling approach where we sampled (without
replacement) concentration to assign the data to training set
and test set, which was defined as “unobserved concentration.”

In order to understand the drivers of predictive performance,
we applied three classes of statistical models: nonlinear
regressions combined with ECM parameters as inputs, SML
models solely relying on aptasensor raw EIS data (the number
of predictors is 146), and (hybrid) statistical models utilizing
the combined information across ECM parameters and EIS
data (see Sections 2.3, 2.4, and 2.5, respectively). Models were
fitted to the training data, and performance was evaluated
using RMSE on the complementary test set. The response of
the models was E. coli O157:H7 concentration (in log scale,
i.e., 0 to 7 log CFU/100 mL), and the test set RMSE was
calculated between real concentration and predicted concen-
tration.

In this manuscript, we define the “aggregated concentration
data set” as the data set in which the E. coli O157:H7
concentrations of 4 log CFU/100 mL and above 4 log CFU/
100 mL were aggregated to 4 log CFU/100 mL. This
represents the data that displayed signal saturation with limited
hook effect. The “nonaggregated (original) concentration data
set” was defined as the data set before the aggregation process.
2.3. Nonlinear Regression and Generalized Additive

Models (GAMs). Nonlinear regression, where response y
depends on corresponding predictor x via a nonlinear
regression function f, was applied to analyze ECM parameters
as

= +y f x( , )i i i

where y is the model response−concentration of E. coli
O157:H7 for each observation; x is the predictor (ECM
parameters: Rct and Cdl); θ is a vector of regression function
parameters; ϵ is the error term, and i is the observation ID.
The relationship between E. coli O157:H7 concentration and
aptasensor signal was modeled as a parametric nonlinear
function, e.g., logistic or asymptotic functions as shown below:
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The model parameters c and d are the lower and upper
bounds of response; β and β0 are nonlinear regression
coefficients. We used ordinary nonlinear least-squares method
to estimate the model parameters.26 The nonlinear regressions
(as noted) were fitted based on the observations detected by
sensors in the training set, and then the fitted models were
used to predict the observations in the test set. Additionally,
the random effect caused by the potential sensor-to-sensor
variation was considered in the nonlinear regression. Mixed-
effect nonlinear regression model structures are shown in
Appendix S13.

GAMs were applied to estimate semiparametric27,28 smooth
nonlinear associations between the response (E. coli O157:H7
concentration in log scale) and the covariates of interest (ECM
parameters). In addition, fixed-effects and mixed-effects
(aptasensor-specific random effects, intercepts) models were
fit to predict the observation concentration detected by
aptasensors with different IDs in test set.
2.4. SML Models Using Impedance Data as Features.

SML models were used to predict the E. coli O157:H7
concentration based on information from impedance curve
features. The hyperparameters in SML models were tuned by
block cross-validation (see Appendix S14 for details). Two
different approaches were used as summarized in the next
sections.

2.4.1. SML Models for Raw EIS Data. Ridge, partial least-
squares (PLS) and gradient boosting decision tree models
were fitted, which directly use the raw EIS data as inputs. Ridge
regression is a technique to prevent overfitting by adding a
penalty term, which is sum of squared coefficient (L2 penalty),
in the cost function.29 PLS, a supervised alternative to principal
components analysis (PCA), constructs a set of linear
combinations of predictors x to a set of new features, and
then fits a linear model using these new features.29 We also
applied the gradient boosting decision tree and XGBoost
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decision tree to predict the E. coli O157:H7 concentration,30

see Appendix S6 for details.
2.4.2. SML Models for Dimension-Reduced Data.

Dimension reduction such as PCA and functional data analysis
techniques allows one to control the unstructured variation in
high-dimensional covariates (here, raw discretized impedance
curves) by constructing a small set (e.g., 2−5) of orthogonal
linear combinations of the original covariates that explain a
large proportion (e.g., 95%) of the total variation in the
covariates. Alternative variable selection approaches for
dimensionality reduction31,32 have been considered but are
not evaluated here. We first applied PCA to reduce the data
dimension by projecting covariates onto only a few principal
components (PCs). This produced lower-dimensional data in
which the first two PCs explained 96.5% of the raw data
variation. Therefore, the first two PCs were used as inputs of
SML models.

Using the first two PCs as the fixed effects, we fit a mixed-
effects model with a random intercept dependent on the
identifier of the biosensor:

= + + + +y PC PC Zu0 1 1 2 2

where Z is the design matrix for the random effect caused by
the sensor-to-sensor variation, u is a vector of random effect,
PC1 and PC2 are the first two PCs from PCA, and ϵ is the error
term. By testing the significance of the random effect, we
evaluated the influence of the block effect in our study.

In addition to linear regression, we also applied a support
vector machine (SVM), boosted linear regression, and random
forest models, using the first two PCs from PCA as predictors.
The aim was to predict E. coli O157:H7 concentration.
Compared with linear regression, SVM regression is
appropriate for nonlinear behavior between the input variables
and response and depends on selection of appropriate
kernels.33,34 In this work, we analyzed a set of kernels,
including linear, polynomial, and radial basis function (RBF)
kernel. Boosted linear regression, also known as gradient
boosting regression, can usually produce more accurate
prediction compared with traditional linear regression.30

Random forest is a tree-based regression which is especially
effective in handling noisy data.35 All of the code was prepared
in the R language caret package.
2.5. Combining Information across ECM and Impe-

dance Data. We applied two different approaches to combine
the ECM-derived features and the impedance data features:
(1) the ECM parameters and 146 features from the impedance
curves were used together as predictors in one SML model to
predict the E. coli O157:H7 concentration and (2) an
intermediate variable score was first generated from the SML
models. Then the ECM parameters were used along with the
score as features in a GAM to predict the E. coli O157:H7
concentration (see Figure 1).
2.6. Model Comparisons. To have an accurate evaluation

of predicting E. coli O157:H7 concentration, we repeated the
sampling process of the training set and test set 100 times and
calculated the test set RMSE of each model under each sample
seed. The mean of the achieved RMSE vector was calculated to
estimate the test set RMSE for each model, and the 95%
confidence interval of estimation was constructed using the
2.5% and 97.5% sample percentiles. This estimation approach
allows us to avoid sampling influence and estimate the
uncertainty of prediction error. The paired t test was further
conducted to compare the prediction error between two

models using the achieved RMSE vectors (see Appendix S15
for more details).

3. RESULTS AND DISCUSSION
3.1. Conventional ECM-Based Models. Figure 2 shows

representative EIS data for baseline (0 CFU/mL) and 104

CFU/mL E. coli O157:H7 in hydroponic water. At low
frequency, the phase (Figure 2a) is relatively stable and
indicates a capacitive behavior (phase angle of approximately
−40° to −50°). The low frequency region of the EIS curve
(below 0.1 Hz) coincides with a near-linear decrease in net
impedance (Figure 2)b, which is similar to other impedimetric
aptasensors in the literature.19,23,24 A distinct difference is
apparent in Nyquist plots that indicates a significant change in
Rct and Cdl (the semicircular region in Figure 2c), which was
consistent across the operating range (0 CFU/100 mL and
10,000 CFU/mL; see supplemental section for all raw curves).

Nonlinear regression and GAM were analyzed using ECM
parameters as predictors across the entire operating range.
Figure 3a,b shows the relationship between ECM parameters
(Rct and Cdl) and the E. coli O157:H7 concentration. The
curves follow classic response with a linear region at low
concentration and a zero-order region that is indicative of
receptor saturation at high concentration. A hook effect occurs
at concentrations greater than 106 CFU/100 mL, which is
common in biosensor calibration curves. The prediction
accuracy for the relative high concentration (C > 4 log
CFU/100 mL) from the statistical models which use ECM
parameters as predictors would be low because there is much
less variation of the ECM parameter value when concentration
is larger than 4 log CFU/100 mL due to signal saturation.
Additionally, one can define high concentrations as the same
value in the context of food safety applications, where the food
safety threshold (126 CFU/100 mL) is orders of magnitude
below the cutoff value (4 log CFU/100 mL). Thereby, we
aggregated the concentrations of 4 log CFU/100 mL and
above to 4 log CFU/100 mL during the nonlinear regression
model fitting process. We also calculated the correlation

Figure 1. Workflow for ML analysis of impedimetric E. coli O157:H7
aptasensor data. Two different approaches were used to combine the
ECM-derived features with the (raw) EIS data.
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coefficients between Rct and Cdl, and the results are presented
in appendix Section S4.

Figure 3c,d illustrates the relationship between the first two
PCs from analysis of data for E. coli O157:H7 concentration (0
to 7 log CFU/100 mL). The inputs of PCA were the 146
features of aptasensor impedance curves. Outputs from PCA
were used as the predictors in some SML models, as noted,
and the results are discussed in Section 3.2. The first PC
retains the features observed in raw data calibration curves
(nonlinear response at lower concentration with a hook effect
at high concentration), however, PC2 does not (oscillating
response with high uncertainty).

Using ECM parameters Rct and Cdl as predictors, the
performance (for aggregated data set) of some widely used
nonlinear regressions is reported in Table 1 (the result for
mixed-effect nonlinear regression is reported in Table S7). The

average RMSE column represents the average test set RMSE
across the 100 simulations (one simulation represents one
random split of data into a training set and test set). The
CIlower and CIupper are lower and upper bounds of the 95%
confidence interval of RMSE for the test set.

Figure 2. Representative EIS plots for E. coli O157:H7 aptasensor in hydroponic media at 25 °C. Baseline (0 CFU/100 mL) and upper range
(10,000 CFU/100 mL) are shown as a representative example. Representative (A) phase plot, (B) bode plot, and (C) Nyquist plot.

Figure 3. Relationship between ECM parameters ((a) and (b)) and the first two PCs ((c) and (d)) with E. coli O157:H7 concentration in
irrigation water. The symbols in Figure 3 are the observed values, and solid lines are the estimated mean function from the GAMs which used E. coli
O157:H7 concentration as predictors and ECM parameters as response. The gray shaded area represents the 95% pointwise confidence interval,
and the pointwise intervals between lower and upper dashed lines are the 95% prediction intervals.

Table 1. ECM-Based Nonlinear Regression Average RMSE
and 95% Confidence Interval for Aggregated Data Seta

nonlinear regression average RMSE CIlower CIupper
logistic function 0.244 0.118 0.360
asymptotic function 0.258 0.155 0.337
GAM 0.260 0.156 0.346

aData with concentration above 4 log CFU/100 mL were aggregated
due to signal saturation.
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Among the models tested, the logistic function had the
lowest prediction error (average RMSE = 0.244). Considering
the fact that nonlinear regression with a logistic function is a
simple and efficient model, and its results are easy to interpret,
we select it as the baseline model to compare with SML
models.
3.2. SML Models with Raw EIS Data as Input. Using

raw EIS data as inputs in PCA, the first two PCs explain 96.5%
of the data variance. Using these two PCs as fixed effects, we
established a mixed-effects model with random intercept
capturing variation due to the sensor ID. The variance of the
random effect (standard deviation = 2.90 × 10−5), which
represents the variability among the sensors with different IDs,
is much smaller than the variance of residual term which is
defined as the error that cannot be explained by the model
(standard deviation = 2.03). The p-value of the random effect
term is also larger than 0.05, indicating that sensor-to-sensor
variation is negligible when PCA is used for these Au-IDE
aptasensors.

The performance of select SML models is shown in Figure 4
(see Table S8 for additional details in the tabular form).

Aggregating the data for bacteria concentration higher than 4
log CFU/100 mL significantly reduced RMSE for SML models
using the first two PCs as predictors but had a less pronounced
effect on SML models based on EIS raw data without
dimension reduction (ridge regression and PLS).

The SVM model with the RBF kernel, which uses the first
two PCs as the predictors, has the lowest prediction error for
the aggregated data set (average RMSE = 0.194). The random
forest model has a wide confidence interval, as do XGBoost
and gradient boosting tree models, indicating that these
models are sensitive to the outliers in the test set under some
of the simulations of the test set and training set (see Appendix
S6). Compared with the baseline model (logistic function), the
best SML models (SVM with RBF kernel, which has the lowest
average RMSE) can reduce the average RMSE by 20%. Using
the paired t test to compare SVM with RBK kernel model test

set RMSE vector, obtained from 100 simulations, with the
baseline model (ECM-based logistic function), the p-value was
less than 0.001. This indicates that the SVM model has a
significantly lower prediction error.

SML models predictive ability decreases from aggregated
data set to nonaggregated data set. This may be due to the
noted hook effect at high bacteria concentration. Among the
selected SML models, the ridge regression has the best
predictive ability for the nonaggregated data set (average
RMSE = 0.285). Comparing the performance of SML models
that use the original (see Section 2.4.1) and dimension-
reduced (see Section 2.4.2) predictors, we found that the
increasing rates of average RMSE (from aggregated to
nonaggregated data set) for impedance curves data-based
SML models (without PCA dimension reduction) are lower
than PCA-based SML models. For example, the average RMSE
increased 140% from aggregated to nonaggregated data set for
SVM, which uses the first two PCs as predictor, while the
average RMSE increases 22% for ridge regression, more details
are discussed in Appendix S7.
3.3. Hybrid Statistical Method Combining Informa-

tion from ECM and Raw EIS Data. This section focuses on
improving predictive ability of SML models for the aggregated
data set. We applied two methods to combine the information
between the ECM and aptasensor impedance curves. In the
first method, we combined two ECM parameters with 146
features from the raw EIS data. Based on the combined data
set (data dimension is 148), we used PCA to reduce data
dimension and then used the first two PCs as inputs to fit SVM
regression. We also used ridge regression to directly analyze
the combine data set. The results of method 1 are shown in
Table 2 (“ECM parameters + original EIS data” columns). In

the second method, we first generated an intermediate
covariate “score” from a ridge or SVM regression. Then we
fit a GAM model to predict the E. coli O157:H7 concentration,
in which the inputs were the score and two ECM parameters
(see Table 2 “ECM parameters + intermediate score variable”
columns). Specific details about these two methods are
introduced in Section 2.5.

The first method, which directly combines two data sets, has
a similar average RMSE and 95% confidence interval with the
SML models using only impedance curves (i.e., excluding
ECM parameters). Using a paired t test to compare RMSE (as
detailed in Section 2.6), the p-value was 0.693, indicating that
the first method does not significantly improve the predictive
ability for SML models. On the other hand, method 2 (scoring
system approach) can significantly decrease the average RMSE,
especially for ridge regression. More details about the
significance test of each term in GAM are shown in Appendix
S5.
3.4. Predictive Ability of SML for Unobserved

Concentrations. In previous sections, we discussed the

Figure 4. Predictive ability of SML models (aggregated data set for
concentrations ≥4 log CFU/100 mL) was compared with nonlinear
regression. In addition, the predictive ability for the nonaggregated
data set was compared within SML models. The average RMSE
column is the average test set RMSE across the 100 simulations,
which has the same sampling seed as that of the simulation used
inSection 3.1.

Table 2. Comparison of Using Two Methods To Improve
SML Models Predictive Ability

selected SML
models

ECM parameters + original
EIS data

ECM parameters +
intermediate score variable

average
RMSE CIlower CIupper

average
RMSE CIlower CIupper

SVM 0.191 0.110 0.327 0.091 0.016 0.241
ridge 0.140 0.100 0.210 0.060 0.020 0.210
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predictive ability for each statistical model using observed
concentrations (the training set and test set shared the same
concentration set but are based on different sensor IDs). To
challenge this, the selected SML models may be used to
predict the concentration, which is out of the set of standard
solution concentration. Thereby, this section focuses on
comparing predictive performance for a new scenario of
unobserved concentrations (chosen from the nonaggregated
data set), by allocating disjoint sets of the concentrations to the
training set and test set. We allocate observations from two of
the eight concentrations to the test set, and the remaining
observations are grouped into the training set. This sampling
process was repeated to produce 100 training/test data sets.
Then, representative models were selected to fit the training
data and predict the complementary disjoint test set. The
average RMSE and 95% confidence interval are shown in Table
3 “C 0−7 log CFU/100 mL” columns.

The ridge regression model, which has good performance for
the observed concentration (average RMSE = 0.285), has a
weak predictive ability for the unobserved concentration
(average RMSE = 2.490). PLS has the best predictive ability
(average RMSE = 1.423), in terms of the unobserved
concentration. There are 56 potential combinations if we
sampled two of eight concentrations to the test set. We
calculate the test set RMSE for each sampling combination to
find out why some SML models had large RMSE for
unobserved concentration, and the results are shown in the
appendix (Table S1). If we allocate the boundary concen-
trations to the test set, i.e., concentration 0 or 7 log CFU/100
mL, then most models will have a large prediction error.
However, in practice, we require that the range of the standard
solutions covers the potential sample solution. Thus, we also
investigated the model performance when the boundary
concentration values have been removed. After removing
those outliers, PLS, ridge, and SVM predictive ability would
significantly increase, but PLS still had the best performance
(see Table 3 “C 1−6 log CFU/100 mL” columns).
3.5. Implications for Water Quality Analysis. Our study

introduced a rapid aptasensor for detection of E. coli O157:H7
in agricultural (irrigation) water and a series of analytical tools
for predicting concentration. Using the SML models to predict
the E. coli O157:H7 concentration, we demonstrated the ability
to process EIS data without the use (or need) of ECM
modeling to extract parameters, significantly reducing
analytical burden while also producing prediction accuracy to
inform user(s). The study was based on robust SML models
which have been successfully applied in many other studies,
which may improve the likelihood that the framework has
general applicability in hydroponic water quality and/or food
safety applications. Use of the framework here allows future
researchers to compare numerous models for optimizing
predictive ability. In this study, use of SML models significantly

improved accuracy compared with the conventional ECM-
based nonlinear regression commonly used in biosensing.

For the Au-IDE aptasensors shown here, the appropriate
models for data analysis are ridge, SVM, and PLS to predict the
E. coli O157:H7 concentration in lettuce hydroponic water at
concentrations relevant to the food safety modernization act
(FSMA). In future studies, the collection of models may be
applied to different types of biosensors (e.g., protein-based
sensors, phage biosensors, etc.) or different samples using the
open-source code and framework. Importantly, the script
includes an embedded scoring system, which has numerous
potential applications in decision support research.

In addition to the SML models built from the EIS data and
nonlinear regressions from ECM data, we developed a new
approach that statistically combines the EIS data and ECM
parameters. This approach can significantly improve the
predictive ability for the aggregated data set in this study of
Au-IDE aptasensors compared with the existing method
(ECM-based nonlinear regression). However, because of the
relatively low amount of data for training and tests, more
studies are needed to validate this conclusion.

The choice of data types (raw EIS data, ECM parameters, or
both) used in the analysis can significantly influence the
prediction accuracy of E. coli O157:H7 concentrations. As
described in Section 3.1, the parameters obtained from ECM
(Rct and Cdl) were constant when E. coli O157:H7
concentrations were larger than 4 log CFU/100 mL (due to
receptor saturation), and the signal begins to decrease above a
concentration of 6 log CFU/100 mL (due to a hook effect).
Thus, use of classic ECM alone lacks the ability to analyze high
concentrations and may produce false negatives for extremely
high concentrations. In contrast, ML algorithms which use raw
EIS data as predictors exhibit good prediction accuracy for
large concentrations, which could extend the aptasensors
working range (see Section 3.2).

In both EIS-based SML and ECM-based nonlinear
regression, we examined the influence of the random effect
caused by sensor-to-sensor variation in E. coli’s O157:H7
concentration prediction (see Sections 3.1 and 3.2). The
results show that the random effect is negligible, indicating
excellent device consistency. Additionally, the smooth
impedance curve shown in Figure S4 indicates a high signal-
to-noise ratio, which enhanced the aptasensor detection ability.
This is likely a result of developing the aptamer on Au-IDE
commercial electrodes, which is a proven model system in
microbial biosensors.9,36 However, it is common to encounter
noisy data with a low signal-to-noise ratio in other devices,
such as electrodes fabricated with emerging materials that have
not yet been commercialized.37−39 Biosensor signal noise may
originate from operator variation, sensor-to-sensor variation, or
environmental influences, which would ultimately be reme-
diated with experimental design techniques (such as principled
replication once the sources of variation have been quantified).
ECM-based nonlinear regression shows a weaker predictive
ability compared with SML methods even though the data sets
have a high signal-to-noise ratio. ML algorithms have various
techniques to handle noise effectively, such as robust learning,
regularization, etc.40,41 Although the model system shown in
this study does not demonstrate the advantages of SML
models for noisy data, the framework includes techniques that
handle these problematic issues and thus has high translational
potential to other biosensors. For example, the L2 regulariza-
tion used in ridge regression penalizes the model for using less

Table 3. Predictive Ability for Unobserved Concentration in
the Test Set

C 0−7 log CFU/100 mL C 1−6 log CFU/100 mL

model
average
RMSE CIlower CIupper

average
RMSE CIlower CIupper

SVM 2.299 0.919 3.949 1.459 0.662 2.275
ridge 2.490 0.759 8.756 1.007 0.455 1.421
PLS 1.423 0.259 4.240 0.524 0.259 0.747
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informative signals as predictors, reducing the impact of noisy
features in the data. The open-access code and program that
we provide can be easily adapted to projects that face
challenges with noisy data for other biosensor systems.

The discrete concentration set used in the analysis posed a
limitation in this study as it made it challenging to evaluate the
model predictive performance for samples with noninteger log-
concentrations. This limitation arose because the research
utilized serial dilutions to prepare E. coli O157:H7 samples
(refer to Section 2.1). In our future work, we aim to address
these limitations by focusing on two main areas. First, we will
validate the developed SML frameworks for additional samples
using noninteger concentrations. Second, we plan to apply the
SML framework to different biosensors.

4. CONCLUSIONS
Use of environmental surface water for irrigation is an
important agricultural practice to ensure food and water
security. However, the potential for contamination by
microbial pathogens is a major risk, requiring real-time
analytical tools for the rapid screening of water quality.
Nonlinear equivalent circuit models produce multiple circuit
parameters that may not be associated with the underlying
physics of the biorecognition or transduction components of
the sensor, especially when the bacteria concentration is large
(due to common problems, such as the hook effect). Here, we
developed a SML model framework for optimizing model
selection and demonstrated the approach for impedimetric
aptasensor impedance curves to predict E. coli O157:H7
concentration. In this case study, the SML model had higher
accuracy compared with classic equivalent circuit models based
on nonlinear regression. When coupled with appropriate SML
techniques, the impedimetric aptasensors allow one to improve
(over the conventional ECM-based analysis) the prediction
accuracy for rapid detection of E. coli O157:H7 in agricultural
waters. This study is a critical step toward real- time decision
support for food safety diagnostics in sustainable water reuse.
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