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Abstract

Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the
ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all
patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard
fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at
a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable
for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue
cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent
sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells,
such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes
standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms
from immature cryopreserved testicular tissues or somatic cells.

Summary Sentence
This review describes standard-of-care and experimental approaches to preserve male fertility and treat male infertility. New stem cell- and
tissue-based fertility therapies are on the horizon.
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Introduction

Over the past few decades, childhood cancer survival rates
have improved dramatically, up to 88% as recorded in 2018
[1]. Each year in the United States, around 10 000 children
between the ages 0 and 14 develop cancers that require them
to undergo gonadotoxic treatments, such as chemotherapy
and radiation [1]. Patients with nonmalignant conditions (e.g.,
blood and immune deficiencies and autoimmune disorders)
often receive myeloablative conditioning prior to bone mar-
row transplantation, which is also gonadotoxic [2]. Alkylating
chemotherapeutic agents, total body irradiation [3, 4], and
gonadal radiation [5] put patients at a significant risk of
infertility [5–8]. Studies show that adult survivors of child-
hood cancers desire to have children [9–13]. Therefore, it is
important to discuss the reproductive side effects before the
initiation of gonadotoxic therapies.

To develop fertility preservation strategies, we first have
to understand the process of sperm production, called sper-
matogenesis. The seminiferous tubules (ST) are the factory of
spermatogenesis within the testes (Figure 1). Spermatogonial
stem cells (SSCs) are located on the basement membrane
of the ST and are the foundation of spermatogenesis. SSCs
balance self-renewing and differentiating divisions to main-
tain continuous sperm production after puberty. When SSCs
differentiate, they undergo several transit amplifying mitotic
divisions, giving rise sequentially to undifferentiated type A
progenitor spermatogonia, differentiating type A spermatogo-
nia, differentiated type B spermatogonia, and spermatocytes.
Primary spermatocytes migrate off the seminiferous tubule
basement membrane, across the blood–testis barrier to the
adluminal compartment of the ST, and complete meiosis
to produce secondary spermatocytes and round spermatids.
Round spermatids undergo spermiogenesis to produce ter-
minally differentiated spermatozoa that are released into the
lumen of the ST. Sertoli cells are the only somatic cell type
inside the ST; they are in direct contact with all germ cells in
the testis and regulate every step of the spermatogenic lineage
development—from stem cells to sperm [14]. On the outer side
of the basement membrane, peritubular myoid cells contain
abundant actin filaments to support the structural integrity of
the tubule [15]. They also possess contractile function to trans-
port spermatozoa and testicular fluid in the tubule as well as
secrete growth factors that are important for the regulation
of spermatogenesis [15–17]. The interstitial space is where
Leydig cells, endothelial cells, and macrophages are located.
Leydig cells are the source of intratesticular testosterone that
is required for spermatogenesis [18]. A clear understanding of
testicular structure as well as distinct functions of germ cells
and somatic cells can help us develop new fertility restoration
therapies.

Prior to gonadotoxic treatments, adult and adolescent
males have the option to cryopreserve sperms, which can
be used to achieve pregnancy in the future using estab-
lished assisted reproductive technologies (ARTs), including
intrauterine insemination [19], in vitro fertilization (IVF)
[20], and intracytoplasmic sperm injection (ICSI) [21].
Unfortunately, sperm cryopreservation is not an option for
prepubertal patients who are not yet producing sperm.
However, prepubertal testicular tissues do have prosper-
matogonia or SSCs in their testes that are poised to initiate
spermatogenesis at puberty [22–24]. Cryopreservation of
immature testicular tissues, containing SSCs, may preserve
their reproductive potential. We will review testicular cell-

and tissue-based methods that are in the research pipeline
and may be available in the future to produce sperms from
cryopreserved immature testicular tissues. At the end of the
article, we will describe a potential alternative, nontesticular
source of spermatids or sperms produced from patient-derived
induced pluripotent stem cells (iPSCs).

Several cell-based and tissue-based technologies utilizing
stem cell potential to restore spermatogenesis are in devel-
opment. Those technologies include SSC transplantation [23–
32], de novo testicular morphogenesis [33, 34], autologous
testicular tissue grafting/xenografting [35–41], testicular tis-
sue culture [42–45], and germ cells derived from iPSCs [46–
50] (Figure 2). Centers in the United States and around the
world are cryopreserving testicular tissue for prepubertal boys
in anticipation that some or all of these technologies will be
available for these patients in the future [22, 51–64] (Table 1).
Therefore, all patients should be counseled about the effects
of their medical treatment on fertility and about options
(standard or experimental) to preserve fertility prior to their
treatments.

Sperm cryopreservation for male adolescents and
young adult cancer patients and worldwide fertility
cryopreservation programs
Sperm cryopreservation

Sperm cryopreservation was introduced to the human fertility
clinic in the 1950s by Bunge and Sherman as a fertility preser-
vation method for adolescent boys and adult men who face
a high risk of infertility due to their medical treatments [65].
Moreover, Szell et al. [66] reported that sperms cryopreserved
for 40 years retained fertilization function after thawing to
produce a healthy offspring. A study showed that 76% of
adolescents and young adults (14–40 years old) expressed the
desire to have children in the future [67]. The ability to have
biological children is part of the recovery path to normalcy,
health, and life fulfillment for childhood cancer survivors [9,
11, 13, 68]. However, a study in the United States reported that
only 51% of young cancer patients (14–40 years) were offered
sperm cryopreservation, and only 24% of them actually froze
sperms prior to initiation of their gonadotoxic therapies [67].
An improvement was seen in a 2005 UK study of 13- to 21-
year-old adolescents and young adults, in which they were
all offered sperm banking; 67% of them successfully banked
their sperms [69]. The most common reason cited for failing
to preserve sperms was the lack of information among both
patients and medical staff [67, 69]. A study in China showed
that more than 70% of cancer patients did not know about the
existence of sperm banks, and more than 80% of medical staff
were not educated about fertility preservation [70]. Moreover,
adolescent patients have lower semen volume and sperm
motility compared with adult patients [71]. These differences
may or may not hinder the success of ARTs in future fertil-
ity restoration. Therefore, education on fertility preservation
regarding patients who face a significant infertility risk should
be broadly provided to medical staff. This allows medical
practitioners to thoroughly inform patients at an early stage of
their treatments, such that an appropriate plan for preserving
the chance of parenthood can be clearly established.

Worldwide testicular tissue cryopreservation programs

Fertility centers around the world are cryopreserving tes-
ticular tissues for prepubertal boys with the anticipation
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Figure 1. Spermatogenesis occurs within the ST of the testis that are connected to a common collecting reservoir in the testis space where sperms are
deposited before flowing to the epididymis. The intratubular space within the ST includes the basal, adluminal, and lumen compartments. Sertoli cells
(yellow cells) are the only somatic cell type that directly interacts with germ cells within the intratubular space. SSCs account for a small proportion of
undifferentiated spermatogonia located on the basement membrane within the basal compartment. SSCs are responsible for self-renewing and
differentiating divisions to maintain the stem cell pool and continuous sperm production process throughout a man’s life. When SSCs differentiate, they
undergo several transit amplifying mitotic divisions, giving rise sequentially to differentiating type A spermatogonia (dark purple cells) and differentiated
type B spermatogonia (light purple cells). Differentiated type B spermatogonia then give rise to primary spermatocytes (light green cells). During meiosis
I, primary spermatocytes lift off the basement membrane and pass through the blood–testis–barrier formed between Sertoli cells to enter the adluminal
compartment to produce secondary spermatocytes (dark green cells). Secondary spermatocytes complete meiosis II to form round spermatids
(magenta cells). Round spermatids undergo spermiogenesis to form elongating spermatids, elongated spermatids, and finally spermatozoa (gray cells).
Spermatozoa are then released into the lumen. Peritubular myoid cells and peritubular macrophages are located on the outside of the basement
membrane. The interstitial space is the area between STs where Leydig cells, blood vessels, and interstitial macrophages are located.

that new reproductive technologies will be available to them
in the future [22, 51–64, 72, 73]. Table 1 summarizes the
efforts of 15 centers that perform testicular tissue or cell
cryopreservation for patients who were facing the risk of
infertility due to their diseases, medical treatments or other
circumstances. Three centers reported samples that included
adult patients (older than 18 years old) [22, 52, 58]. The
rest included patients with the age range between 0 and
18 years old with oncology as the most common diagno-
sis [53–56, 59, 60, 62, 74–78]. Eleven out of 15 centers
reported using dimethyl sulfoxide (DMSO) as their choice
of cryoprotectant [22, 54–56, 60, 62, 74–78] and controlled
slow freezing as their preferred freezing method [22, 53–
56, 59, 62, 74, 76–78]. Most sites in Table 1 are cryop-
reserving intact pieces of testicular tissue because this pre-
serves the options for both cell- and tissue-based therapies in
the future.

The University of Pittsburgh Medical Center (UPMC)
Fertility Preservation Program and coordinated centers
have cryopreserved testicular tissues for 517 patients
between January 2011 and March 2022 (University of

Pittsburgh IRB STUDY19020220; Coordinating Centers
IRB STUDY19110083). These include patients at risk of
infertility due to medical treatments for cancer, myeloablative
conditioning prior to bone marrow transplantation for benign
diseases (e.g., sickle cell disease, thalassemia, etc.), hormone
modulating treatments for gender dysphoria, and gonadec-
tomy for patients with differences in sexual development
(Figure 3). The average age of patients was 7.6 years (standard
error of the mean (SEM) = 0.22) and ranged from 3 months
to 34 years old. The amount of tissue obtained by biopsy is at
the discretion of the surgeons who typically recover as much
tissue as possible (to maximize options for downstream use
in reproduction) without compromising the function of the
remaining testis (usually 10–20% of testicular volume). The
average amount of tissue collected was 472.9 mg (SEM = 45.5)
and ranged 10.1–9824.8 mg. Our center freezes intact pieces
of testicular tissue (9–25 mm3, ∼15 mg) in a medium
containing 5% DMSO and 5% serum substitute supplement
(84% human serum albumin and 16% human globulins)
using the method of controlled slow rate freezing described
by Keros and colleagues [74]. We have found that the recovery
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Figure 2. The schematic diagram of standard and experimental male fertility restoration technologies that have produced offspring in at least one
mammalian species (Abbreviations: TESE, testicular sperm extraction; IUI, intrauterine insemination; IVF, in vitro fertilization; ICSI, intracytoplasmic
sperm injection; SSC, spermatogonial stem cells; iPSCs, induced pluripotent stem cells; PGCLCs, primordial stem cell-like cells).

Table 1. Published reports of testicular tissue cryopreservation.

Study Left location Number of
patients

Indication
(Biopsy)

Previous
Gonado-
toxic
treatment
(Yes/No)

Patients’
age range

Frozen
material

Freezing
method

Cryoprotectant

Bahadur et al. [51] United Kingdom
(LDN)

2 Oncology Yes and No 8 and 13 Tissue Liquid
nitrogen

Glycerol or
1,2-propanediol

Radford et al. [52] United Kingdom
(MAN)

12 Hodgkin’s disease No Adults Cells CRF DMSO, ethylene glycol,
glycerol, and
1,2-propanediol

Kvist et al. [53] Denmark (CPH) 8 Cryptorchid No 1–5 Tissue CRF Ethylene glycol
Ginsberg et al. [54] United States (PA) 48 Oncology No 0–12 Tissue CRF DMSO
Sadri-Ardekani et al.
[55]

United States (NC) 23 Oncology/cryptorchid No 0.7–16
oncology
1.4–11
cryptorchid

Tissue CRF DMSO and glycerol

Uijldert et al. [56] The Netherlands
(AMS)

78 Oncology No 0–15 Tissue CRF DMSO

Ho et al. [57] Australia (MEL) 44 Hematology/Oncology Yes and No 0.3–16.8 Tissue CRF DMSO
Heckman et al. [58] Germany (Munster) 39 Oncology/Klinefelter Yes and No 2–20 Tissue Not indicated DMSO
Valli-Pulaski et al. [22] United States (PA) 189 Oncology/Orchiectomy

/Cryptorchid/Klinefel-
ter

Yes and No 0–39 Tissue CRF DMSO

Hildorf et al. [59] Denmark (CPH) 37 Cryptorchid No 0–3 Tissue CRF Ethylene glycol
Braye et al. [60] Belgium (BXL) 112 Oncology/Cryptorchid/

Klinefelter
No 0–18 Tissue Mr. Frosty in

−80 ◦C
DMSO

Borgstrom et al. [61] Sweden (STHLM) 20 Oncology No 1.5–14.5 Tissue CRF and
vitrification

DMSO

Kanbar et al. [62] Belgium (BXL) 139 Hematology/Oncology Yes and No 0–16 Tissue CRF DMSO
Rives-Feraille et al. [63] France 87 Oncology Yes and No 0–16 Tissue CRF DMSO
Braye et al. [64] Belgium (BXL) 22 Klinefelter N/A 4.8–18.4 Tissue Mr. Frosty in

−80 ◦C
DMSO

Abbreviation: CRF, controlled rate freezing; DMSO, dimethyl sulfoxide; N/A, not available.
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Figure 3. Testicular tissue cryopreservation of patients at the UPMC Fertility Preservation Program (March 2011–March 2022) (Abbreviation: CNS, central
nervous system; BMT, bone marrow transplantation).

of transplantable stem cells from cryopreserved testicular
tissue pieces is better than the recovery of transplantable stem
cells from cryopreserved testicular cell suspensions (data not
shown). Moreover, tissue pieces of this size (9–25 mm3) are
large enough to suture under the skin for testicular tissue
grafting, as previously described [40].

Counseling young patients and their families about the
reproductive side effects of medical treatments and options for
fertility preservation can be challenging and requires a mul-
tidisciplinary effort. However, the effort is justified because
adult survivors of childhood cancers report that fertility is
important to them and patients are willing to undergo exper-
imental therapies to preserve the possibility of having a bio-
logical child [9, 12, 13, 79–82].

Cell-based therapies for male fertility restoration
Spermatogonial stem cell transplantation

Mouse SSC transplantation was first reported by Brinster and
colleagues in 1994 [30, 83]. These studies demonstrated that
mouse SSCs were able to regenerate complete spermatogenesis
when transplanted into the testes of infertile males [30, 83].
The efficiency of the regenerated spermatogenesis depends
on the physiology of the recipient testes. Engraftment and
initiation of spermatogenesis in neonatal testes is more robust
than in adult testes [23]. Ablation of endogenous spermato-
genesis by gonadotoxic treatment [25] or genetic mutation
[23] reduces competition from endogenous stem cells, thus
enhancing donor-derived spermatogenesis.

In addition, functional SSCs can be recovered from frozen
and thawed mouse testicular cell suspension after 14 years
of storage [84]. Indeed, transplantable spermatogonia have
been recovered from frozen and thawed cell suspensions of
several species [23–30, 83, 85–91]. Therefore, it is reason-
able that testicular tissue frozen from prepubertal patients

prior to gonadotoxic therapies can be thawed in the future
to obtain functional SSCs for transplantation to regenerate
spermatogenesis. These studies have built a strong founda-
tion for translational medicine, so infertile adult survivors of
childhood cancers who have cryopreserved testicular biop-
sies may have a chance to obtain biological children in the
future. Autologous and homologous testicular cell transplan-
tation was originally described over 25 years ago in mice
[30, 83]. This is a robust technology that has been repli-
cated in many mammalian species, including rats [26, 27],
pigs [85, 86], goats [28, 87], bulls [88], sheep [29], dogs
[89], and monkeys [24, 90–92] (Table 2). Embryos or off-
spring born from this technology were reported in mice [23,
25, 30, 93], rats [27], goats [28], and monkeys [24, 92]
(Table 2).

Radford and colleagues reported the first autologous
testicular cell transplantation in human patients in 1999
[94] and in 2003 [52]. Briefly, testicular cell suspensions
were cryopreserved for a total of 12 patients with Hodgkin’s
disease. Seven of those patients returned to have their frozen
and thawed testis cells transplanted back into their testes. The
outcomes of those transplants were not reported, but the study
provides insights into the motivation of men who were willing
to undergo an early-stage experimental procedure for the
possibility of having a biologically related child. Homologous
species SSC transplantation had only been performed in
mice and rats when Radford and colleagues reported the
first autologous human testicular cell transplantations in
1999. The technique has now been replicated in numerous
mammalian species, demonstrating safety and feasibility that
may provide stronger support for translation to the human
clinic (Table 2). Human studies must proceed with caution
and be performed with regulatory approval in experimental
human trials.
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Table 2. Stem cell- and tissue-based fertility therapies currently in the research pipeline.

Testicular cell suspension

Technology Species Study Method Result

SSC
transplantation

Mouse Zambrowicz et al. [233], Brinster
et al.[30], Ogawa et al. [26],
Shinohara et al. [23], Brinster
et al. [25], Kanatsu-Shinohara
et al. [234], Azizi et al. [31],
Morimoto et al. [32]

Autologous transplantation [30,
234] Allogenic transplantation
[23, 25, 30–32, 233]
Xenotransplantation [26]

• Spermatozoa [26, 31, 233]
• Offspring [23, 25, 30, 32, 234]

Rat Clouthier et al. [235], Ogawa
et al. [26], Hamra et al. [27]

Allogenic transplantation [26, 27]
Xenotransplantation [235]

• Colonization [26] Spermatozoa
[235] Offspring [27]

Hamster Ogawa et al. [236] Xenotransplantation [236] • Normal round spermatids,
abnormal spermatozoa [236]

Cat Kim et al. [237] Xenotransplantation [237] • Colonization [237]
Rabbit Dobrinski et al. [238] Xenotransplantation [238] • Colonization and SSC

proliferation [238]
Dog Dobrinski et al. [238]

Kim et al. [89]
Allogenic transplantation [89]
Xenotransplantation [238]

• Colonization and SSC
proliferation [238]
• Spermatozoa [89]

Pig Dobrinski et al. [93]
Honaramooz et al. [85]
Mikkola et al. [86]

Allogenic transplantation [85, 86]
Xenotransplantation [93]

• Colonization and SSC
proliferation [85, 93]
• Spermatozoa [86]

Goat Honaramooz et al. [87]
Honaramooz et al. [28]

Autologous transplantation [87]
Allogenic transplantation [28, 87]

• Spermatogenesis initiation [87]
• Offspring [28]

Bull Dobrinski et al. [93]
Oatley et al. [239]
Izadyar et al. [88]

Autologous transplantation [88]
Xenotransplantation [93, 239]

• Colonization and SSC
proliferation [93, 239]
• Spermatozoa [88]

Sheep Herrid et al. [29] Allogenic transplantation [29] • Offspring [29]
Horse Dobrinski et al. [93] Xenotransplantation [93] • Colonization and SSC

proliferation [93]
Monkey Nagano et al. [240]

Schlatt et al. [241]
Jahnukainen et al. [90]
Hermann et al. [24]
Shetty et al. [91]
Shetty et al. [92]

Autologous transplantation [24,
90, 91, 241]
Allogenic transplantation [24, 90,
92]
Xenotransplantation [240]

• Colonization and SSC
proliferation [240]
• Elongated spermatids [241]
• Spermatozoa [90, 91]
• Embryos [24, 92]

Human Radford et al. [94]
Brook et al. [242]
Nagano et al. [129]

Autologous transplantation [94,
242]
Xenotransplantation [129]

• Colonization and SSC
proliferation [129]
• No reported results [94, 242]

De novo
testicular
morphogenesis

Mouse Kita et al. [33]
Yokonishi et al. [150]
Zhang et al. [151]
Zhang et al. [34]
Baert et al. [152]
Sakib et al. [149]

Fresh fetal testicular cell
aggregates + Matrigel → grafted
under mouse dorsal skin [33]
Fresh neonatal testicular cell
aggregates + Matrigel → grafted
under mouse dorsal skin [33, 34]
Fresh neonatal testicular cell
aggregates → cultured on agarose
gel stand [150]
Fresh neonatal testicular cell
aggregates → cultured on collagen
[151]
Fresh neonatal testicular cells →
seeded on alginate scaffold [152]
Fresh neonatal testicular cell
aggregates → cultured on
Matrigel [149]

• Inverted organization of
spermatogonia and somatic cells
[149]
• Spermatocytes [151]
• Round spermatids [150]
• Elongated spermatids [152]
• Offspring [33, 34]

Rat Zenzes et al. [148]
Gassei et al. [155]
Kita et al. [33]
Gassei et al. [156]
Gassei et al. [138]
Alves-Lopes et al. [139]

Fresh neonatal, prepubertal,
pubertal, and adult testicular cells
→ cultured in a rotation system
[148]
Fresh neonatal cell aggregates +
Matrigel → grafted under mouse
dorsal skin [33, 138, 155, 156]
Fresh neonatal, prepubertal, and
adult testicular cells → cultured in
three-layer or hanging-drop
systems [139]

• Spermatogonia [138, 139, 148,
156]
• Tubule formation and
vascularization [155]
• Offspring [33]

(Continued)
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Table 2. Continued.

Testicular cell suspension

Technology Species Study Method Result

Pig Dufour et al. [140]
Kita et al. [33]
Honaramooz et al. [141]
Dores et al. [142]
Sakib et al. [149]

Fresh neonatal Sertoli cell
aggregates → grafted under
mouse renal subcapsule [140]
Fresh neonatal testicular cells
aggregates + Matrigel → grafted
under mouse dorsal skin [33, 141,
142]
Fresh neonatal testicular cell
aggregates → cultured on
Matrigel [149]

• Inverted organization of
germ cells and somatic cells
[149]
• Spermatogonia [33, 142]
• Tubule formation and
vascularization [140]
• Round spermatids [141]

Sheep Arregui et al. [143] Fresh neonatal testicular cell
aggregates → grafted under
mouse dorsal skin [143]

• Elongated spermatids [143]

Monkey Aeckerle et al. [144]
Huleihel et al. [153]
Sakib et al. [149]

Fresh neonatal, juvenile, adult
testicular cells aggregates +
Matrigel → grafted under mouse
dorsal skin [144]
Fresh juvenile testicular cell
aggregates → cultured on agarose
gel or methycellulose [153]
Cryopreserved juvenile testicular
cell aggregates → cultured on
Matrigel [149]

• Inverted organization of
spermatogonia and somatic
cells [149]
• Spermatogonia [144]
• Round spermatids [153]

Human Baert et al. [145]
Pendergraft et al. [146]
Baert et al. [147]
Sakib et al. [149]
Oliver et al. [154]

Fresh fetal testicular cells →
cultured on 3-LGS [154]
Fresh and cryopreserved adult
testicular cells aggregates →
cultured on human testis ECM
[145, 146]
Fresh pubertal and adult testicular
cells → cultured on human testis
scaffold-based or scaffold-free
transwells [147]
Cryopreserved pre-pubertal
testicular cell aggregates →
cultured on Matrigel [149]

• Maturation of Sertoli cells
and Leydig cells, decrease in
prospermatogonia number
[154]
• Inverted organization of
spermatogonia and somatic
cells [149]
• Spermatogonia clusters,
normal spatial-temporal
somatic cell arrangements
and functions [145] [147]
• Elongated spermatids [146]

Testicular tissue

Technology Species Study Method Result

Autologous/Allo-
genic
transplantation

Mouse Honaramooz et al. [36]
Schlatt et al. [157]
Shinohara et al. [37]
Schlatt et al. [35]
Geens et al. [158]
Yu et al. [159]
Goossens et al. [160]

Neonatal tissues
Fresh—dorsal skin [35, 36,
157–160]
Cryopreserved—dorsal skin [36,
157, 160]; scrotum [37]

• Spermatids: [157]
• Spermatozoa: [158–160]
• Embryos: [36]
• Offspring: [35, 37]

Monkey Luetjens et al. [161]
Fayomi et al. [40]

Prepubertal tissues
Fresh—dorsal skin [40, 161];
scrotum [40, 161]
Cryopreserved—dorsal skin [40,
161]; scrotum [40, 161]
Adult tissues
Fresh—dorsal skin [161]; scrotum
[161]
Cryopreserved—dorsal skin [161]

• Degenerated tubules: fresh
adult grafts under dorsal skin
[53]
• Spermatogonia: fresh
prepubertal grafts under
dorsal skin [53]
• Spermatocytes: fresh and
cryopreserved prepubertal
grafts under dorsal skin [53]
• Spermatozoa: fresh
prepubertal grafts under
dorsal skin and in the
scrotum [161]; all grafts [40]
• Offspring [40]

(Continued)
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Table 2. Continued.

Testicular tissue

Technology Species Study Method Result

Xenotransplanta-
tion into
SCID/nude mice

Hamster Schlatt et al. [157] Neonatal tissues
Fresh—dorsal skin [157]
Cryopreserved—dorsal skin [157]

• Spermatozoa: [157]

Cat Snedaker et al. [162]
Kim et al. [163]
Arregui et al. [164]

Fetal tissues
Cryopreserved—dorsal skin [164]
Neonatal tissues
Cryopreserved—dorsal skin [164]
Prepubertal tissues
Fresh—dorsal skin [162, 163]
Adult tissues
Fresh—dorsal skin [163, 164]

• Degenerated: ≥ 8-month-old
tissues [163], cryopresereved
perinatal grafts [164]
• Spermatogonia: fresh adult
grafts [164]
• Elongating spermatids:
7-month-old grafts [163]
• Spermatozoa: prepubertal grafts
[162]; 8- to 16-week-old grafts
[163]

Rabbit Shinohara et al. [37] Prepubertal tissues
Fresh—scrotum [37]
Cryopreserved—scrotum [37]

• Offspring: [37]

Dog Abrishami et al. [165] Prepubertal tissues
Fresh—dorsal skin [165]
Pubertal tissues
Fresh—dorsal skin [165]
Adult tissues
Fresh—dorsal skin [165]

• Degenerated: adult grafts [165]
• Elongated spermatids: pubertal
grafts [165]
• Spermatozoa: pre-pubertal
grafts [165]

Pig Honaramooz et al. [36]
Zeng et al. [166]
Kaneko et al. [167]
Arregui et al. [168]
Nakai et al. [38]
Abbasi et al. [169]
Kaneko et al. [170]

Fetal tissues
Cryopreserved—dorsal skin [170]
Neonatal tissues
Fresh—dorsal skin [38, 166, 167,
169]
Prepubertal tissues
Fresh—dorsal skin [36]
Cryopreserved—dorsal skin [36]
Adult tissues
Fresh—dorsal skin [168]

• Degenerated: [168]
• Elongated spermatids: [166]
• Spermatozoa: [167, 169]
• Embryos: [36, 170]
• Offspring: [38]

Goat Honaramooz et al. [36]
Arregui et al. [168]

Prepubertal tissues
Fresh—dorsal skin [36]
Cryopreserved—dorsal skin [36]
Adult tissues
Fresh—dorsal skin [168]

• Degenerated: [168]
• Embryos: [36]

Deer Arregui et al. [164] Fetal tissues
Fresh—dorsal skin [66]
Cryopreserved—dorsal skin [66]
Adult tissues
Fresh—dorsal skin [66]
Cryopreserved—dorsal skin [66]

• Spermatocytes: fetal grafts [164]
• Round spermatids: adult grafts
[164]

Bull Oatley et al. [171]
Oatley et al. [172]
Rathi et al. [173]
Zeng et al. [166]
Huang et al. [174]
Arregui et al. [168]
Reddy et al. [175]

Neonatal tissues
Fresh—dorsal skin [166, 172]
Prepubertal tissues
Fresh—dorsal skin [171,
173–175]
Adult tissues
Fresh—dorsal skin [168, 175]

• Degenerated: 28- to
32-week-old grafts [174]
• Sertoli cell only: [168]
• Round spermatids: 12- to
20-week-old grafts [174]
• Elongated spermatids: [166,
171–173, 175]

Donkey Arregui et al. [168] Adult tissues
Fresh—dorsal skin [168]

• Sperm: [168]

Horse Rathi et al. [176]
Arregui et al. [168]

Neonatal tissues
Fresh—dorsal skin [176]
Adult tissues
Fresh—dorsal skin [168, 176]

• Spermatogonia: 2-week-old to
5-month-old grafts [176]
• Spermatocytes: 5-month-old,
12-month-old, and 4-year-old
grafts [176]
• Elongated spermatids: all
conditions [168]; 10-month-old
grafts [176]

Sheep Zeng et al. [166]
Arregui et al. [143]

Neonatal tissues
Fresh—dorsal skin [143, 166]

• Elongated spermatids: [143,
166]

(Continued)
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Table 2. Continued.

Testicular tissue

Technology Species Study Method Result

Monkey Schlatt et al. [157]
Honaramooz et al. [39]
Rathi et al. [177]
Arregui et al. [168]
Lu et al. [41]
Ehmcke et al. [178]
Ntemou et al. [179]

Neonatal tissues
Fresh—dorsal skin [177]
Prepubertal tissues
Fresh—dorsal [39, 41, 157,
168, 178, 179]; scrotum [179]
Pubertal tissues
Fresh—dorsal skin [168]
Adult tissues
Fresh—dorsal skin [168]

• Sertoli cell only: adult grafts
[168]
• Spermatocytes: [157]; pubertal
grafts [168]; grafts under dorsal
skin [179]
• Elongated spermatids: [177];
prepubertal grafts [168]
• Spermatozoa: all conditions
[178]; grafts in scrotum [179]
• Embryos: [39]
• Offspring: [41]

Human Skakkebaek et al. [180]
Geens et al. [158]
Schlatt et al. [181]
Yu et al. [159]
Wyns et al. [182]
Goossens et al. [183]
Wyns et al. [184]
Sato et al. [185]
Van Saen et al. [75]
Poels et al. [186]
Poels et al. [187]
Ntemou et al. [188]

Fetal tissues
Fresh—dorsal skin [159, 180]
Infant tissues
Fresh tissues—dorsal skin
[185]
Prepubertal tissues
Fresh tissues—dorsal skin
[183, 188], scrotum [75, 186,
188];
Cryopreserved
tissues—scrotum [75, 182,
184, 186, 187]
Adult tissues
Fresh tissues—dorsal skin
[158, 181], scrotum [75]
Cryopreserved
tissues—scrotum [75]

• Degenerated tubules: [181]
• Prospermatogonia: [180]
• Spermatogonia: [158, 183];
prepubertal grafts [75]; [60] [182,
187]
• Spermatocytes: adult grafts [75];
prepubertal grafts [184–186, 188]

Testicular tissue
organ culture

Mouse Livera et al. [191]
Trautmann et al. [208]
Gohbara et al. [192]
Sato et al. [43]
Sato et al. [193]
Yokonishi et al. [44]
Sato et al. [194]
Arkoun et al. [195]
Komeya et al. [42]
Dumont et al. [196]
Dumont et al. [197]
Komeya et al. [199]
Reda et al. [198]
Yamanaka et al. [202]
Pence et al. [200]
Komeya et al. [201]
Baert et al. [152]

Fetal tissues
Fresh tissues—floating filter
[191, 208]
Neonatal tissues
Fresh tissues—agarose gel
stand [43, 44, 192, 193,
195–201]; microfluidic device
[42, 199, 202]
Cryopreserved
tissues—agarose gel stand [43,
44, 193, 196, 197]
Adult tissues
Fresh tissues—agarose gel
[194]

• Spermatogonia [191]
• Spermatocytes [208]
• Round spermatids [192, 198]
• Elongating spermatids [194,
199, 201, 202]
• Elongated spermatids [152]
• Spermatozoa [193, 195–197,
200]
• Offspring [42–44]

Rat Livera et al. [191]
Reda et al. [203]

Fetal tissues
Fresh tissues—floating filter
[191]
Neonatal tissues
Fresh tissues—agarose gel
stand [203]

• Spermatogonia [191]
• Round spermatids [203]

Goat Patra et al. [243] Prepubertal tissues
Fresh tissues—agarose gel
stand and hanging-drop system
[243]
Cryopreserved
tissues—agarose gel stand and
hanging-drop system [243]

• Spermatozoa [243]

Monkey Heckmann et al. [244]
Sharma et al. [245]

Prepubertal tissues
Fresh—agarose gel stand [244]
Fresh—transwell [245]

• Spermatocytes [244]
• Spermatocytes [245]

(Continued)
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Table 2. Continued.

Testicular tissue

Technology Species Study Method Result

Human Lambrot et al. [207]
Jorgensen et al. [204]
Jorgensen et al. [205]
de Michele et al. [210]
de Michele et al. [206]
Medrano et al. [209]
Yaun et al. [45]

Fetal tissues
Fresh—floating membrane [207];
hanging-drop system [205];
agarose gel stand [45]
Prepubertal tissues
Cryopreserved—agarose gel stand
[209]; transwell [206, 210]
Adult tissues
Fresh—hanging-drop system [204]

• Degenerated tubules [207]
• Gonocytes [205]
• Spermatogonia [204, 210]
• Spermatocytes [209]
• Round spermatids [206]
• Embryos (ROSI) [45]

Embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs)

Technology Species Study Method Result

ESCs/iPSCs-
derived germline
stem cells

Mouse Hayashi et al. [46]
Nakaki et al. [47]
Ishikura et al. [49]

ESCs and/or iPSCs → adherent
differentiation to EpiLCs on
fibronectin → floating culture of
PGCLC aggregates →
transplantation into mouse pup
testes → ICSI [46, 47]
ESCs → adherent differentiation
to EpiLCs on fibronectin →
floating culture of PGCLC
aggregates → mixed with fetal
testicular somatic cells (FTSC) to
generate GSCLCs →
transplantation into adult mouse
testes → ROSI + ICSI [49]

• Offspring [46, 47, 49]

Monkey Sosa et al. [218] iPSCs → adherent differentiation
into iMeLCs on fibronectin →
floating PGCLC aggregates →
transplantation into adult monkey
and mouse testes [218]

• PGCLCs developed into
VASA+ colonies of
spermatogonia in both
recipient species [218]

Human Park et al. [246]
Durruthy et al. [228]
Ramathal et al. [229]
Sasaki et al. [224]
Ramathal et al. [230]
Irie et al. [225]
Hwang et al. [215]

ESCs and iPSCs → adherent
differentiation to PGCLCs on
feeder cells derived from human
fetal placenta and liver stroma
[246]
ESCs and iPSCs transplanted into
adult mouse ST [228–230]
iPSCs → adherent differentiation
to iMeLCs on laminin → floating
PGCLC aggregates [224]
ESCs and iPSCs → adherent
differentiation to EpiLCs on
vitronectin/gelatin → floating
PGCLC aggregates [225]
iPSCs → adherent differentiation
to iMeLCs on fibronectin →
floating PGCLC aggregates →
mixed with E12.5 mouse FTSCs
into xrTestes in an air-liquid
interphase system [215]

• PGCLCs [224, 225, 229,
246]
• GCLCs located near the
basement membrane
[228–230]
• Prospermatogonia [215]

ESCs/iPSCs-
derived haploid
germ cells

Mouse Zhou et al. [48]
Ishikura et al. [50]

ESCs → adherent differentiation
to EpiLCs on fibronectin →
culture as floating PGCLC
aggregates →culture with
testicular cells in 1:1 ratio to
induce haploid cells → ICSI [48]
ESCs → adherent differentiation
to EpiLCs on fibronectin →
floating culture of PGCLC
aggregates → mixed with FTSCs
to generate GSCLCs →
transplantation into mouse pup
testes → organ culture → ROSI
[50]

• Offspring [48, 50]

(Continued)
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Table 2. Continued.

Embryonic stem cells or induced pluripotent stem cells

Technology Species Study Method Result

Monkey Teramura et al. [219]
Yamauchi et al. [220]

ESCs → floating EB aggregates →
adherent culture on gelatin [219]
ESCs → floating EB aggregates
[220]

• VASA+
prospermatogonia, and
DMC1+/SCP3+ meiotic
cells [219]
• Increased VASA, SCP1,
PIWIL1 transcription
[192]

Human Kee et al. [221]
Panula et al. [222]
Eguizabal et al. [231]
Easley et al. [223]

ESCs → adherent differentiation
on Matrigel [221]
ESCs and iPSCs → adherent
differentiation on Matrigel [222]
iPSCs → adherent differentiation
on feeder cells [231]
ESCs and iPSCs → cultured in
mouse SSC conditions [223]

• Acrosin+ spermatids
and 1 N haploid cells
[221–223, 231]

Abbreviations: ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; GCLCs, germ cell-like cells; GSCLCs, germline stem cell-like cells; EpiLCs,
epiblast-like cells; PGCLCs, primordial germ cell-like cells; EBs, embryoid bodies; SSCs, spermatogonial stem cells; ROSI, round spermatid injection; ICSI,
intracytoplasmic sperm injection; FACS, fluorescence-activated cell sorting; IHC, immunohistochemistry; xrTestis, xenogeneic reconstituted testis; VASA,
DEAD-box helicase 4; DMC1, DNA meiotic recombinase 1; SCP1, synaptonemal complex protein 1; SCP3, synaptonemal complex protein 3; PIWIL1,
Piwi-like RNA-mediated gene silencing 1.

Spermatogonial stem cell culture

SSC transplantation is a robust technology that may be ready
for translation to the human fertility clinic (e.g., for patients
who cryopreserved immature testicular tissues with SSCs
when they were young). However, based on our experiences
in Pittsburgh and coordinated centers and other published
reports [22, 74, 95], the amount of tissue obtained by biopsy
from prepubertal patients is small (30–400 mg) and may
contain a limited number of SSCs. Therefore, in vitro SSC
expansion may be needed prior to transplantation to achieve
robust engraftment and regeneration of spermatogenesis.

In rodents, SSCs can be maintained in long-term culture
with significant expansion in number, and these SSCs retain
their potential to restore spermatogenesis and fertility upon
transplantation [96–101]. The success of SSC culture in
rodents required the development of methods to isolate and
enrich SSCs while eliminating testicular somatic cells that
could rapidly overwhelm the cultures. In their initial report
on mouse SSC culture, Kanatsu-Shinohara and colleagues
[99] plated heterogeneous testis cells from newborn mice on
gelatin-coated plates. Testicular somatic cells rapidly adhered
to the plates while germ cells remained floating and could
be sequentially aspirated and replated onto secondary plates
to gradually remove somatic cells. In contrast, Hamra and
colleagues [96] used a positive selection approach with rat
pup testis cells that were plated on laminin. SSCs rapidly
adhered to the laminin-coated plates and floating testicular
somatic cells could be removed by aspiration. Other studies
used fluorescence activated cell sorting (FACS) or magnetic-
activated cell sorting (MACS) for the cell surface marker
THY1 (CD90) to enrich SSCs and reduce contaminating
somatic cells prior to culture [102]. Development of a serum-
free, defined medium facilitated the discovery of specific
growth factors that were required for SSC maintenance and
proliferation in culture. While Kanatsu-Shinohara used glial
cell-derived neurotrophic factor (GDNF), fibroblast growth
factor 2 (FGF2), epidermal growth factor (EGF), and leukemia
inhibitory factor (LIF) [99], others have shown that GDNF is
necessary and sufficient to support rodent SSC expansion in

culture. The addition of FGF2 and the soluble GDNF family
receptor (GFRα1) can increase the rate of SSC expansion
[100, 103]. Finally, feeder cells, such as mouse embryonic
fibroblasts are frequently needed to maintain SSCs in culture,
although feeder-free culture conditions on substrates such
as laminin have been described [104]. SSC transplantation
provided a definitive bioassay to confirm the presence and
number of functional SSCs in culture [105].

A number of laboratories around the world have reported
culturing nonhuman primate and human SSCs (hSSCs)
[106–128]. Langenstroth and colleagues [128] reported on
the isolation, enrichment, and short-term 11-day culture
of adult marmoset SSCs. Adult marmoset testis cells were
placed in regular tissue culture plates with minimal essential
media alpha (MEMα) supplemented with 10% fetal bovine
serum (FBS) at 35 ◦C [128]. No feeder cells or other tissue
culture substrates (e.g., laminin) were used and no growth
factors were added [128]. Similar to the experience with
mouse SSC cultures, they found that when heterogeneous
testis cell suspensions were placed in culture, the somatic
cells rapidly overwhelmed the culture [128]. Therefore, they
established a separation culture system in which floating
supernatant cells were aspirated after 24 h and placed in a
secondary culture dish [128]. Supernatant cells and attached
cells were then cultured separately for 11 days [128]. Then,
supernatant cells were collected from the supernatant cultures
and attached cells were collected from the attached cultures
for colonization potential quantification by primate-to-nude-
mouse xenotransplantation [128]. Monkey and hSSCs do not
produce complete spermatogenesis after xenotransplantation
to recipient mouse testes, but they do recapitulate several
functions that are unique to SSCs. They migrate and
engraft the basement membrane of recipient mouse ST,
proliferate to produce chains and clusters of cells with typical
spermatogonial appearance (high nuclear to cytoplasmic
ratio and frequently connected by intracytoplasmic bridges),
and survive long term [107, 129–134]. Using primate-to
-nude-mouse xenotransplantation, Langenstroth and col-
leagues [128] found that the 11-day supernatant culture
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retained about 60% of the number of colonizing spermato-
gonia that were originally placed in culture on day 0, and this
was 8-fold higher than the colonizing activity from 11-day
attached cultures.

More than 20 studies on hSSC culture methods have been
published [106–126], including three with fetal or prepubertal
testicular cells [76, 108, 109]. Many have used differential
plating on plastic, lectin, collagen, or gelatin to enrich SSCs
and reduce testicular somatic cell contamination. Others have
used positive or negative FACS or MACS selection alone or in
combination with differential plating. Positive selection mark-
ers have included integrin subunit alpha 6 (ITGA6), CD9, G-
protein coupled receptor 125 (GPR125), expression of stage-
specific embryonic antigen 4 (SSEA4), and epithelial cell adhe-
sion molecule (EpCAM). Negative selection markers include
KIT proto-oncogene (cKIT), protein tyrosine phosphatase
receptor type C (PTPRC or CD45), and THY1 (reviewed in
[135]). It is noteworthy that THY1 is a positive selection
marker for mouse spermatogonia but a negative selection
marker for transplantable human spermatogonia [102, 119,
135, 136].

Most hSSC culture studies used culture conditions similar
to those originally described by Kanatsu-Shinohara and col-
leagues in mice, including StemPro-34 medium supplemented
with various combinations of GDNF, FGF2, EGF and LIF.
Some of those studies reported significant expansion of hSSC
numbers in culture [76, 107, 137], while others reported a
rapid decline in hSSC numbers using the same conditions
[118, 120, 122, 125]. These disparate outcomes may be
explained by differences in starting cell populations, culture
conditions, and approaches that were employed to identify
and quantify hSSCs in culture (ranging from counting total
cells in culture to quantifying xenotransplantation colonizing
events). Therefore, there is no consensus “best method” for
culturing hSSCs that has been independently replicated in
different laboratories and no consensus on best methods to
identify and quantify bona fide hSSCs in culture. Nonetheless,
a number of research groups have reported hSSC survival and
expansion for periods ranging from 1 week to 6 months [106–
126]. While the results for hSSC culture are promising, they
are challenged by the inability to test the full spermatogenic
potential of these cells in xenotransplantation; and autologous
or homologous transplantation in humans is currently not
feasible.

De novo testicular morphogenesis

De novo testicular morphogenesis is defined as the recon-
struction of testicular architecture and spermatogenesis from
a heterogenous testicular cell suspension to replicate the in
vivo cell-to-cell interactions and functions of germ cells and
somatic cells. De novo testicular morphogenesis can be per-
formed entirely in culture or by subcutaneous xenotrans-
plantation into animal recipients (Figure 2, Table 2). This
approach can be used to dissect, manipulate, or modify the
component parts of a complex tissue to learn the impact
on testicular cell development or function. The approach
may also be used to eliminate unwanted and unnecessary
components, such as contaminating malignant cells, which
could disrupt development or be unsafe for therapy. Cells from
a single testis can be disaggregated to produce many organoids
that can be used for high throughput toxicity testing or novel
compound screening. De novo testicular morphogenesis has
been described in rodents as well as farm animals, nonhuman
primates, and humans [33, 138–149].

Methods for de novo testicular morphogenesis, in vitro,
were first described in rodents (Figure 2, Table 2). Yokonishi
and colleagues [150] pioneered the technique by producing
organoids from neonatal mouse testis cells in V-bottomed
96-well plates. After 2 days, organoids were collected and
cultured at the gas–liquid interface by placing on agarose
gel islands half-soaked in culture medium that was supple-
mented with knockout serum replacement (KSR). Seminifer-
ous tubule-like structures were apparent by two weeks in cul-
ture. Sertoli cells and germ cells were arranged inside ST and
Leydig cells were located in the space between the de novo-
formed tubules. Spermatocytes and spermatids were observed
by 60 days in culture. Zhang and colleagues used a variation of
the gas–liquid interface culture system; testicular cell/collagen
aggregates were deposited on a nucleopore filter that was
then floated on culture medium [151]. Seminiferous tubule-
like structures contained spermatogonia and spermatocytes
[151]. Sertoli cell differentiation occurred only when KSR was
included in the medium. Baert and colleagues [152] seeded
neonatal mouse testis cells on an alginate lattice scaffold alone
or embedded with testicular interstitial cells. The testicular
cells formed organoids within the lattice but did not self-
organize into ST [152]. Nonetheless germ cell differentiation
to the elongated spermatid stage was reported on both the cell-
free and cell-laden scaffold [152]. Donor age is a factor. Alves-
Lopes and colleagues [139] reported seminiferous tubule for-
mation from 5- to 8-day-old and 20-day-old rat pup testis
cells sandwiched in a three-layer Matrigel culture system but
not from 60-day old rat testicular cells. To our knowledge,
no offspring have been produced from any mouse in vitro de
novo testicular morphogenesis approach.

Huleihel and coworkers [153] cultured heterogeneous
testicular cell suspensions from prepubertal rhesus macaques
in 3-dimensional (3D) methylcellulose or soft agar culture
systems. Cells aggregated to produce colonies, including
CAMP-responsive element modulator-positive (CREM)+ and
acrosin (ACR) + spermatids, but did not reconstitute ST
[153]. Sakib and colleagues [149] reported a microwell aggre-
gation approach to producing 3D testicular organoids from
neonatal or prepubertal testicular cell suspensions of mice,
pigs, macaques, and humans. In all species, the organoids
exhibited an inverted seminiferous tubule architecture with
germ cells and Sertoli cells on the outside and other somatic
cells on the inside of the tubules [149].

Two studies reported adult and pubertal human testicular
organoids formation in human testicular extracellular matrix
(htECM) [146, 147]. Pendergraft and colleagues [146] used
a hanging-drop method to induce organoid formation from
cultured adult human spermatogonia mixed with immortal-
ized human Sertoli and Leydig cells suspended in a hydro-
gel of htECM. Baert and colleagues [147] seeded adult or
pubertal heterogeneous human testis cell suspensions onto a
3-dimensional htECM scaffold that retained the tubular archi-
tecture. Both approaches led to the production of organoids
including germ cells and somatic cells but neither approach
produced seminiferous tubule-like structures [146, 147]. Fur-
thermore, Baert and colleagues [147] reported that human
testis cell organoids formed with or without the benefit of
the scaffold. Similar to results in rodents, age appears to be a
factor in the formation of seminiferous tubule-like structures.
Oliver and colleagues [154] sandwiched fresh human fetal
testicular cells in a three-layer Matrigel gradient system. Sem-
iniferous cord-like structures appeared within 7 days with a
clear basement membrane separating Sertoli cells on the inside
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from peritubular myoid cells and Leydig cells on the outside
[154]. However, although DEAD-box helicase 4 (DDX4 or
VASA) + prospermatogonia were observed in the preculture
8-week-old fetal testicular tissues, they disappeared over 7
and 14 days of culture [154]. In summary, fetal or prepubertal
testis cell suspensions (mouse, rat, or human) can self-organize
to produce seminiferous cord- or seminiferous tubule-like
structures that do not appear when pubertal or adult cells
are used [154]. Meiotic or postmeiotic cells were occasionally
observed, and this does not appear to depend on the formation
of tubules [154]. To our knowledge, the function of haploid
cells produced by in vitro de novo testicular morphogenesis
approaches has not been tested [154].

The second de novo morphogenesis approach is to inject
the heterogenous testicular cell suspension under the skin of
a mouse host (Figure 2, Table 2). Pelleted testicular cells from
mice [33, 34], rats [33, 138, 155, 156], pigs [33, 141, 142],
sheep [143], and monkeys [144] have been transplanted into
mouse hosts and self-organized in vivo to form seminiferous
tubule-like structures (Table 2). Studies from Kita et al. [33]
and Zhang et al. [151] confirmed that cells from different
sources could be mixed to test their importance in tubule
formation or spermatogenesis and that haploid mouse cells
produced in de novo reconstructed tubules were competent
to fertilize and produce live offspring. Similar seminiferous
tubule-like structures containing spermatogenesis with hap-
loid germ cells have been reported from pig [141, 142] and
sheep [143] by transplanting neonatal testis cells under the
skin of immune-compromised mice. Spermatogenic efficiency
was improved by addition of Matrigel but not by introduc-
tion of an enriched germ cell fraction into a heterogeneous
pig testis cell suspension [142]. The fertilization potential of
pig and sheep spermatids in de novo-formed tubules was
not tested in those studies [141–143]. Neonatal marmoset
monkey testis cells self-organized into seminiferous cord-like
structures without lumens after subcutaneous xenotransplan-
tation to mouse hosts [144]. The cords contained Sertoli
cells and germ cells, but complete spermatogenesis was not
observed and there was no evidence of meiotic or postmeiotic
cells [144]. Cords were not formed from juvenile or adult
marmoset testis cells [144]. To our knowledge, in vivo de novo
testicular morphogenesis has not been attempted with human
cells. If human testis cells can produce results similar to those
reported above for mice, pigs and sheep, de novo-derived
haploid germ cells could theoretically be used for clinical
applications. This may raise concerns about xenobiotics that
could be circumvented if de novo testicular morphogenesis
from humans can be achieved in organoid cultures described
above. However, this has not occurred yet.

Testicular tissue-based therapies for male fertility
restoration
Testicular tissue grafting

For testicular tissue grafting, SSCs are maintained within
intact pieces of tissue, preserving the original architecture of
the ST, extracellular matrix, and testicular somatic cells with
associated paracrine signaling. Tissue grafting is performed by
implanting testicular tissue pieces at an orthotopic (e.g., scro-
tum) or ectopic (e.g., skin) site in the recipient animals (autol-
ogous, allogenic, or xenogeneic recipients) with or without
exogenous matrices or hormones [35–41, 75, 143, 157–188]
(Table 2). The recipients are usually castrated to stimulate the

gonadotropic hormone secretion to promote maturation of
the grafted tissues [35–41, 75, 143, 157–188]. The overall
goal is not to restore fertility since grafted testicular tissues
are not connected to the excurrent duct system. The goal is to
mature the grafted tissue to produce sperm that can be used to
fertilize eggs by ICSI and produce offspring. Honaramooz and
colleagues [85] reported that immature testicular tissues from
mice, pigs, and goats could be transplanted under the back
skin of immune-deficient nude mice and matured to produce
sperm. Two groups later reported that sperms from fresh
[35] or cryopreserved [37] immature mouse testicular tissue
grafts were competent to fertilize mouse eggs and produce
offspring. Immature testicular tissue grafting (autologous or
allogeneic) or xenografting is a robust technology that has
been replicated in mice [35–37, 157, 158, 160], hamsters
[157], rabbits [37], dogs [165], cats [162–164], horses [168,
176], pigs [36, 38, 166, 167, 169, 170], bulls [166, 171–
175], goats [36], sheep [143, 166], and monkeys [39, 41, 168,
177–179] with the production of spermatids or spermatozoa
(Table 2). Function of graft-derived sperm has been tested by
fertilization, and pre-implantation embryo development up to
blastocyst stage and/or production of viable offspring were
reported in mice [35–37], rabbits [37], pigs [38], goats [36],
and rhesus macaques [39–41] (Table 2). Only immature (fetal,
neonatal, pre-pubertal) testicular tissues were able to survive
and undergo complete spermatogenesis; whereas adult tissues
gradually lost differentiated germ cells and degenerated [75,
158, 161, 163–165, 168, 175, 176] (Table 2).

In addition, the efficiency of inducing complete spermato-
genesis varies widely among species. In studies of pigs, goats,
sheep, and monkeys, at least 50% of tubules contained com-
plete spermatogenesis post xenografting [36, 40, 166]. How-
ever, only less than 10% of tubules contained complete sper-
matogenesis in horse and bull xenografts [171, 173, 174,
176]. Graft retrieval time also greatly affects spermatogenesis
efficiency. In mice, grafted tissues recovered after 120 days
yielded about four times more tubules with complete sper-
matogenesis compared with grafts recovered before 120 days
[158]. Another mouse study also showed increasing percent-
age of tubules containing complete spermatogenesis from ∼20
to ∼55% in grafts retrieved at later timepoints between 4–
16 weeks post-grafting [36]. However, the number of surviv-
ing spermatogonia in pre-pubertal human testicular tissues
xenografted to mice decreased over time and complete sper-
matogenesis was not observed [158]. Honaramooz et al. [189]
reported that the fertilization potential of sperm produced
in the pig-to-mouse xenografts decreased over time and sug-
gested that this might be due to lack of excurrent ducts to
remove older sperm.

Live birth outcomes from autologous, allogeneic, or
xenograft experiments suggest that these approaches may
have application for maturing prepubertal testicular tissues
that were frozen for patients prior to gonadotoxic therapies
(Table 2). Furthermore, xenografting of human tissues to
mice or other animal hosts may circumvent the risk of re-
introducing malignant cells to patient survivors. Spermato-
gonia survival from fresh and cryopreserved prepubertal
grafts were reported at various timepoints, ranging from
days to months [75, 158, 159, 182, 183, 187, 190]. The
longest observation time was 9 months with orthotopic
xenografts retaining spermatogonia survival better than
the ectopic grafts [75, 183]. A few studies have reported
the initiation of spermatogenesis up to early spermatocytes
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from fresh or cryopreserved immature human orthotopic
or ectopic xenografts [184–186, 188]. However, complete
spermatogenesis from xenografting human testicular tissues
into mice has not yet been achieved [75, 158, 159, 180–
188]. Recipient choice may be a factor that should be tested
in future studies, including porcine or nonhuman primate
species, which are more closely related to humans.

Testicular tissue organ culture

Testicular tissue organ culture (TTOC) is an ex vivo system
that utilizes small testicular tissue fragments in culture initi-
ation to preserve the original 3D organization of germ cells
and somatic cells. TTOC aims to induce in vitro maturation
of germ cell and somatic cell compartments. This approach
may help circumvent the risks of malignant contamination
associated with autologous cell/tissue transplantation and
xenobiotic transmission in xenogeneic transplantation. Sev-
eral TTOC systems have been described in the past two
decades culturing immature testicular tissues of mice, rats,
monkeys, and humans (Figure 2, Table 2). In 2006, Livera and
colleagues [191] cultured fetal mouse or rat testes on floating
filter papers, but could not achieve in vitro maturation of
prospermatogonia. Since 2010, several studies have reported
spermatid or spermatozoa production from cultures of fresh
and/or cryopreserved neonatal mouse testicular tissues in
either the gas–liquid interphase systems [43, 44, 192–201]
or microfluidic systems [42, 199, 202] (Figure 2, Table 2). In
the conventional gas–liquid interphase system, 0.75–3 mm3

pieces of tissue are cultured on an agarose gel island (0.25–
1.5% w/v) half submerged in medium. Neonatal mouse tis-
sues yielded higher in vitro spermatogenesis efficiency com-
pared with adult testes [194]. When starting with immature
mouse testicular tissues, the in vitro spermatogenesis timeline
was very approximal to in vivo timeline. Round spermatids
emerged by day 21 and spermatozoa were observed by day
35 [42–44, 192–202]. Spermatids or spermatozoa isolated
from dissociated cultured tissues were used for fertilization
via ICSI from which healthy offspring were reported [42–44].
Reda and colleagues [203] reported round spermatids but no
spermatozoa in cultures of neonatal rat testicular tissue using
the agarose gel system, and the fertilization potential of the
round spermatids was not tested.

The testicular tissues cultured on agarose gel tend to mound
up after a few days leading to necrosis in the central part of the
tissue mound, and spermatogenesis as well as tissue integrity
declined after 35 days in culture [34]. Komeya and colleagues
invented several microfluidic systems that confine tissues to a
small space to prevent mounding of tubules and ensure that
all tubules have direct access to the air interface on one side
and the medium interface on the other side for exchange of
nutrients and waste with medium that flows past the tissue at
controlled rates [42, 199, 202]. The pump-driven microfluidic
device could maintain continuous spermatogenesis to produce
functional spermatozoa for up to six months in culture with
more than 90% of tubules containing haploid cells. Healthy
offspring were produced from both round spermatid injection
(ROSI) and ICSI from spermatozoa [42]. Similarly, pumpless
microfluidic devices maintained tubules with spermatogenesis
up to the round spermatid stage for at least four months
[199, 202]. However, spermatozoa were not observed with
the pumpless microfluidics devices, so some optimization of
media flow rates or other conditions may be needed.

There are only a few studies describing human TTOC.
Jorgensen and colleges were able to preserve the architecture
of human fetal gonads and adult testis tissues for up to
2 weeks using a hanging-drop culture system [204, 205].
They reported that fetal germ cells proliferated for at least
2 weeks in culture, and apoptosis was not increased during
this time [205]. Differentiated germ cells in adult testicu-
lar tissues did not survive past 7–10 days in culture, and
proliferation of germ cells also significantly reduced [204].
Yuan et al. cultured fresh gonadal tissue pieces, obtained
from 12–19-week-old male fetuses, on agarose gel islands;
they reported the presence of round spermatids in 1-month
cultures [45]. These in-vitro-derived round spermatids were
extracted and used to fertilize human oocytes via ROSI, from
which they obtained human blastocysts with normal kary-
otype and maternal-paternal genetic materials [45]. Moreover,
de Michele and colleagues [206] cultured frozen-and-thawed
pre-pubertal human testicular tissue pieces in a transwell
system and observed round spermatids (1–2 haploid cells per
seminiferous tubule cross-section) from 16 to 139 days in
culture.

Some of the key medium supplements, including retinoic
acid (RA) and follicle stimulating hormone (FSH), were
analyzed more in depth in a few studies. RA plays a crucial
role in initiating spermatogenesis, but its effects may be age
dependent. RA supplement enhanced in vitro spermatogenesis
in neonatal mouse testis tissues [195, 197] but was found to
be detrimental to fetal human [45, 207] or mouse [195, 208]
testicular tissues in culture. FSH and luteinizing hormone
(LH) play important roles in maturation of Sertoli cells
and Leydig cells, respectively, which are required for germ
cell development. Medrano and colleagues [209] reported
that FSH promoted Sertoli cell differentiation ((androgen
receptor (AR) expression) in prepubertal human testicular
tissue cultures. Indeed, FSH and LH promoted in vitro
germ cell survival and differentiation in both mouse [195]
and human testis tissues [209]. Medrano et al. [209] also
reported that replacing fetal bovine serum with KSR improved
Sertoli and Leydig cell differentiation as well as the number
of undifferentiated embryonic cell transcription factor 1
(UTF1)+ undifferentiated spermatogonia and synaptonemal
complex protein 3 (SYCP3)+ premeiotic spermatogonia.
Furthermore, Medrano et al. [209] found that sex determining
region (SRY)-box transcription factor 9 (SOX9)+ Sertoli
and undifferentiated embryonic cell transcription factor
1 (UTF1)+ undifferentiated spermatogonia numbers were
higher in cultures maintained a 34 ◦C (approximating the
temperature in the scrotum) than cultures maintained at
37 ◦C. In a mouse TTOC study, 34 ◦C cultures yielded higher
spermatogenesis efficiency than 32 ◦C or 37 ◦C cultures
(40.9% at 32 ◦C, 82.6% at 34 ◦C, and 0% at 37 ◦C) [192].
In 2017, de Michele and colleagues [210] reported that
when cryopreserved pre-pubertal human testicular tissues
were cultured for 139 days in medium supplemented with
50 IU/L FSH, somatic cell maturation, including Sertoli
cells and Leydig cells, was observed. Spermatogonia were
still present but significantly declined in number after two
weeks in culture, and spermatogonia differentiation was
not observed in their study [210]. In 2018, the same group
reported that a lower concentration of FSH (5 IU/L) supported
Sertoli cell and Leydig cell maturation as well as germ
cell differentiation to round spermatids [206]. The number
of round spermatids was quite low, (1 spermatid/tubule),
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which precluded further genetic/epigenetic or functional
characterization. Nonetheless, this was the most advanced
germ cell stage obtained from cultures of frozen-and-thawed
pre-pubertal human testicular tissues. As de Michelle and
colleagues [206] still encountered a significant decrease of
spermatogonia as soon as 2 weeks after culture initiation, fur-
ther investigations are guaranteed to enhance the survival and
self-renewal of spermatogonia to avoid stem cell exhaustion to
differentiation.

Induced pluripotent stem cell-based methods
for male fertility restoration

For patients who did not cryopreserve sperm or testicular
tissues prior to gonadotoxic treatments, it may be possible
in the future to generate germ cells from iPSCs derived from
any cell type in the body (e.g., skin fibroblasts, blood lym-
phocytes). The proof in concept studies were performed using
pluripotent mouse embryonic stem cells (ESCs) and mouse
iPSCs. The process of in vitro gametogenesis (ESCs or iPSCs
→ primordial germ cell-like cells (PGCLCs) → spermato-
gonia and/or sperm) recapitulates germ cell development in
vivo. During in vivo development, around day 7–8 in mouse
embryonic development or week 2–3 in human embryonic
development, primordial germ cells (PGCs) are specified in the
epiblast stage embryo and segregate to the yolk sac endoderm
[211, 212]. PGCs then proliferate and migrate into the embryo
with the hindgut endoderm around mouse embryonic day
10.5 or human embryonic week 4 [211, 212]. On mouse
embryonic day 12.5 or human embryonic week 5, PGCs arrive
at the genital ridges where they continue proliferation in the
indifferent gonads [191, 192]. Sex determination is driven by
differentiation of gonadal somatic cells at mouse embryonic
day 15.5 or human embryonic week 5–6, forming the embry-
onic testes or embryonic ovaries [211, 212]. In vivo germ
cell development provides a blueprint for how to produce
germ cells and gametes in vitro, using the appropriate devel-
opmental milestones including progression through meiosis
to produce haploid germ cells, evidence of recombination,
epigenetic reprogramming, euploid chromosome content and
production of healthy euploid progeny [213].

Previous studies presented several approaches to differ-
entiate ESCs and iPSCs, derived from mice, monkeys, or
humans, into the germ cell lineage (Figure 4, Table 2). In
mouse studies, ESCs or iPSCs are differentiated over two
days into epiblast stem cells (EpiSCs) or epiblast-like cells
(EpiLCs), respectively [46–50]. These EpiSCs/EpiLCs can be
further differentiated over 3–4 days into PGCLCs as floating
aggregates [46–50]. Putative mouse PGCLCs can be FACS
sorted based on expression of PR/SET domain 1 (Blimp1)-
Venus/Stella-Cyan transgenes or cell surface markers SSEA1
and INTEGRINβ3 for transplantation into mouse pup testes
to regenerate spermatogenesis and produce offspring [46, 47].
Alternatively, PGCLCs can be further differentiated in vitro
to more advanced germ cell stages, including germline stem
cell-like cells (GSCLCs) and/or spermatids that are competent
to fertilize and produce offspring [48–50] (Figure 4, Table 2).
PGCLCs showed global transcription profiles that were simi-
lar to mouse PGCs on embryonic day 9.5 [47]. PGCLCs could
only regenerate complete spermatogenesis to produce func-
tional spermatozoa when transplanted into infertile neona-
tal mouse recipients, but not adult recipients. The authors
proposed that the neonatal testes provided that necessary

developmental cues to support the further development of
PGCLCs and that these were lacking in the adult testis [46,
47].

If it is true that PGCLCs can only regenerate spermato-
genesis when transplanted into neonatal recipients, the
application in the human clinic is not obvious. This limitation
was partially addressed by Ishikura and colleagues, who
developed a method to further differentiate PGCLCs into
GSCLCs in a reconstituted testis (rTestis) by mixing PGCLCs
with fetal testicular somatic cells (FTSCs) in a transwell
plate [49]. The resulting GSCLCs could be maintained
in adherent cultures, similar to mouse SSC cultures [102,
214]. GSCLCs could also be transplanted to regenerate
complete spermatogenesis in adult recipients, including sperm
that were competent to fertilize and produce offspring
[50]. A similar rTestis approach recently described mixing
human PGCLCs (hPGCLCs) with fetal mouse gonadal
cells (xenogeneic, reconstituted (xr) Testis) that resulted in
the appearance of DDX4+, piwi-like RNA-mediated gene
silencing 4 (PIWIL4)+ prospermatogonia [215]. Zhou and
colleagues [48] reported a transplantation-free approach by
mixing PGCLCs with FTSCs to form aggregates and continue
to culture for 2 more weeks with RA, bone morphogenetic
proteins (BMPs), Activin A, FSH, bovine pituitary extract
(BPE), and testosterone (Figure 4). Spermatids were present
in these cultured aggregates and isolated for ROSI that led to
production of healthy, fertile offspring [48]. These studies
may have important implications for the human fertility
clinic, but they are early stage and need to be independently
replicated in other laboratories and in other species. These
approaches are further complicated be the requirement for
FTSCs, which would be difficult or impossible to obtain for
human application. An alternative approach may be the in
vitro derivation of the necessary fetal gonadal somatic cell
types from pluripotent stem cells, as described by Hayashi and
colleagues [216] for the derivation of fetal ovarian somatic-
like cells; or direct differentiation of patient somatic cells (e.g.,
skin fibroblasts) into FTSCs such as Sertoli cells, as described
by Buganim and colleagues [217].

Multiple researchers attempted to differentiate nonhuman
primate ESCs and iPSCs into the germ cell lineage in vitro
[218–220] (Figure 4, Table 2). Cynomolgus monkey ESCs
were established and used for in vitro differentiation into
embryoid bodies (EBs) [219]. EBs started expressing VASA
at day 4 post differentiation, suggesting the presence of
prospermatogonia [219]. At day 16, synaptonemal complex
protein 3 (SCP3) and DNA meiotic recombinase 1 (DMC1)
transcriptions were detected, suggesting the presence of
meiotic cells [219]. Yamauchi and colleagues [220] reported
that addition of bone morphogenetic protein 4 (BMP4) to
differentiation culture of Cynomolgus ESCs promoted earlier
gene transcription of synaptonemal complex protein 1 (SYP1)
in the EBs. In a separate study, Sosa and colleagues [218]
examined the capacity of Rhesus iPSC to differentiate into
incipient mesoderm-like cells (iMeLCs) and then rPGCLCs
in culture (Figure 4). rPGCLCs were then transplanted into
adult mouse or Rhesus testes to determine if the in vivo
somatic environment could support germ cell engraftment and
spermatogenesis [218]. Transplanted rPGCLCs into the adult
gonadal niche of either recipient species differentiated into
colonies of MAGE family member A4 (MAGEA4)+/Enolase
2 (ENO2)-/VASA+ germ cells and did not differentiate to
produce sperm in adult mouse or monkey recipient testes
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Figure 4. Illustration of various in vitro gametogenesis approaches using iPSCs of mice, monkeys, and humans. (Abbreviation: iPSCs, induced
pluripotent stem cells; iMeLCs, incipient mesoderm-like cells; PGCLCs, primordial stem cell-like cells; rTestis, reconstituted testis; GSCLCs, germline
stem cell-like cells; SLCs, spermatid-like cells; xrTestis, xenogeneic reconstituted testis).

[218]. These results indicated that rPGCLCs acquired trans-
plantation potential (engraftment, proliferation, and survival
for long-term upon transplantation) but not spermatogenic
potential [218]. Adult Rhesus testicular environment did not
provide proper biological cues for to support spermatogenesis
from transplanted rPGCLCs [218]. Like previous mouse
studies, transplantation into neonatal Rhesus could provide
the necessary environment to support spermatogenesis from
transplanted PGCLCs. However, those experiments will be
expensive and complex, and the justification is questionable
since transplantation to neonates in the human clinic is
not likely.

A number of laboratories have applied various differen-
tiation conditions (matrices and medium compositions) to
differentiate human ESCs (hESCs) and/or human iPSCs (hiP-
SCs) into hPGCLCs [221–225] (Table 2). Clark and col-
leagues [226] initially reported that hESCs could sponta-
neously differentiate into VASA+ germ cells in EBs, but the
number of VASA+ cells was low. The same group later showed
that BMP4 increased the expression of germ cell-specific
markers (VASA, SYCP3) during differentiation of hESCs in
EBs compared with EB cultures without BMP4 supplement.
BMP7 and BMP8b had modest additive effects [222, 227].
Two groups reported a stepwise differentiation of hiPSCs into
iMeLCs as an intermediate stage to enhance the efficiency of

hPGCLC derivation [215, 224]. EPCAM and INTEGRINα6
were used as surface markers to identify and isolate hPGCLCs
[224]. In human PGC specification, sex determining region
(SRY)-box transcription factor 17 (SOX17) regulates BLIMP1
to suppress the expression of endoderm and mesoderm genes
as well as acting as a key regulator in hPGCLC specification
[225].

In a series of studies, Durruthy and colleagues [228] tested
the hypothesis that the in vivo environment of mouse ST could
direct the differentiation of human pluripotent stem cells into
the germ cell lineage. They found that ESCs and iPSCs repro-
grammed with the typical Yamanaka OSKM (Oct4, Sox2,
Klf4, and c-Myc) factors produced large masses similar to
embryonal carcinoma cells and yolk sac tumors. In contrast
when VASA was added to the reprogramming mix (OSKMV)
(Oct4, Sox2, Klf4, c-Myc, and Vasa), the resulting iPSCs did
not form large masses and left the mouse testis structure intact.
The authors observed clusters of deleted in azoospermia-like
(DAZL)+/VASA+/UTF1+/GFRa1+ germ cell-like cells in the
ST [228–230]. Several groups have reported in vitro differ-
entiation of hESCs and hiPSCs into haploid cells, indicated
by Acrosin expression and a 1 N (haploid) peak observed
by Hoechst or propidium iodide (PI) staining followed by
flow cytometry [221–223, 231]. Functional testing of human
haploid cells is important but challenged by federal and state
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regulations and the need to secure funding from non-federal
sources.

Conclusions

Cancer survivors are concerned about the side effects of
medical treatments on their future fertility, and many of them
have expressed their desire to have children later in life [232].
Prior to gonadotoxic treatments, adolescent and adult men
can cryopreserve semen samples containing sperm that can be
used to achieve pregnancies with their partners using existing
ARTs (Figure 2). However, this is not an option for prepuber-
tal male patients who are not yet producing mature gametes.
Many clinics around the world are cryopreserving testicular
tissues for these prepubertal patients (Table 1) in anticipation
that next-generation technologies will be fully developed in
the future to mature those tissues and produce sperm, in
vivo or in vitro (Figure 2 and Table 2). This review has
described in detail on the progress of each technology being
developed. Every technology has its strengths and drawbacks;
therefore, it is reasonable to simultaneously invest efforts
into several technologies to accommodate various patient cir-
cumstances. Some of these techniques, including autologous
testicular cell transplantation and testicular tissue grafting,
are mature and may be ready for translation to the human
clinic (Table 2). This should be done only with approval of an
institutional review board. Other technologies reviewed in this
chapter (e.g., de novo testicular morphogenesis, TTOC, and
iPSC-derived germ cells) are in earlier stages of development
(Figures 2 and 4, Table 2). Louise Brown was born over
40 years ago as the world’s first baby who was conceived by
IVF [20]. Louise was possible because her parents were able to
produce eggs and sperms that were combined outside the body
to achieve fertilization. Advanced reproductive technologies
are in the research pipeline that may allow men/boys without
sperms or women/girls without eggs to have biologically
related children.
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