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Mesenchymal stem cells (MSCs) are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad
tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal
lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic
islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including
bone marrow (BM), umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGE,
and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease
inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

1. Introduction

The shortage of donor organs and the need of lifelong
immunosuppression for the thousands of patients suffering
from end-stage diseases worldwide are problems that need
to be resolved. The repair, replacement, and regeneration
of organs can restore impaired functions and are regarded
as a potential solution to allotransplantation [1]. The bone
marrow (BM) is an invaluable source of adult pluripotent
stem cells, including hematopoietic stem cells (HSCs),
endothelial progenitor cells (EPCs), and mesenchymal stem
cells (MSCs). MSCs are prototypical adult stem cells with
the capacity for self-renewal and differentiation with a broad
tissue distribution. MSCs have been identified as an adherent,
fibroblast-like population, originally isolated from BM [2].
These multipotent cells can be differentiated in vitro and in
vivo into various cell types of mesenchymal origin, such as
osteoblasts, adipocytes, and chondrocytes [3, 4]. Recently,
more reports have demonstrated that MSCs secrete a variety
of factors that promote tissue repair, stimulate proliferation
and differentiation of endogenous tissue progenitors, and
decrease inflammatory and immune reactions [5-7]. Because
MSCs do not evoke an immune response, they are useful for
allogenic organ and tissue repair.

2. Source, Multilineage Potential and
Definition of MSCs

MSCs were first isolated from BM and have since been
isolated from different adult tissues, including skeletal mus-
cle [8], adipose tissue [9], umbilical cord [10], synovium
[11], the circulatory system [12], dental pulp [13], amniotic
fluid [14], fetal blood [15], lung [16], liver, and BM [17].
Friedenstein and coworkers first reported the existence of
adherent, fibroblast-like cells isolated from BM [2], and that
these cells could differentiate into mesodermal lineage such
as osteoblasts, adipocytes, and chondrocytes in vitro [18]
and cardiomyocytes [19]. Also, MSCs have been reported to
differentiate into types of cells of endodermal and ectodermal
lineages, including lung [20], retinal pigment [21], skin [22],
sebaceous duct cells [23], renal tubular cells [24], and neural
cells [25, 26], hepatocytes [27], and pancreatic islets [28].
There has hitherto been no specific surface marker for the
identification of MSCs. For the isolation of human MSCs,
the International Society for Cell Therapy proposed criteria
[18] that comprise (1) adherence to plastic in standard culture
conditions; (2) expression of the surface molecules CD73,
CD90, and CDI105 in the absence of CD34, CD45, HLA-
DR, CDI14 or CDI1lb, CD79a, or CDI19 surface molecules as
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assessed by fluorescence-activated cell sorter analysis; (3) a
capacity for differentiation to osteoblasts, adipocytes, and
chondroblasts in vitro. Similarly, murine MSCs have been
shown to differ from human MSCs in terms of marker expres-
sion and behavior and have been identified as an adherent,
fibroblast-like population, negative for CD45, CD11b, and CD
31, and positive for Scall and CD106 [29].

3. MSCs and the Immune System

MSCs have the ability to modify and influence almost all
the cells of the innate and adaptive immune systems, to
interfere with and affect cellular proliferation, differentiation,
maturation, and function to induce an anti-inflammatory
phenotype, and to modulate the immune response mediated
by MSC soluble factors, including IL-6, M-CSF, IL-10, TGEf,
HGE and PGE2 [7, 30, 31]. The innate immune cells include
neutrophils, dendritic cells (DCs), natural killer (NK) cells,
eosinophils, mast cells, and macrophages. MSCs modulate
DC function, indirectly regulate T and B cell activities,
delay and prevent the development of acute graft versus
host disease (GVHD) [32], and suppress DC function during
allogeneic islet transplantation [33]. MSCs have been shown
to suppress these inflammatory cells [34] and to alter NK
cell phenotype and suppress proliferation, cytokine secretion,
and cytotoxicity against HLA class I expressing targets [35].
MSCs mediated NK cell suppression via soluble factors
such as indoleamine 2,3-dioxygenase, PGE2, and TGFf
[36]. The adaptive immune system, which is composed of
T and B lymphocytes generates specific immune responses
to pathogens with the production of memory cells. It has
been reported that MSCs upregulate anti-inflammatory Th2
cytokines, including IL-3, -5, -10, and -13, and downreg-
ulate proinflammatory Thl cytokines, including IL-la¢ and
B, IFNy, and TNFa [37]. MSCs induced an alteration of
DC cytokine secretion, inducing a decreased secretion of
pro-inflammatory cytokines such as TNF«, IFNy, and IL-
12, and increased IL-10, which is a suppressive cytokine
and inducer of reg T cells [38]. MSCs exert an inhibitory
effect on B cells, but MSCs have stimulatory effect in low
doses [39]. Concerning the immunomodulatory properties
of MSCs in a mouse model, one report [40] has suggested
that allogeneic MSCs are not intrinsically immunoprivileged,
and under appropriate conditions, allogeneic MSCs induce a
memory T-cell response resulting in rejection of an allogeneic
stem cell graft. Another report [41] has suggested that
MSCs could potentially improve experimental autoimmune
encephalomyelitis in mice.

4. Homing of MSCs

Intravenously injected MSCs can migrate to the BM [42,
43] in the steady state and home to the inflammation site
by migrating across the endothelium and then entering
the injured organ [20, 44-47]. The fact that MSCs confer
protection cannot be entirely attributed to their ability to
home and engraft to the site of damage, suggesting that they
are also capable of mediating protection in an endocrine
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manner [1]. MSCs have many chemokine receptors that assist
in their migration to inflammatory sites via the SDF1/CXCR4
pathway [48]. Moreover, studies have demonstrated that
platelet-derived growth factor-AB, IGF-1, and CD44 are the
most potent chemoattractants for MSCs [44, 49].

5. BM-Derived MSCs (BMMSCs) and
Organ Repair

Many reports have indicated that MSCs have the capacity to
differentiate into endodermal, mesodermal, and ectodermal
lineage cells. Recently, a report has indicated that the ability of
MSCs to alter the tissue microenvironment via the secretion
of soluble factors may contribute more significantly than
their capacity for differentiation in tissue repair [50]. Adipose
tissue and BM are the most readily available sources of MSCs
because they are easy to harvest, and because of their relative
abundance of progenitors and the lack of ethical concerns.
Although adipose tissue-derived MSCs and BMMSCs show
the same immunoregulatory and supporting hematopoiesis
[51], BMMSCs have a higher degree of commitment to
differentiate into chondrogenic and osteogenic lineages than
adipose tissue-derived MSCs [52]. BMMSCs have been
shown to ameliorate tissue damage and to improve function
after lung injury [53-55], kidney disease [56, 57], diabetes
[58, 59], myocardial infarction [60, 61], liver injury [62, 63],
and neurological disorders [64].

5.1. BMMSCs and Lung. The lung is an organ that is highly
susceptible to edema and endothelial permeability after
traumatic injury. BMMSCs inhibit endothelial cell barrier
permeability and preserve pulmonary endothelial cell
integrity by preserving adherent junctions, tight junctions
and decreasing inflammation. BMMSCs address both
components of endothelial permeability and inflammation
induced by hemorrhagic shock [54]. Interstitial lung diseases
are characterized by epithelial injury, fibroblast proliferation,
expansion of the lung matrix, and dyspnea. Of these diseases,
idiopathic pulmonary fibrosis (IPF) is the most frequent
and lethal. Proinflammatory cytokines IL-1 and TNF-«
induce endothelial cells to express adhesion molecules and
chemokines that attract other white cells from the blood
to the site of injury [65]. IL-1 and TNF-« also stimulate
proliferation of endothelial cells and fibroblasts that increase
the blood supply at the site of injury and repair damage by the
formation of scar tissue [66]. BMMSCs protect lung tissue
from bleomycin-induced injury by blocking TNF-« and IL-1,
two fundamental proinflammatory cytokines in the lung [53].
BMMSCs enhance the restoration of systemic oxygenation
and lung compliance and decrease lung inflammation and
histological lung injury. They also secrete cytokines, enhance
lung repair, and attenuate the inflammatory response
following ventilator-induced lung injury [55].

5.2. BMMSCs and Kidney. Acute and chronic kidney injuries
after transplantation have a complex pathophysiology involv-
ing ischemic, inflammatory, and immunologic mechanisms,
and adult stem cells have been used in the treatment of
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these kidney diseases. Adult BM stem cells and the kidney
precursors have been demonstrated to have an ability to
differentiate into the kidney’s specialized structures [67].
Nephrons are of mesenchymal origin, and stromal cells
are of crucial importance for signaling, leading to the
differentiation of both nephrons and collecting ducts [67].
Ischemic acute renal failure (ARF), characterized by a sharp
decline in the glomerular filtration rate, is a very com-
mon complication in hospitalized patients and particularly
in patients with multiorgan failure. When BMMSCs are
injected after ARF, they can histologically become located in
the kidney and significantly enhance the recovery of renal
function by transdifferentiation into renal tubular or vascular
endothelial cells [24, 68]. A single intrarenal administration
of BMMSCs 7 days after ischemia-reperfusion significantly
improved renal function and modified renal remodeling.
The improvement of renal function was associated with a
reduction in extracellular matrix accumulation. In addition,
MSC administration also reduced tubular dilation, which is a
classical feature of progressive renal failure in a renal ischemia
rat model [57].

5.3. BMMSCs and Pancreas. Diabetes is caused by absolute
insulin deficiency due to autoimmune destruction of insulin-
secreting pancreatic f3-cells (type 1 diabetes) or by relative
insulin deficiency due to decreased insulin sensitivity, usually
observed in overweight individuals (type 2 diabetes). In both
types of the disease, an inadequate mass of functional 3-cells
is the major determinant for the onset of hyperglycemia and
the development of overt disease. BM and BMMSCs induce
the regeneration of recipient-derived pancreatic insulin-
secreting cells, and MSCs inhibit T-cell-mediated immune
responses against newly formed S-cells, which are able to
survive in this altered immunological milieu [69].

Acute pancreatitis (AP) is characterized by a rapid onset
and disease progression, with high fatality. Pancreatic acinar
cells are the functional unit for the external secretion of
the pancreas, which accounts for 80% of pancreatic tissue.
During the process of severe AP, inflammatory mediators,
metabolic products of arachidonic acid, and oxygen-derived
free radicals enhance vascular permeability and cause tissue
thrombosis and hemorrhage, thereby inducing necrosis of
the pancreas [70]. BMMSCs can effectively relieve injury
to pancreatic acinar cells and small intestinal epithelium,
promote the proliferation of enteric epithelium and repair of
the mucosa, and attenuate systemic inflammation in rats with
severe acute peritonitis [71].

Human BM stem cells are able to differentiate into
insulin-expressing cells in vitro by a mechanism involving
several transcription factors of the S-cell developmental
pathway when cultured in an appropriate microenvironment
[72]. Human BMMSCs can be induced to express insulin in
sufficient quantities to to reduce blood glucose in a diabetic
mouse model [73] and to protect human islets from proin-
flammatory cytokines [74]. The use of human BMMSCs could
be developed as a cell therapy for pancreatitis because of the
ability, as shown in a rat model of acute pancreatitis, to reduce
inflammation and damage to pancreatic tissue by reducing

levels of cytokines and inducing Foxp3(+) regulatory T cells
[75].

5.4. BMMSCs and Heart. Cardiovascular diseases are the first
cause of death worldwide, and myocardial infarction (MI)
is responsible for 12.8% of all deaths [76]. BMMSCs have
been shown to differentiate into myogenic phenotype [77]
and show a potent antifibrotic action, as their conditioned
medium decreases cardiac fibroblast proliferation and the
expression of collagen types I and IIT [78, 79] and increases
the secretion of antifibrotic molecules such as matrix metal-
loproteinases 2, 9, and 14 [80]. BMMSCs exhibit the ability
to differentiate into cardiomyocytes, smooth muscle cells,
and endothelium in a swine model of chronic ischemic
cardiomyopathy [81]. They have been shown to prolong
survival compared with controls when hearts of Wistar rats
were transplanted to Fisher 344 rats with intravenous MSC
infusion [82]. Intravenous fusion of MSCs is the easiest and
most practical method for delivery, though the MSCs must
travel through the pulmonary circulation, where entrapment
of cells is a concern [83]. Intracoronary infusion of stem cells
is delivered with a standard over-the-wire balloon angioplasty
catheter placed into the target coronary artery [84]. Injected
BMMSCs improve cardiac function and reduce scar size in
acute MI [85, 86]. Early-phase clinical trial data demonstrate
that MSC therapy for post-MI is safe and has favorable effects
on cardiac structure and function [87, 88].

5.5. BMMSCs and Liver. FGF-4 is one of the most important
members of the fibroblast growth factor family; it can initiate
the proliferation of mesodermal and endodermal cells and
improve the development of fetal liver [89]. HGF is essential
for the development of several epithelial organs and has
been one of the most well-characterized cytokines for the
stimulation of DNA synthesis in primary hepatocyte cultures
and for liver development [90]. Oncostatin M is a member of
the interleukin-6 family produced by hematopoietic cells and
induces the differentiation of fetal hepatic cells, conferring
various metabolic activities of adult liver [91]. These three fac-
tors participate in different developmental stages of the liver.
FGF4, HGE and oncostatin M have been shown to be key
cytokines for hepatic differentiation from mouse BMMSCs
[92]. Transplantation of BMMSCs alleviates GalN-induced
acute liver injury in rats and stimulates the recovery systems,
as evidenced by an earlier surge of cellular proliferation
and differentiation into functional hepatocytes. IL-6 exerts
hepatoprotective and mitogenic effects by stimulating the
induction of acute-phase proteins as well as by suppressing
apoptosis. Transplantation of BMMSCs could ameliorate
acute liver injury. It promotes cell proliferation and organ
repair, and the activation of the IL-6/gp130-mediated STAT3
signaling pathway via soluble IL-6 receptor is crucial in
hepatic differentiation of BMMSCs [93].

Liver fibrosis is the excessive accumulation of extra-
cellular matrix proteins, including collagen, that occurs in
most types of chronic liver disease. Advanced liver fibrosis
results in cirrhosis, liver failure, and portal hypertension,
and often requires liver transplantation [94]. Although liver
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FIGURE 1: Main actions of BMMSCs.

transplantation is by far the most effective treatment for liver
cirrhosis, extensive clinical application of the technique is
limited by the lack of donor organ availability [95]. Cell-based
hepatocyte transplantation, a potential interventional proce-
dure, provides an effective strategy and holds great promise
for the treatment of impaired livers. BMMSCs can protect
against experimental liver fibrosis through promotion of IL-
10 expression in CCl4- or dimethylnitrosamine-induced rats
(63, 96].

5.6. BMMSCs and Brain. The development of effective treat-
ments for human brain and spinal cord injury remains
a serious challenge. In this regard, the transplantation of
stem cells may help repair injured nerve tissue through
the replacement of damaged cells, neuroprotection, or the
creation of an environment conductive to regeneration by
endogenous cells [97]. BMMSCs have been shown to promote
cell proliferation and neurotrophic function of Schwann
cells in vitro and in vivo [98]. Transplantation of BMMSCs
can significantly reduce the behavioral abnormalities of
these animals during the six weeks after engraftment [64].
Intravenously transplanted MSCs are capable of improving
functional recovery and restoring neurological deficits in
experimental intracerebral hemorrhage. The mechanisms
are associated with enhanced survival and differentiation
of neural cells and increased expression of antiapoptotic
proteins and atrophic factors [99]. Human BMMSCs can
improve neurological functional recovery in mice with
experimental autoimmune encephalitis, possibly via a reduc-
tion of inflammatory infiltrates and areas of demyelina-
tion, stimulation of oligodendrogenesis, and by elevating
brain-derived neurotrophic factor (BDNF) expression [41,
100]. Human BMMSCs transfected with the BDNF gene
also showed improved functional recovery and reduced
infarct size through a reduction in apoptosis [101]. Patients
with Parkinson’s disease transplanted with BMMSCs in

the early stages of the disease (less than 5 years) showed
greater improvement than in the later stages (11-15 years)
[102].

5.7 BMMSCs and Intestine. Inflammatory bowel disease
comprises a spectrum of chronic and relapsing diseases,
including Crohn’s disease (CD) and ulcerative colitis [103].
CD is characterized by a background of mucosal T-cell
dysfunction, inflammatory cell infiltration, and abnormal
cytokine production leading to uncontrolled and persis-
tent intestinal transmural inflammation. Intraperitoneally
injected cryopreserved BMMSCs home to and engraft into
the inflamed colon and ameliorate trinitrobenzene sulfonic
acid-induced colitis in rats [104]. Similarly, the injection
of adipose-derived MSCs facilitated colonic mucosal repair
and reduced the infiltration of inflammatory cells in the
experimental colitis model [105].

Small intestinal permeability and villi injuries were sig-
nificantly reduced in an MSC-administered group compared
with the control group. MSC administration accelerated the
recovery of the intestinal barrier dysfunction in a rat model
of ischemia/reperfusion injury [106].

5.8. BMMSCs and Bone. Bone is regarded as an organ, and
small bone damage can repair spontaneously without
intervention. However, bone transplantation and surgery are
required when there is extensive bone damage. As adult stem
cells, BMMSC:s possess a number of characteristics that make
them appropriate for use in promoting bone regeneration
[107]. BMMSCs may differentiate into tissue cells in order
to restore lost morphology as well as function and to secrete
a wide spectrum of bioactive factors that help to create
a repair environment through their antiapoptotic effects,
immunoregulatory function, and the stimulation of endothe-
lial progenitor cell proliferation [108]. One report shows that
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BMMSCs stimulate growth with osteogenesis imperfecta
when children received allogeneic BMMSCs [109].

6. Conclusion

Figurel summarizes the main actions of BMMSCs. The
original use of BMMSCs was to accelerate hematopoiesis,
since they have the potential to differentiate into various
cells, and to secrete cytokines and growth factors. BMMSCs
have immunomodulatory properties through paracrine and
endocrine mechanisms to repair damaged tissue. Homing
and immunomodulation are important aspects of MSC func-
tioning and their clinical effects. It has been proposed that
the anti-inflammatory and antiapoptotic effects of MSCs may
promote tissue regeneration. The use of allogenic nonim-
munogenic BMMSCs would be a more acceptable strategy
clinically. The potential role of BMMSCs to promote engraft-
ment of organs and prevent rejection may be multifactorial
and might be dependent on secretion of soluble growth
factors, increasing angiogenesis, suppressing alloreactive T
cells, and interacting with several arms of the immune system.
However, the long-term safety of transplanted BMMSCs
for organ repair needs to be proven prior to their clinical
application.
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