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Abstract
Recent neuroimaging work has suggested that aggressive behaviour (AB) is associated

with structural and functional brain abnormalities in processes subserving emotion process-

ing and regulation. However, most neuroimaging studies on AB to date only contain rela-

tively small sample sizes. To objectively investigate the consistency of previous structural

and functional research in adolescent AB, we performed a systematic literature review and

two coordinate-based activation likelihood estimation meta-analyses on eight VBM and

nine functional neuroimaging studies in a total of 783 participants (408 [224AB/184 controls]

and 375 [215 AB/160 controls] for structural and functional analysis respectively). We found

19 structural and eight functional foci of significant alterations in adolescents with AB,

mainly located within the emotion processing and regulation network (including orbitofron-

tal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed

that functional and structural alterations co-localize in right dorsomedial prefrontal cortex

and left insula. Our results are in line with meta-analytic work as well as structural, functional

and connectivity findings to date, all of which make a strong point for the involvement of a

network of brain areas responsible for emotion processing and regulation, which is dis-

rupted in AB. Increased knowledge about the behavioural and neuronal underpinnings of

AB is crucial for the development of novel and implementation of existing treatment strate-

gies. Longitudinal research studies will have to show whether the observed alterations are a

result or primary cause of the phenotypic characteristics in AB.

Introduction
Aggressive behaviour (AB), as observed in social disorders such as DBD (including conduct
(CD) and oppositional defiant disorder (ODD)), is characterized by a repeated pattern of anti-
social behaviour and severe aggression, where the basic rights of others, major age-appropriate
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norms or societal rules are violated [1]. Such problems can cause significant impairment in
social, academic, or occupational functioning [2,3]. Clinical and subclinical forms of AB are
observed in up to 14% of all girls and 16% of all boys [4]. The negative impact of aggression-
related problems reaches beyond a patient’s family, ultimately affecting society as a whole (e.g.
school-dropouts, delinquency, teen-pregnancies, substance abuse or difficulties integrating
into work life [3,5,6]). Early conduct problems are key precursors of persistent AB and thus
also predictive for ODD, CD and antisocial personality disorder in adulthood [7]. Neurodeve-
lopmental theories [8,9,10] and longitudinal studies [11] are in line with these behavioural
observations, suggesting that the presence of early brain alterations in individuals with aggres-
sive behaviour may heighten the risk for long-lasting social impairments [12,13]. In the current
paper we particularly focus on adolescents with aggressive behaviour (AB), hereby summariz-
ing neuroimaging research in youths with either conduct problems, CD or ODD.

In recent years structural (e.g voxel-based/surface-based) and functional (e.g. fMRI/PET)
neuroimaging techniques have grown into powerful tools to investigate the neuronal basis of
the human brain in typically developing individuals as well as patients. It has been demon-
strated that both, brain structure and function, may be modified by experience [14,15]. Activa-
tion-dependant structural plasticity can even occur after as little as seven days of training
[16,17] and it is suggested to play a key role in human adaptation to environmental changes
and disease. Even though neuroimaging evidence points toward a neuronal basis of AB [13,18],
the overall number of research studies within this population remains relatively scarce. Fur-
thermore, it has to be noted that AB characteristics as seen in CD and/or ODD are considered
heterogeneous in respect to their pathologies. CD and ODD are frequently associated with
comorbidities such as attention-deficit hyperactivity disorder (ADHD) or anxiety [19]). These
comorbid disorders can differ in their pathophysiological mechanisms, some of them seem
exclusive on a biological level making it possible that different developmental trajectories with
varying neurobiological bases lead to the clinical manifestations of AB [20]. The vagueness of
the group definition within many of the current studies on AB is thus bound to impact general
conclusions drawn from it.

Even though the total number of studies is still limited, neuroanatomical and functional var-
iations in youths with AB have been reported with increased frequency since the advent of
modern neuroimaging. In particular, brain structure in AB has been investigated using voxel-
based morphometry (VBM), diffusion tensor imaging (DTI) or surfaced-based morphometry.
VBM studies for example have revealed differences in gray and white matter volume in brain
regions including the amygdala, insula, orbitofrontal and dorsomedial prefrontal cortex (e.g.
[21,22,23,24]) when comparing adolescents with AB and typically developing controls. Simi-
larly, studies using surface-based morphometry [25,26] or DTI [27,28,29,30,31,32,33] provide
evidence for structural alterations and/or impaired connectivity within brain regions involved
in emotion processing, reward and empathy. Functional neuroimaging studies corroborate the
structural neuroimaging literature. Cognitive paradigms employed in the investigation of AB
have focused on disturbances in the emotion processing and regulation network of the brain.
These tasks particularly target emotion processing/regulation [34,35,36,37,38,39,40,41,42,43],
empathy [41,44,45], theory of mind [46], passive avoidance [47], decision making [48,49] or
executive functioning [40,42,50]. Overall, studies point towards aberrant brain function in AB
in key areas of social cognition and emotion, including prefrontal (orbitofrontal, dorsolateral
and medial prefrontal cortex), limbic (e.g. amygdala, anterior insula, cingulate cortex) and tem-
poral cortices.

Despite increasing evidence about the uniformity of atypical brain structure and function in
AB, it has yet to be objectively determined which brain regions are commonly affected. Func-
tional and structural neuroimaging studies are crucial for the understanding of the phenotype
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and aetiology of AB. However, most results and interpretations are based on individual neuro-
imaging studies and present various limitations (e.g. small sample sizes, low reliability, depen-
dency on task chosen [51,52,53]). Furthermore, very few imaging studies have yet investigated
brain structure and function in the same population. Activation likelihood estimation (ALE)
meta-analyses allow the identification of consistent findings of brain activation and structure
across multiple data sets. Hereby, ALE quantitatively investigates communalities between
reported foci based on modelling them as probability distributions centered around the corre-
sponding coordinates. The resulting probability maps mirror the likelihood of morphological
change and/or activation on a voxel-wise level across an entire set of studies [51]. ALE has
been successfully applied in meta-analyses of various neuropsychiatric disorders to date
[54,55,56,57,58] and provides a promising tool for a more unified investigation of pathophysio-
logic changes in disease.

Therefore, the present paper intends to close this gap in research and aims to aggregate all
structural and functional neuroimaging studies conducted in adolescent AB to date. In a first
step, we planned to conduct a systematic literature review of neuroimaging findings in adoles-
cents with AB. Secondly two separate meta-analyses looking at gray matter volume reductions
as well as hypoactivations during emotion processing tasks in AB were carried out. Finally, we
decided to run a conjunction analysis to identify potential overlaps in deviant brain structure
and function in adolescents with AB.

Method

Participants
We decided to focus our analysis on adolescents with aggressive behaviour (AB) in general as
opposed to a specific clinical diagnosis. By including both community samples and clinical
samples in the present meta-analyses we adhere to the heterogeneity in juvenile aggression.
This heterogeneity is further reflected by different behavioural symptoms of aggression and
antisocial tendencies, such as oppositional behaviour, impulsive hot-tempered quarrels or pre-
meditated violent acts, the presence of callous unemotional/psychopathic traits or co-morbid
conditions in CD and ODD patients. All studies were conducted during childhood and/or ado-
lescence and share the communality of aggression and antisocial tendencies within the popula-
tions studied. Thus, AB as defined here may be considered an umbrella term for children and
adolescents with a range of subclinical and clinically relevant symptoms of pathological
aggression.

Study Selection
For the structural and functional neuroimaging meta-analyses we used PubMed and Google
Scholar to systematically search for neuroimaging literature in AB. Literature searches were con-
ducted and reviewed by several research team members (NMR,WMM, LVF, ET) and adhered to
the Preferred Reporting Items for Systematic Reviews andMeta-Analyses (PRISMA; S1 Table)
guidelines and the revised Quality Of Reporting Of Meta-analyses (QUOROM) statement [59].
Our main search (see Fig 1) conducted through PubMed included the following key words: “con-
duct disorder”, “conduct problems”, “disruptive behaviour disorder”, “oppositional defiant disor-
der” and “aggression”, each in combination with methodologically relevant terms including
“VBM”, “fMRI” and/or “neuroimaging”. Moreover, a number of review articles published on
conduct disorder, antisocial behaviour and aggression in adolescents were considered (e.g.
[11,60,61,62,63,64,65]). Finally, additional publications were explored by searching the reference
list of the articles obtained to assure integration of all data available. Studies were included in our
meta-analyses if the following criteria were given: (I) included at least one clinical group with
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described aggressive behaviour, (II) in combination with a healthy control sample, (III) con-
ducted during adolescence, (IV) reported whole brain gray matter volume alterations or whole
brain functional neuroimaging data, (V) results are described using a standard reference space
(Talairach or MNI) and (VI) the same threshold was used throughout the whole brain analysis.
All structural studies included employed a standard VBM analysis protocol. In both meta-analy-
sis of structural and functional brain alterations in adolescents with AB versus controls, no stud-
ies providing results based on a priori region-of-interest analysis only were included (since they
violate the assumption, under the null hypothesis, that the likelihood of locating activated foci is
equal at every voxel). Similarly, no animal studies or case reports were included in any meta-anal-
ysis and only studies from peer-reviewed journals that are written in English were considered.
Data is current up to July 2015.

Fig 1. Systematic literature research. Literature research according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the revised Quality Of Reporting Of Meta-
analyses (QUOROM) statement (59) resulting in 17 neuroimaging studies included in the current meta-
analyses.

doi:10.1371/journal.pone.0136553.g001
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Of the 1021 studies identified through our systematic review (see Fig 1), we screened 930
(after removal of duplicates) and consequently assessed the full texts of 173 articles. 156 studies
had to be excluded from the functional or structural meta-analysis in adolescents with AB,
because they did not meet the criteria listed above (for detailed exclusion reasons, see Fig 1).
Looking more closely at our review on structural research studies in AB revealed that only five
studies reported on gray matter volume increases in AB (four reported de- and increases, one
study only reported increases). Therefore we did not conduct a separate meta-analysis for gray
matter volume increases in AB. Consequently, eight studies were included in our meta-analysis
about gray matter volume reductions, together reporting data from 408 research participants
(224 AB, 184 typically developing controls = TD), and 50 foci of gray matter volume decreases
in youths with AB (Table 1 [21,22,23,66,67,68,69,70]).

Our systematic literature review of functional neuroimaging studies in youths with AB iden-
tified experiments targeting emotion processing [34,35,36,37,38,39,40,41,42,43], empathy
[41,44,45], theory of mind [46], passive avoidance [47], decision making [48,49] or executive
functioning [40,42,50]. We decided to restrict our functional meta-analysis to tasks only
including emotionally loaded and visually presented stimuli (e.g. tasks of emotion processing
and empathy). In case of sample overlap, the study with the highest subject number meeting all

Table 1. Characteristics of the studies in adolescents with AB included in the current structural meta-analysis.

# First author Year Method Diagnosis [N] Sex [m/f] Average age and [range] in years

1 Huebner 2008 VBM CD, early-onset [23] [23/0] CD, early-onset: 14.5

TD [23] [23/0] TD: 14.2

[12–17]

2 De Brito 2009 VBM CP/CU+ [23] CP/CU+: 11.5

TD [25] TD: 11.8

[10–13]

3 Dalwani 2011 VBM CP+SUD [25] [25/0] CP+SUD: 16.6

TD [19] [19/0] TD: 16.6

[14–18]

4 Fahim 2011 VBM DBD [22; 11CD/11ODD] [22/0] DBD: 8.4

TD [25] [25/0] TD: 8.4

5 Fairchild 2011 VBM CD, early-onset [36] [36/0] CD, early-onset: 17.7

CD, late-onset [27] [27/0] CD, late-onset: 17.9

TD [27] [27/0] TD: 18.5

[16–21]

6 Stevens 2012 VBM CD [24] [16/8] CD: 16.0

TD [24] [16/8] TD: 16.0

[12–18]

7 Fairchild 2013 VBM CD [22] [0/22] CD: 17.6

TD [20] [0/20] TD: 17.2

[14–20]

8 Dalwani 2015 VBM CP [22] [0/22] CP: 16.7

TD [21] [0/21] TD: 16.1

[14–18]

CD = Conduct disorder. DBD = Disruptive behaviour disorders. CU+ = with high callous-unemotional traits. SUD = Substance use disorder. TD = Typically

developing participants. VBM = Voxel-based morphometry.

doi:10.1371/journal.pone.0136553.t001
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other criteria listed above was selected. In case of comparisons between AB and TD in more
than one contrast, only foci from the contrast putting the highest demand on emotion process-
ing, were included. The majority of studies indicated hypoactivations in AB. Only six studies
that fulfilled all other criteria listed above reported hyperactivations in AB compared to TD.
Therefore, we did not conduct a separate meta-analysis on functional overactivations in AB.
Consequently nine studies suggesting hypoactivations in adolescents with AB compared to TD
were selected (Table 2; [34,39,40,41,43,44,71,72,73]). Together the selected studies report data
from 375 research participants (215 AB, 160 TD) and describe 58 foci of hypoactivation in AB
compared to TD.

ALEMeta-Analysis Procedure
We conducted two separate meta-analyses on gray matter volume alterations and functional
hypoactivations in adolescents with AB. Data analysis was carried out using the revised version

Table 2. Characteristics of the studies in adolescents with AB included in current functional meta-analysis.

# First author Year Stimuli Diagnosis [N] Sex [m/f] Average age and [range] in years

1 Sterzer 2005 Neutral or negative CD [13] [13/0] CD: 12.9

pictures (IAPS) TD [14] [14/0] TD: 12.7

[9–15]

2 Passamonti 2010 Pictures of angry, sad CD, early-onset [27] [27/0] CD, early-onset: 17.7

and neutral faces CD, late-onset [25] [25/0] CD, late-onset: 17.1

TD [23] [23/0] TD: 17.8

[16–21]

3 Marsh 2011 Emotional words CD/ODD+PT [14] [8/6] CD/ODD+PT: 14.4

(categorization task) TD [14] [11/3] TD: 13.5

4 White 2012 Pictures of fearful and CD/ODD+PT [15] [12/3] CD/ODD+PT: 15.7

neutral faces TD [17] [9/8] TD: 14.5

[10–17]

5 Lockwood 2013 Pictures of others in CD [37] [37/0] CD: 14.05

pain or no pain TD [18] [18/0] TD: 13.68

[10–16]

6 Marsh 2013 Pictures of others in CD/ODD+PT [14] [8/6] CD/ODD+PT: 15.4

pain or no pain. TD [21] [15/6] TD: 14.3

[10–17]

7 Fairchild 2014 Pictures of emotional CD [20] [0/20] CD: 17.0

or neutral faces TD [20] [0/20] TD: 17.6

8 O'Nions 2014 Cartoons (affective CP/CU+ [16] [16/0] CP/CU+: 14.2

picture series) TD [16] [16/0] TD: 13.5

[10–16]

9 Sebastian 2014 Pictures of fearful and CP/CU+ [17] [17/0] CP/CU+: 14.0

calm facial expressions CP/CU- [17] [17/0] CP/CU-: 14.5

TD [17] [17/0] TD: 13.5

[10–16]

CD = Conduct disorder. CP = Conduct problems. ODD = Oppositional defiant disorder. PT = with psychopathic traits. CU+ = with high callous-

unemotional traits. CU- = with low callous-unemotional traits. TD = Typically developing participants.

doi:10.1371/journal.pone.0136553.t002
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of the ALE approach for coordinate-based meta-analysis of neuroimaging data (GingerALE
software, version 2.3; available from http://brainmap.org/ale/ [51,74,75,76]). In short, this new
approach implements a random-effects model, a quantitative uncertainty model to determine
the FWHM and an exclusive gray matter mask (for further details, see also [51,53,74,75,76]).
Most importantly, instead of testing for an above-chance clustering between foci, the revised
ALE algorithm assesses above-chance clustering between experiments. The spatial relationship
between foci in a given experiment is now assumed to be fixed and ALE results are assessed
against a nulldistribution of random spatial association between experiments. Prior to running
any analyses, coordinates reported in Talairach space were transformed to MNI space using
the tal2icbm algorithm [77,78]. The here employed revised ALE approach identifies areas of
convergence of activation across various experiments, minimizing the within-groups effects
(approach by Turkeltaub and colleagues [75]). Each focus is represented as a centre for 3D
Gaussian probability distributions, where the standard deviation depends on group size (cap-
turing spatial uncertainty) rather than single time points. First, the probabilities of all activation
foci in a given experiment are combined for each voxel, which is represented in modelled acti-
vation maps (fMRI) or modelled anatomical maps (VBM). Secondly, the ALE method com-
bines all modelled maps (fMRI and VBM separately) on a voxel-by-voxel basis to form an ALE
image containing all unthresholded voxel ALE values. In the last step, this ALE image is tested
against the null hypothesis under the assumption that all activated voxels are homogeneously
distributed in the brain, independent of the experiments. This null-hypothesis model (a distri-
bution map made by multiple permutations of random voxel activation) was created using a
random-effects statistical method and tested against the original ALE image according to the
selected significance threshold. Therefore, the nulldistribution is constructed reflecting a ran-
dom spatial association between different studies. Comparing the “true” ALE score to this dis-
tribution allows a focused inference on convergence between studies while preserving the
relationship between individual foci within each study. Critically, this change from fixed- (foci-
based) to random-effects (testing between study effects) inference in ALE analysis allows gen-
eralisation of the results to the entire population of studies from which the analysed ones were
drawn. This more conservative approach with an increased specificity [51,76] does also accom-
modate the idea of convergence across heterogeneous studies. We used a statistical threshold of
p<0.05 False Discovery Rate (FDR) corrected for multiple comparisons and a minimum clus-
ter size of 500mm3. ALE maps are overlaid onto a standard brain in MNI space (Colin27 avail-
able at http://www.brainmap.org/ale/) using the Multi-image Analysis GUI (Mango available
at http://ric.uthscsa.edu/mango/mango.html) and clusters were anatomically labelled by cross-
referencing the Talairach Daemon [79,80] and aal [81]. In order to further investigate possible
overlaps between the structural (VBM) and functional (fMRI) meta-analysis in adolescent AB,
a formal conjunction analysis was performed by multiplying binarized versions of the individu-
ally thresholded ALE maps.

Results
Our meta-analysis of structural neuroimaging studies in adolescents with AB revealed 19 clus-
ters of significant convergence between the studies (see Table 3; Fig 2). The largest clusters
were found in the right inferior frontal lobe (inferior frontal/precentral gyrus), right precuneus
and left-hemispheric insula. Further smaller clusters were found bilaterally in the frontal (e.g.
dorsolateral and medial frontal gyrus), parietal (e.g. precuneus) and temporal lobe (e.g. mid-
dle/superior temporal gyrus) as well as the cerebellum (e.g. culmen). Our meta-analysis of func-
tional hypoactivation in adolescents with AB revealed 8 clusters of significant convergence
between the studies with the largest clusters in the right middle/superior frontal gyrus, left
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Table 3. Results of the structural and functional ALE-meta analyses and conjunction analysis of structure and functional alterations in adoles-
cents with AB.

Region BA H Volume Local
Maxima

Structural Meta-Analysis (TD>AB)

1 inferior frontal/precentral gyrus, 13, R 1952 54 16 10

insula 44, 45 62 20 6

56 26 16

2 subcallosal gyrus, putamen, 34 R 1672 26 4 -16

lateral globus pallidus, amygdala 22 4 -8

14 10 -12

3 inferior frontal gyrus 45, 47 R 1304 52 26 -10

4 insula 13 L 1144 -38 8 8

-38 4 -2

5 middle/superior frontal gyrus 9,8 R 1112 34 48 30

40 38 30

6 middle/inferior frontal gyrus 10,46 L 1040 -36 48 -2

-46 48 2

7 putamen, claustrum R 688 34 2 -2

8 thalamus R 560 20 -30 8

9 subcallosal/middle frontal gyrus, cingulate 25 R 528 10 14 -22

10 cingulate/middle frontal gyrus 32 L 528 -10 24 42

11 claustrum L 520 -24 20 8

12 claustrum, insula R 520 32 14 10

13 subcallosal/parahippocampal gyrus, amygdala 34 L 512 -30 4 -18

14 culmen, declive R 512 4 -58 -16

15 caudate R 512 10 14 2

16 thalamus L 512 -8 -16 15

17 inferior frontal gyrus 47 R 504 46 26 -30

18 middle temporal gyrus 37 R 504 54 -68 12

19 superior frontal gyrus 9 R 504 18 56 20

All x, y, z-coordinates represent local maxima in MNI
space

AB=Aggressive Behaviour

Volume=Volume (mm3) TD=Typically developing
controls

H=Hemisphere BA= Brodmann areas

R=Right; L=Left

Region BA H Volume Local
Maxima

Functional Meta-Analysis (TD>AB)

1 middle/superior frontal gyrus, 8, 9, R/
L

3728 14 44 30

anterior cingulate gyrus 10, 32 8 36 28

22 48 22

32 50 14

0 36 24

2 thalamus, lentiform nucleus, L 1944 -6 -12 -4

putamen, medial globus pallidus -26 -8 -12

amygdala -16 -8 -4

3 claustrum, insula 13 L 1896 -28 20 0

-38 20 12

(Continued)
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thalamus and basal ganglia, as well as left-hemispheric insula (see Table 3, Fig 2). Beyond oth-
ers, further clusters included the right anterior cingulate, left middle temporal gyrus and right
amygdala.

A formal conjunction analysis using the thresholded ALE maps from the structural and
functional meta-analysis discovered three areas of regional overlap (Table 3, Fig 3). The biggest

Table 3. (Continued)

4 middle frontal gyrus, 11, 24 R 1328 12 30 -20

anterior cingulate 4 30 -14

5 inferior/middle temporal gyrus 21 L 1288 -48 -8 -26

6 amygdala, parahippocampal 28 R 1224 30 -4 -28

gyrus 20 -2 -30

7 claustrum, putamen, insula 13 R 776 28 20 0

30 24 -2

8 superior, middle frontal gyrus 9 R 552 14 60 16

Conjunction: Structural (TD>AB) ∩ Functional (TD>AB)

1 superior frontal gyrus (dmPFC) 9 R 128 16 58 18

2 claustrum, insula L 8 -26 20 4

3 claustrum, insula L 8 -28 18 6

All x, y, z-coordinates represent local maxima in MNI space. AB = Aggressive Behaviour. Volume = Volume (mm3). TD = Typically developing controls.

H = Hemisphere. BA = Brodmann areas. R = Right; L = Left.

doi:10.1371/journal.pone.0136553.t003

Fig 2. Neuronal alterations in adolescents with aggressive behaviour (TD>AB): Results from an ALE
meta-analysis. 2-D axial slices displaying the thresholded and binarized ALEmaps of significant overlap
(P<0.05, FDR-corrected) in studies of structural (green) and functional (red) alterations in adolescent AB
(TD>AB) as well as a conjunction analysis (blue) overlaid on the Colin T1-template in MNI space. Z-slices
depicting the results range from z = 21 to 120 and are displayed in neurological view using the Multi-image
Analysis GUI (Mango available at http://ric.uthscsa.edu/mango/mango.html).

doi:10.1371/journal.pone.0136553.g002
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area of functional and structural overlap (128mm3) in adolescents with AB was identified
within the right dmPFC. Additionally, the analysis exposed two smaller, close-lying clusters of
convergence with a peak in the left claustrum, extending into the insular cortex.

Discussion
To our knowledge, the current work provides the first quantitative summary of functional
hypoactivations and gray matter volume reductions in adolescents with AB by summarizing
findings of eight structural and nine functional neuroimaging studies in a total of 783 partici-
pants (408 [224 AB/184 TD] and 375 [215 AB/160 TD] for structural and functional analysis
respectively). Our findings indicate 19 structural and eight functional foci of significant alter-
ations in AB, mainly located within the emotion processing and regulation network of the
human brain (including orbitofrontal, dorsolateral/medial prefrontal cortex and limbic brain
regions; for reviews on emotion processing and regulation see also [82,83,84]). Conjunction
analysis reveal that functional and structural alterations in AB overlap in three areas, with the
largest cluster centered in the right dmPFC and two smaller clusters that encompass the left
insula.

In the following sections we will review structural and functional neuroanatomical evidence
derived from healthy participants as well as those with aggressive behaviour (e.g. conduct prob-
lems, CD, ODD) for the key areas implicated here (orbitofrontal and dorsomedial prefrontal
cortex, insula, cingulate cortex, amygdala).

Orbitofrontal and Dorsomedial Prefrontal Cortex
Our findings identify prefrontal brain regions including orbitofrontal and dorsomedial pre-
frontal cortex as main locations of aberrant brain function and structure in youths with AB.
Furthermore, an overlap in the foci representing structural and functional changes that co-
localize in AB is centered in the right dmPFC. While the orbitofrontal as well as the

Fig 3. Structural and functional neuroimaging findings in youths with AB co-localize in right
dorsomedial prefrontal cortex (dmPFC) and left insular cortex. 2-D slices displaying the thresholded and
binarized ALE maps of significant overlap (P<0.05, FDR-corrected) in studies of structural (green) and
functional (red) alterations in adolescents with AB (TD>AB) as well as a conjunction analysis (blue) overlaid
on the Colin T1-template in MNI space. The upper-row including left cut-out as well as right surface-model
highlight the right dmPFC where structural and functional alterations co-localize. The lower-row including left
cut-out as well as right surface-model illustrate left insular cortex/claustrum where structural and functional
alterations overlap.

doi:10.1371/journal.pone.0136553.g003
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dorsomedial prefrontal cortex can be differentiated based on quantitative as well as qualitative
markers [85], both have equally been suggested in emotion processing and working memory/
inhibitory control [86]. The medial prefrontal cortex in particular has been implicated in emo-
tional self-regulation [87], general self-referential activities [88] and emotion-related decision
making [89]. Meta-analytic evidence suggests a more generic role of the dmPFC in emotion
processing (e.g. appraisal, evaluation, experience, response), non-specific to a particular emo-
tion [90]. In addition, lesion, neurophysiological and neuroimaging evidence have linked the
orbitofrontal and dorsomedial prefrontal cortex to stimulus-reinforcement association learning
[91]. The ability to rapidly decode and readjust values of different input signals is likely to be
crucial to emotional behaviour and may ultimately influence emotional learning. It has been
suggested that the observed deficits in decision making may directly result from aberrant emo-
tion processing as for example observed after frontal brain damage [91]. Research has for
instance demonstrated that aberrant self-monitoring abilities may be responsible to preclude
the generation of social emotions typically associated with the resolution of social mistakes
[92]. Finally, a whole line of evidence (e.g. [18,93,94]) has linked the prefrontal cortex to
aggression. In its extreme, antisocial personality disorder and psychopathy are exemplary for
individuals displaying increased aggressive behaviour and studies of both have linked structural
[95,96] and functional [97,98] changes to the prefrontal cortex.

Insula
Both our functional and structural AB meta-analysis have found significant clusters of hypoac-
tivations or altered brain structure within the insula. In addition to that, two smaller clusters
reached significance in the left insular cortex during our conjunction analysis, mapping struc-
tural and functional alterations in youths with AB. The insula or insular cortex is part of the
cerebral cortex forming the base of the lateral sulcus (or sylvian fissure [99]). From a neurode-
velopmental perspective it is the first region of the cortex to develop and differentiate around 6
weeks of fetal life [100]. The insula is bi-directionally connected to various brain regions,
including the orbitofrontal cortex, anterior cingulate, supplementary motor areas, parietal and
temporal cortices, but also to subcortical structures such as the amygdala, basal ganglia and
thalamus [99,101]. Connectivity to and from the insula is divided, in that the anterior part of
the insula has greater connectivity with the frontal lobe, while posterior parts are more strongly
connected to the parietal lobe. Neuroimaging evidence has suggested that the insula may play a
key role in the awareness of bodily sensations and affective feelings [84,102]. Meta-analytic
data supports this idea, and suggests that the insula is a key player in the evaluation, experience
or expression of internally generated emotions [90]. Particularly the left insula, along with
frontal and temporal brain regions, is associated with anger [84]. Furthermore, an emotion-
specific role of the insula for disgust [103] has been discussed. However, the majority of neuro-
imaging findings and meta-analytic reviews to date support a generic role of the insula in emo-
tional behaviour (e.g. [84,104]).

Atypical neuronal functioning of the insula (e.g. during tasks of emotion processing and
empathy) are linked to AB (e.g. [41,97]). However, so far, both hyper- [45,71] and hypoactiva-
tions [39,41,105] are observed during tasks of empathy, face or pain processing. In psychopa-
thy particularly fear conditioning has been linked to aberrant insula activation [106].
Functional atypicalities within the insula are further observed in borderline personality disor-
der [107], schizophrenia [108], depression [109] or anorexia nervosa [110]. Gray matter vol-
ume alterations within the insula are associated with various psychiatric conditions beyond
antisocial populations (e.g. [24,96]), including bipolar disorder [111], schizophrenia [56], drug
dependence [112], major depression [113] or anorexia nervosa [114].Therefore, the neuronal
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and structural alterations within the insula may reflect a characteristic of psychiatric conditions
per se [99].

Cingulate Cortex
The cingulate cortex showed functional as well as structural foci of significance in each of our
two meta-analyses individually. Cytoarchitectonically, the cingulate gyrus may be divided into
four functionally independent but interconnected subregions, including the anterior cingulate
cortex (emotion), the midcingulate cortex (response selection), the posterior cingulate cortex
(personal orientation), and the retrosplenial cortex (memory formation and access) [115].
Overall the cingulate cortex has been implicated in the regulation of cognitive as well as emo-
tional processes [90,115] (e.g. processing of acute pain [116] or affective stimulus material
[115]), most likely through an interaction with the prefrontal cortex, anterior insula, premotor
area, the striatum and cerebellum [115,117]. We here particularly identified regions within the
bilateral anterior cingulate as foci of interest through both our functional and structural meta-
analysis. While dorsal aspects of the anterior cingulate have been linked to tasks of executive
functioning [118,119], the anterior part of the cingulate is part of the emotion processing net-
work [119,120]. It is further suggested that the cingulate gyrus may serve as a transition and/or
interaction zone between affective and cognitive processing [90].

Studies in AB and antisocial personality disorder have found both gray and white matter
increases as well as decreases within the cingulate (e.g. [23,68,121,122]); the developmental
pathway within this region thus still needs further assessment. Hypoactivation in AB within
the cingulate has been reported during tasks of emotion processing [34,35], empathy [41,67],
response inhibition [85] and sustained attention [105]. Similarly, individuals with antisocial
personality disorder or psychopathic tendencies show reduced activation within the cingulate
during tasks of emotion processing and conflict resolution, as for example observed in moral
decision making [123,124], deception [125], frustration [126] and emotion processing [127].

Amygdala
Both our functional and structural meta-analyses have identified the right and left-hemispheric
amygdala as significant foci of interest, even though this area has not reached significance in
our conjunction analysis. The amygdala is crucial for the perception and encoding of emotion-
ally loaded stimulus material and has been suggested as the brain locus of fear (e.g. detection,
generation, maintenance of fear and coordination of response in the danger of such) [84,128].
To summarize the existing fMRI evidence, neuronal activation within the amygdala has been
observed in healthy individuals in tasks that include arousing stimulus material (e.g. emotion-
ally loaded images [129,130], facial expressions [131,132,133] or words [134,135]), during
tasks of empathy [136,137], moral reasoning [138] or when processing potential threats [139]).
A range of tasks investigating amygdala responses to different evocative stimulus material led
to the suggestion that increased activation within the amygdala may particularly mirror affec-
tive processing under acute danger or threat, rather than fear per se [90]. Furthermore, neuro-
nal activation is thought to mirror dispositional affective style [90,140], whereby increased
amygdala activity correlates with affective reactivity to negative stimuli. Interestingly, amygdala
activation in response to emotionally loaded stimuli may be attenuated by task demand
[120,141,142] or comorbid anxiety and depression symptoms [34]. For example, concurrent
goal-directed processing can disrupt amygdala activation that is evoked by emotional images
[142]. This is in line with meta-analytic evidence indicating that studies employing a cognitive
task during affect processing are less likely to demonstrate amygdala activation [90].
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Because of its role in aversive conditioning, instrumental learning and fear processing, the
amygdala is often chosen as a region of interest in investigations targeting AB, antisocial per-
sonality disorder or psychopathy [18]. Amygdala dysfunction is suggested to be one of the core
features in the symptomatology of antisocial disorders (e.g. [18,34,43,143]). Structurally, the
amygdala is altered in AB similarly as in antisocial personality disorders and psychopathy (e.g.
[24,144,145]). Finally, it is to note that the amygdala is strongly interconnected with the orbito-
frontal brain regions and alterations in the connectivity between these two centers have been
reported in AB and psychopathy (e.g. connectivity between key regions of the emotion process-
ing and regulation network (e.g. [146,147], for a further discussion see following section).

Structure-Function Relationship and Connectivity Findings
While neuroplasticity is known to potentially range from synaptic plasticity to more complex
changes (e.g. shrinkage in cell size, neural or glial cell genesis, spine density or even changes in
blood flow or interstitial fluid [148]), the neurophysiological basis of experience-induced neu-
roplasticity is still a matter of extensive research [14]. Some studies indicate that functional and
structural measures of plasticity may be related. For example it could be hypothesized that
experience-related gray matter volume changes correspond to task-specific processing, or,
more precisely, synaptic remodelling within specific processing areas [149]. Another possibility
may be that impaired connectivity between key regions leads to the functional alterations
observed. For example researchers have argued that the social and emotional deficits seen in
AB may be mediated by impaired connectivity between the emotion processing and regulation
network [146,147]. These system-specific deficits may be observed by diffusion tensor imaging
and tractography measurements. For example, the uncinate fasciculus is a white-matter tract
connecting the amygdala and neighbouring anterior temporal lobe with the orbitofrontal cor-
tex and it thus may be involved in facilitating empathy, emotion regulation and socio-cognitive
processes [150]. Such models would for example explain why local changes in brain structure
cannot always be inferred from purely functional models. For example in individuals with reac-
tive aggression aberrant amygdala activity but intact amygdala structure is observed [151]. In
such cases it is possible that impaired fibre connections (e.g. reduced functional anisotropy in
the uncinate fasciculus) to and from this area cause the neuronal differences observed [151]. In
line with evidence in AB [151] significant differences in the fractional anisotropy (FA) mea-
sures of the uncinate fasciculus have been demonstrated in adolescents with conduct disorder
[29,39] as well as in adult psychopathy [144,152]. Similarly, studies of intrinsic connectivity
(resting state) explore functional networks that are non-stimulus driven and may inform about
the basic functional brain architecture while implicating anatomical connectivity of the regions
involved [153]. In individuals with antisocial personality disorder this intrinsic connectivity
between highly interconnected brain centres is disrupted [154].

Independent of the precise neurophysiological nature of structure-function associations,
our results have indicated co-localized structural and functional deficits in right dmPFC and
left insular cortex. Based on today’s structure-function knowledge we thus hypothesize that
decreased synaptic density may have led to a co-localized decrease within the BOLD response
measured through fMRI. However, it has to be noted that here we only investigate co-localized
structure-function findings that are based on gray matter volume reductions and functional
hypoactivations in AB. This limitation (no volume increases or hyperactivity investigated) is
due to the nature of the existing neuroimaging evidence, with only five studies reporting gray
matter volume increases and six studies providing evidence for functional hyperactivations in
individuals with AB. Further studies comparing adolescents with AB compared to controls are
needed in order to examine functional hypoactivations and gray matter volume increases more
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extensively. Furthermore, only longitudinal research studies will be able to show the precise
developmental trajectory of these alterations in detail.

Limitations
Meta-analytic approaches such as the current one have a number of limitations in need for discus-
sion. The presented analyses are first of all limited by the detail and quality of the original research
studies. This includes problems of variations within the significance threshold of data reported,
insufficient information on possible coordinate transformations and variation in group sizes. Addi-
tionally, even though psychosocial factors have been significantly linked to brain structure in AB,
none of the studies to date systematically studied the influence of these within their designs. Fur-
thermore, only a small number of studies to date have examined brain structure and function in
youths with AB on a whole brain level. We decided that a more stringent inclusion criteria is bene-
ficial over the absolute number of studies entering the analyses, especially in regards to the attempt
to truly capture the neuronal and structural phenotype of adolescents with AB. The number of
studies entering each analysis therefore is on the lower limit. Contrast analyses are ideally contain a
minimum of 15 studies in each dataset to obtain sufficient statistical power (http://brainmap.org/
ale/ [51,74,75,76]). Therefore, the current analysis runs the risk of being under-powered.

Most of the studies included here consisted of only, or majority of, male participants (see
Tables 1 and 2). Some of the included study designs considered sex-matched clinical and con-
trol groups, while others applied a gender covariate within their design (e.g. [26,69]). Two
VBM [21,70] and one fMRI [71] study included only female participants. These studies were
nevertheless included in the current meta-analyses because the structural alterations observed
in girls with CD broadly overlapped with those previously reported in male samples only [21].
But while the current population included mirrors the occurrence of AB in the general popula-
tion (e.g. higher number of males with AB [19]), research has shown that it may be crucial to
differentiate clinical cases based on gender in future research studies (e.g. [155]). Specifically,
to determine possible gender related differences of structural and functional characteristics in
individuals with AB, a comparison between meta-analyses of studies examining females and
those examining males separately would have been of interest, but was not possible due to the
small number of studies that are available for each group individually.

Another potential caveat is the fact that clinical and subclinical forms of aggressive behav-
iour are often associated with comorbid diagnoses, most prominently attention-deficit hyper-
activity disorder (ADHD; reported in up to 69% of CD patients [156]) and anxiety [19]. To
date there is no neuroimaging evidence investigating pure diagnosis of clinical manifestations
of aggressive behaviour (e.g. CD or ODD) [157]. Researchers argue whether aggressive behav-
iour in combination with ADHD even posits a distinct subtype or not [158] and common
neurobiological pathways are considered [157]. Overall it can be concluded that neuroimaging
research studies on aggressive behaviour in children and adolescents to date are characterized
by diverse approaches in regards to the sample selection and definition, all of which have their
justification and pitfalls [159]. Ultimately, only a comparisons of both, pure and comorbid
groups will be able to inform about the specificity and predictive value of either definition.
Here we included adolescents with clinical and subclinical forms of aggressive behaviour, most
of which have comorbid ADHD symptoms (e.g. [21,22,23,26,34,39,40,41,43,44,66,67,71,72,73].
Many of the included studies report no differences in results when controlling for ADHD
(through exclusion or a covariate within the study design; [34,39,43,44,48,71,72]).

Similar problems are IQ differences, drug use or socioeconomic status, all of which are a
characteristic of populations with aggressive behaviour. Studies included in the current meta-
analysis have all matched their participants according to IQ measures
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[22,39,40,41,43,44,66,68,69,71,72,73] or used IQ as a covariate within their study design
[21,23,25,26,34,67]. Drug use and socio-economic status were controlled for in some, but not
all, studies and further research is needed using a more careful sample characterisation in order
to inform about the impact of these variables on brain structure and function.

It is also to consider that the diagnosis of conduct disorder (clinical manifestation of AB)
may encompass at least two clinically relevant subgroups. While the first group exhibits cal-
lous-unemotional traits (e.g. reduced guilt, callousness, uncaring behaviour and reduced empa-
thy) and heightened risk of persistent antisocial behaviour, the second group is characterized
by heightened threat sensitivity and reactive aggression [1,160]. Callous-unemotional traits are
highly heritable [161], expressed as early as at two years of age [162] and are predictive of the
most severe and persistent variant of conduct disorder [163,164]. Studies also indicate that this
severity may significantly impact the neuronal alterations observed [22,39,71,165]. To summa-
rize, while we were unable to constrain the current meta-analysis based on potential subtypifi-
cation and gender variables, these factors may pose an exciting view on data analysis strategies
and interpretations for future studies. For all the reasons noted, the current results have to be
interpreted with caution. However, multimodal neuroimaging methods combining two or
more functional (fMRI and/or EEG) and structural (MRI and/or DTI) approaches are sug-
gested to provide a more sensitive measure in comparison to unimodal imaging for disease
classification [166]. Furthermore, we think that the confounding variables discussed here have
influenced the functional and structural meta-analyses similarly.

Overall, we could demonstrate that structural and functional alterations in adolescents with
AB co-localize within key regions of the emotion processing and regulation network (e.g. pre-
frontal and insular cortex). Thus, our current analysis, using an activation likelihood estima-
tion approach, provides an important step towards a more focused method of neuroimaging in
AB. Future studies need to determine whether the here identified convergent clusters of neuro-
nal and structural alterations may be applicable for clinical purposes (for example an improved
pathophysiological description of individuals with AB) or whether a further specification (e.g.
based on subtypes and gender) may be needed. However, the coordinates presented here can
serve as non-independent regions of interest for future studies in AB, conduct disorder or in
individuals with AB or antisocial/psychopathic tendencies.

Summary and Conclusion
Aggressive behaviour constitutes a major issue of public health and increased knowledge about
the behavioural and neuronal underpinnings of AB are crucial for the development of novel
and implementation of existing treatment strategies. However, single site studies often suffer
problems of small sample size and thus power issues. Quantitative meta-analysis techniques
using activation likelihood estimations as implemented here offer a unique opportunity to
investigate consistency of results between several studies investigating the same research ques-
tion and population. We have implicated several brain regions of the emotion processing and
regulation network to show hypoactivations and gray matter volume reductions in adolescents
with AB (including prefrontal brain regions, amygdala, insular and cingulate cortex) and dem-
onstrated that functional and structural alterations in AB co-localize within right dmPFC and
left insular cortex.

Overall, we are in line with meta-analytic work as well as structural, functional and connec-
tivity findings that make a strong point for the involvement of a network of brain areas respon-
sible for emotion processing and regulations. This network is impacted in individuals with AB
and antisocial personality disorder/psychopathy. However, much still needs to be investigated.
For example, study findings differ in regards to hypo- or hyperactivations and gray matter
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volume reductions or increases in different regions of the emotion processing and regulation
network. Due to power constraints, the current meta-analysis only investigated hypoactiva-
tions and gray matter volume reductions in youths with AB and no hyperactivations or
increases in brain structure. Future studies implementing longitudinal designs may be able to
shed more light on the developmental pathway as well as onto typical and atypical trajectories
within the regions reported. Such longitudinal designs will further allow the investigation of
the bidirectional influence of biological and psychosocial influences in AB.
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