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Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved

receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the

brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying

in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably

different effects on brain size and physiology, thus highlighting the unique effects of the corre-

sponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the

IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative

diseases such as Alzheimer’s disease. The intricacy of brain insulin and IGF1 signalling represents

a challenge for the identification of specific IR and IGF1R signalling differences in pathophysio-

logical conditions. The present perspective sheds light on signalling differences and methodolo-

gies for specifically deciphering brain IR and IGF1R signalling.
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In the last 20 years, substantial progress has been made in

understanding insulin/insulin-like growth factor (IGF) 1 signalling

in the central nervous system (CNS), a former nonclassical insu-

lin responsive tissue, which is now considered as an insulin sen-

sitive organ (1). This perspective approaches the longstanding

challenge of identifying differences of insulin and IGF signalling

in the brain and deals with phenotypic discrepancies of perturba-

tions of the insulin receptor (IR) and IGF1 receptor (IGF1R) sig-

nalling cascade in the brain. Because diabetes is still on the rise

worldwide, the precise understanding of these crucial signalling

pathways, which are altered in metabolic diseases, is of consider-

able importance. The presence of brain insulin and IGF resistance

in neurodegenerative disease, as exemplified by a reduction in

insulin and IGF-1 sensitivity in postmortem brain tissues from

Alzheimer’s disease (AD) patients (2), highlights the importance

of these pathways for brain physiology. Thus, understanding and

discriminating these closely related signalling pathways is

central to current research and crucial for potential therapeutic

interventions for metabolic, neurological and neurodegenerative

diseases.

The insulin and IGF signalling pathway

The pancreas-derived hormone insulin and the liver-secreted

hormones IGF1 and 2 exert signalling effects by binding and

activating their congeneric receptors: IR and IGF1R. Although IGF1R

exists as a single isoform, IR is found in two distinct isoforms: IR-A

(exclusion of exon 11) and IR-B isoform (inclusion of exon 11). The

IR-A isoform exhibits a two-fold increased affinity to insulin and

an increased affinity for IGF2 compared to IR-B isoform (3,4). The

IR-A isoform appears to exert enhanced mitogenic effects, whereas

the IR-B isoform strengthens metabolic effects upon insulin stimu-

lation. Interestingly, IR-A is the major isoform in the brain and in

neurones, whereas glia cells exhibit predominantly IR-B isoform

expression (5). This expression pattern is conserved throughout dif-

ferent species, indicating that the mitogenic effects of central insu-

lin signalling are important for brain development and function (6).

The occurrence of IR and IGF1R homo- and heterodimers further

increases the complexity of these hormone receptor interactions.

Homo- and heterodimers display altered affinities for insulin and

IGF, allowing this system to react accurately to different insulin/
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IGF1 concentrations (7). Homodimers of IR and IGF1R exhibit higher

ligand affinity towards their endogenous ligands. Heterodimers

exhibit almost similar affinity to IGF1 compared to IGF1R homod-

imers but show substantially decreased insulin binding affinity (7).

Although heterodimers consisting of IR-A or IR-B and IGF-1 recep-

tor bind IGF1, IGF2 and insulin with similar affinity, they exhibit

higher affinity towards IGF1 compared to insulin (8,9), indicating

that the action of IGF1 is crucial for brain physiology. In the rabbit

brain, IRs exist predominantly as heterodimers and approximately

50% of all IGF1Rs form heterodimers (10). The abundance of het-

erodimers in distinct brain regions has not been investigated in

detail, although receptor heterodimerisation appears to be depen-

dent on the ratio of expressed receptor levels in a certain region

(10). Ligand binding (insulin, IGF1 and 2) to IR and IGF1R causes

autophosphorylation and activation of their tyrosine kinase domain

with subsequent binding and phosphorylation of insulin receptor

substrate (IRS) proteins. IRS proteins, which, in the brain, comprise

IRS1, IRS2 and IRS4 (IRS4 is mainly restricted to the hypothalamus),

are central to these hormone signalling pathways. They act as a

hub and enable two distinct signalling pathways: the phosphoinosi-

tide 3-kinase (PI3K)-AKT [also known as protein kinase B (PKB)]

pathway and the mitogen-activated protein kinase-extracellular

signal regulated kinase (MAPK-ERK) pathway (11,12). Binding of

PI3K to IRS proteins activates the PI3K catalytic subunit, converting

phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol

(3,4,5)-triphosphate (PIP3). Subsequently, phosphoinositide-depen-

dent protein kinase 1 binds PIP3 and activates AKT, enabling down-

stream signalling pathways such as mammalian target of

rapamycin complex 1, glycogen synthase kinase 3b and forkhead

box O (FoxO) signalling, thereby regulating neuronal protein con-

tent, autophagy, synaptic function, plasticity and proliferation (13–

15) (Fig. 1). Thus, dysregulation in any of the aforementioned insu-

lin/IGF-activated pathways causes deterioration of neuronal func-

tion and viability. Insulin/IGF1 stimulation of the second major

pathway downstream of IRS proteins (the MAPK-ERK pathway)

impacts upon brain cell proliferation and differentiation. Here, the

SH2 domain containing adapter molecules growth factor receptor-

bound protein 2 (Grb2) and Shc bind to the phosphorylated recep-

tors and IRS proteins. Grb2 binds then to, for example, son-of-

sevenless (i.e. SOS), which activates the guanine nucleotide-binding

protein Ras by catalysing the release of GDP (inactive Ras) and the

binding of GTP (active Ras). Subsequently, active Ras stimulates the

downstream kinase cascade consisting of Ser/Thr kinase Raf, which

further phosphorylates mitogen-activated protein kinase kinase
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Fig. 1. Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) signalling pathway. Insulin and IGF1 bind to their receptors, inducing a confor-

mational change and autophosphorylation of the IR and IGF1R beta subunit. Subsequently, insulin receptor substrate (IRS) proteins or Shc are recruited and

phosphorylated. Shc activates the mitogen-activated protein kinase-extracellular signal regulated kinase (MAPK-ERK) pathway and IRS proteins predominantly

induce activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway. Here, activation of PI3K causes phosphatidylinositol 4,5-bisphosphate (PIP2) to phos-

phatidylinositol (3,4,5)-triphosphate (PIP3) conversion and activation and phosphorylation of AKT by phosphoinositide-dependent protein kinase 1. AKT-depen-

dent regulation of forkhead box O (FoxO), mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3b (GSK3b) signalling regulates

axon growth, gene transcription, protein synthesis and neuronal plasticity. MEK, MAPK/ERK kinase; PDK1, phosphoinositide-dependent protein kinase 1; SOS,

son-of-sevenless. [Adapted from Servier Medical Art by Servier, licensed under a Creative CommonsAttribution 3.0 Unported License].
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(MEK), followed by phosphorylation of ERK1 and 2, thereby regulat-

ing proliferation and cell survival (Fig. 1). Consistently, a deficiency

of ERK signalling in the brain affects neuronal survival and causes

neuronal death (16,17), demonstrating that this pathway is crucial

for proper brain development.

Although all components of the IR and IGF1R signalling pathway

are ubiquitously expressed throughout the brain, they exhibit differ-

ent expression rates in certain brain regions (1,5,18,19), which may

partially account for different magnitudes of central insulin and

IGF1 signalling. IR gene expression is higher in the arcuate nucleus

of the hypothalamus (ARH), piriform cortex and amygdala com-

pared to IGF1R, which are regions important for controlling food

intake, energy expenditure, olfaction and anxiety (18). IGF1R exhi-

bits higher expression levels in circumventricular organs, as well as

the pituitary and cerebellum, thus indicating a more prominent role

for brain development and sensory function (18,20). Expression

levels of IR and IGF1R in brain change with age. Central IR expres-

sion is higher in younger animals and decreases with age (21). Spa-

tial memory training increases IR expression in hippocampal

regions, a region already displaying high IR and IGF1R expression

(18), indicating that the age-associated reduction of IR expression

may be attenuated in certain brain areas by training (22). In the

brain, IGF1R is also highly expressed during development and

decreases soon after birth to adult levels (23). Moreover, IGF1R

expression in brain negatively correlates with longevity in 16 differ-

ent rodent species, suggesting that modulation of brain IGF1 sig-

nalling may affect lifespan (24,25). On average, Igf1r and Irs2

mRNA expression is approximately two-fold higher than Ir and Irs1

gene expression in the brain of adult mice, suggesting a dominant

role of IGF1R signalling for brain development (1). The importance

and impact of regional expression differences of insulin/IGF1 sig-

nalling proteins, such as AKT and ERK and its influence on exerting

insulin/IGF1 action on brain physiology needs further investigation.

The impact of central IR and IGF1R signalling

Although the existence of insulin in the brain was revealed in the

late 1960s (19,26,27), the importance of these signalling pathways

was only first appreciated 10 years later. Woods et al. (28) demon-

strated that central application of insulin reduced food intake in

baboons. The discovery that the pancreas-derived hormone insulin

can act in the brain as an anorectic hormone changed the old view

of the brain as a non-insulin responsive organ to an insulin-sensi-

tive organ. The importance of IGF1 signalling on brain physiology

was unveiled starting in the 1980s, initially describing IGF1 sig-

nalling as a major growth promoting factor for the brain, affecting

neurogenesis, neuronal survival and myelination, which was later

also confirmed for IGF2 (25,29–32). Consistently, studies using

genetically engineered animal models clearly support the growth

promoting effect of IGF signalling on brain, whereas insulin sig-

nalling has a modulatory role for neuronal proliferation. In cultured

rat brain cells, insulin stimulation induces DNA synthesis and

deficiency of insulin 1 and 2 causes reduced brain growth (33–36),

although the loss of IR in the brain does not affect neuronal

survival (37).

IGF1 signalling is complex as a result of the existence of several

IGF binding proteins (IGFBP) which serve as carrier proteins for IGF

and enhance or attenuate IGF signalling (38). Loss of IGF1, IGF2,

IGF1R or overexpression of IGFBP1 and 3 (antagonising IGF1R sig-

nalling) reduces brain size (25,29,31,39–44), whereas deficiency of

IR does not influence brain development (37,45). Moreover, overex-

pression of IGF1 increases brain size, whereas mice with elevated

IGF2 levels display neonatal overgrowth (32,46) and IGFBP2 overex-

pression does not affect brain size (47). Although both receptors

use IRS1 and 2 as downstream targets to exert their effects, IRS2

may occupy a dominant role for central IGF1R signalling. This

hypothesis emerges from the observation that IGF1R and IRS2 defi-

ciency (25,48,49) severely impacts upon brain development with

decreased brain size, whereas mice with a neuronal knockout of

insulin receptor or mice deficient for IRS4 do not exhibit any signs

of altered brain size (37,50). IRS1 knockout animals not only exhibit

a strong reduction in body size, but also display an increased

brain/body weight ratio (48), and IRS1 deficiency does not prevent

IGF-I stimulated brain growth (48,51). Although IRS2 deficient ani-

mals possess smaller brains, neuronal IRS2 overexpression does not

impact brain growth (52), highlighting a modulatory role of IRS2

on IGF1R-dependent brain growth (53), as well as compensatory

regulation by other IRS proteins or a yet unidentified role of IRS2

for brain growth through non-neuronal cells (Table 1). In addition,

in postmortem brain tissue from humans, 1 nM insulin activates IR

binding to IRS1 without activating IR-IRS2 interaction in the hip-

pocampus and cerebellar cortex. Conversely, 1 nM IGF1 induces

IGF1R binding to IRS2 without affecting IRS1 binding (2). Interest-

ingly the IGF1R–IRS2 axis occupies a crucial role for neuronal pro-

liferation and brain development. It is currently unknown whether

IGF1 signalling through IRS2 observed in the hippocampus and

cortex has relevance for IR/IGF1R signalling to the brain more

widely. Exclusive interaction partners for IRS1 and IRS2 such as

Csk (for IRS1) or DOCK-6 (for IRS2) have been identified in muscle

cells and Csk interacts specifically with the IR (54). Whether these

specific interactions are also present in brain remains to be investi-

gated.

Over recent decades, immense progress has been made in unrav-

elling additional effects of insulin and IGF signalling on brain func-

tion and metabolism.

Insulin can act as an anorexigenic hormone in the arcuate

nucleus by modulating pro-opiomelanocortin (POMC; anorexigenic),

agouti-related protein (AgRP; orexigenic) and neuropeptide Y (NPY;

orexigenic) neurones to promote satiety (28,55–57), whereas IGF2,

but not IGF1, reduces NPY release to a similar extent as insulin

(58). In addition, the injection of an enriched preparation of IGFs in

the lateral ventricle decreases food intake in rats compared to sal-

ine injection (59). Yet, central inhibition of IGF1R signalling reduces

short-term food intake (60), although adult brain-specific IGF1R

heterozygous mice exhibit slightly greater body weight (25). Thus,

the precise effect of central IGF1 and 2 signalling on food intake

remains unclear. Insulin and IGF1 act in the brain and promote fer-

tility by regulating luteinising hormone, spermatogenesis and ovar-

ian follicle maturation (55,61) and increase thermogenesis via

brown adipose tissue activity (62). IR signalling suppresses hepatic
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gluconeogenesis and recent data indicate that this might be also

true for IGF signalling (63,64). In addition, the central action of IR

signalling also regulates the counter regulatory response to hypo-

glycaemia via epinephrine regulation (65) and insulin/IGF1 reduces

mean arterial blood pressure in part by activating endothelial nitric

oxide synthase, which increases levels of the vasodilator nitric

oxide (66–68). Strikingly, both hormones exhibit pro-survival effects

on neurones and increase mood and cognitive function, showing

that central effects of these hormones impact whole body physiol-

ogy, even beyond metabolism (1,45) (Fig. 2). Because intranasal

insulin application has been shown to attenuate the cognitive

decline in a small patient cohort suffering from AD (69) and IGF1

application reduces neuronal injury and improves neurologic func-

tion in rodent stroke models (70,71), the central regulation of these

receptor signalling pathways represents a therapeutic target for the

treatment of metabolic and neurodegenerative diseases. However, it

has been suggested that neuronal IGF resistance may represent an

endogenous, protective mechanism for the prevention of Ab accu-

mulation because neuronal IGF1R deficiency in a mouse model of

AD resulted in decreased Ab accumulation and amyloid plaques

(72). Thus, further research is needed to clarify whether enhancing

IGF signalling affects AD progression. In addition, the use of

insulin sensitiser glucagon-like peptide 1 agonist exenatide is cur-

rently being studied in a clinical trial for the treatment of

Parkinson’s disease (PD), another neurodegenerative disease

associated with diabetes mellitus (73,74). Whether the use of insu-

lin sensitisers in PD patients affect brain insulin signalling remains

unknown.

Brain insulin and IGF concentration

A central feature of the metabolic syndrome is peripheral and cen-

tral insulin/IGF resistance, which is also present in brains of AD

patients, indicating a link between altered metabolism and neurode-

generative diseases. The term ‘insulin/IGF resistance’ describes a

phenomenon where the body exhibits a blunted activation of the IR

and IGF1R signalling cascades. To counteract this resistance, beta

cells increase the production and secretion of insulin to propagate

sufficient insulin signalling, which can lead to hyperinsulinaemia.

One difference between central and peripheral insulin resistance is

the occurrence of high insulin concentrations only in the periphery.

Although obese, insulin-resistant patients display elevated blood

insulin levels, to counteract reduced insulin sensitivity, the cere-

brospinal fluid (CSF), which is produced from arterial blood by the

choroid plexuses of the lateral and fourth ventricles, exhibits

decreased, rather than increased, insulin levels (75–77). In addition,

there is no difference in brain insulin content between nondiabetic

and diabetic animals (76). This observation is of particular interest

because: (i) peripheral insulin is able to enter the CSF (78); (ii) basal

plasma insulin levels correlate with insulin levels in the CSF in large

animals (79); and (iii) type 1 diabetic rodent models exhibit

increased insulin uptake (80). Yet, impaired insulin transport across

the blood–brain barrier has been demonstrated in obese and insu-

lin-resistant humans (77,81) and may exclude brain hyperinsuli-

naemia as a phenomenon of central insulin resistance. IGF1 and

IGF2 levels are also reduced in brain samples of diabetic rodents

(82). Because insulin and IGF1 up-regulate IGF2 levels, the decrease

Table 1. Effect of Genetic Deletion of Proteins of the Insulin Receptor (IR) and Insulin-Like Growth Factor 1 Receptor (IGF1R) Signalling Cascade on Brain Size

and Metabolism.

Mouse model Brain size Metabolic phenotype References

IR Nes-Cre Normal Brain KO: obesity, increased food intake (♀), mild insulin resistance (37,55)

IGF1-R Nes-Cre Decreased Heterozygous brain KO: reduced body weight, increased

adiposity, hyperleptinemia, glucose intolerant

(25)

IRS-1 KO Slightly decreased, but increased

brain/body weight ratio

Whole body KO: decreased body size and weight, glucose intolerant,

insulin resistant

(33,36,48)

IRS-2 KO Decreased Whole body KO: decreased body weight, glucose intolerant, insulin

resistant, diabetic

(48,49)

IRS-4 KO Normal Whole body KO: slightly decreased growth in males, glucose intolerant (50)

Ins 1/2 KO Decreased Whole body KO: growth retardation, diabetes and ketoacidosis, glucosuria,

liver steatosis

(34)

IGF-1 KO Decreased Whole body KO: severe reduction in growth (29,31,39)

IGF-2 KO Decreased Whole body KO: severe reduction in growth (39,40)

IGFBP-1 OE Decreased Whole body OE: decreased body weight, hyperglycaemia (42–44)

IGFBP-2 OE Normal Whole body OE: decreased body weight, reduction in fasted serum glucose levels (47)

IGFBP-3 OE Decreased Whole body OE: Increased IGF-1 levels; reduced birth size, increased

adiposity when overexpressed under the control of a CMV promoter

(41)

IGF-1 OE Increased Brain OE: normal body weight, (46)

IGF-2 OE Normal, but decreased

brain/body weight ratio

Whole body OE: overgrowth, increased body weight (32)

IRS-2 OE Normal Neuronal OE: decreased activity and energy expenditure, increased fat mass,

age-dependent glucose intolerance and insulin resistance

(52)

OE, overexpression; KO, knockout.
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in IGF2 levels in diabetic brains may be part of decreased central

insulin and IGF1 function in diabetic conditions (83,84), thus high-

lighting the complex interplay of these related hormone cascades.

In summary, insulin and IGF1 signalling is reduced in brains of

patients suffering from the metabolic syndrome and AD, which

does not result in apparent hyperinsulinaemia in the CSF. Why this

should be different between the brain and periphery remains

unknown.

In addition to controversies about the relative insulin concentra-

tions measured in the brain compared to serum (76,85), insulin

mRNA has been detected locally in the brain of rodents and rabbits

(86–88). Multiple mouse lines expressing Cre recombinase under the

control of the Ins2 promoter (RIP Cre) display recombination events

in various regions of the brain (89,90), indicating that insulin mRNA

may be expressed in neurones. These particular neurones have been

shown to regulate energy expenditure and adiposity, highlighting

the importance of ins2 positive neurones for metabolism (91).

Nevertheless, the majority of brain insulin will very likely originate

from the periphery and the possible effects of locally produced

insulin mRNA in the brain on neuronal functions are unknown.

The median eminence is a circumventricular organ, close to the

ARH, and is characterised by a fenestrated blood–brain barrier and

hence has almost direct contact with blood metabolite and hor-

mone concentrations. Thus, insulin concentrations in specific brain

regions are different, with the highest levels in close proximity to a

fenestrated blood–brain barrier (92). Circumventricular organs are

characterised by a high density of IGF1R, indicative of increased

IGF1R action, and this might have a modulatory role for hypothala-

mic insulin action. An unanswered question is whether different

hormone threshold levels are required to fully activate IR and IGF1R

signalling in certain brain regions. The ARH exhibits high insulin

sensitivity as a result of locally elevated insulin concentrations, as

well as IR protein levels, and hypothalamic insulin signalling is

important for regulating food intake and hepatic gluconeogenesis,

as well as modulating energy expenditure (93). Consequently, dia-

betic animals exhibit hypothalamic insulin resistance (94). Yet,

although AgRP neurones in the ARH become insulin-resistant in

diet-induced obesity, SF1 neurones, which reside in the ventrome-

dial hypothalamus (VMH) and in animals fed a high-fat diet, do not

(64,95,96). This difference in insulin sensitivity may reflect different

insulin concentrations in sub-regions of the hypothalamus or indi-

cate that certain neuronal populations possess different insulin sen-

sitivities to enable proper insulin signalling. Whether insulin

concentrations differ between brain regions in diabetic patients is
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Fig. 2. Central insulin and insulin-like growth factor 1 (IGF1) signalling impacts on metabolism and cognition. Brain insulin receptor (IR) and IGF1R signalling

increase neuronal proliferation and synaptic plasticity and affect brain development and cognitive function. In addition, central insulin signalling reduces appe-

tite via regulation of hypothalamic neurones such as pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurones, reduces hepatic glucose out-

put and increases thermogenesis via brown adipose tissue (BAT) activity. Both hormones increase fertility by regulating luteinising hormone and thus

spermatogenesis and ovarian follicle maturation and reduce mean blood pressure by neural endothelial nitric oxide synthase activation and increased blood

flow to skeletal muscle. Furthermore, central insulin signalling regulates the counter-regulatory response to hypoglycaemia (the arrow size resembles the

strength of impact). [Adapted from Servier Medical Art by Servier, licensed under a Creative CommonsAttribution 3.0 Unported License].
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unknown, although selective insulin resistance in distinct brain

compartments has been observed in humans (97), indicating that

brain insulin responsiveness also varies in human metabolic

disorders.

Causes of central insulin/IGF1 resistance

Despite the aforementioned differences and difficulties in analysing

the insulin concentration and sensitivity in the brain, the peripheral

tissues and the brain both exhibit clear signs of insulin resistance

in metabolic disorders (98,99). Causes of central insulin/IGF resis-

tance are multifactorial and can impact on multiple levels of their

signalling cascade (11). Pathophysiological concentrations of nutri-

ents in blood or tissues, hyperglycaemia (high blood sugar), lipotox-

icity (a syndrome of excessive accumulation of lipid intermediates

in non-adipose tissue, which can cause cellular dysfunction and cell

death) or cellular perturbations of organelles, such as endoplas-

matic reticulum (ER) and mitochondria, can alter insulin/IGF sig-

nalling. Common to these causes is the downstream activation of

serine/threonine kinases (e.g. c-Jun kinase and IjB kinase), which

induce serine and threonine phosphorylation of IR, IGF1R, IRS pro-

teins or AKT. These phosphorylation events have been shown to be

either associated with or of being a causal factor of insulin/IGF

resistance (100).

Substantial progress has been made in understanding how

inflammatory pathways can modulate insulin/IGF signalling (101)

and it emerges that perturbations in cellular organelles are impor-

tant triggers in this process. A well described perturbation is the

unfolded protein response of the endoplasmatic reticulum (UPRer).

Proper UPRer restores cellular homeostasis, induces a stop of pro-

tein translation, and up-regulates chaperones and proteases to cope

with the burden of misfolded proteins by refolding and/or degrada-

tion of misfolded proteins. A reduction of obesity-induced ER chap-

erone activity improves insulin signalling and excessive activation

of UPRer induces central insulin resistance (102,103). Consistently,

expression of ER chaperones is increased in obese and diabetic con-

ditions, as well as in neurodegenerative diseases (102,104). Mito-

chondrial dysfunction has also been shown to cause central insulin/

IGF1 resistance. The unspecific term ‘mitochondrial dysfunction’

describes various forms of altered mitochondrial function (e.g. dys-

regulated mitochondrial dynamics, alterations in the membrane

structure, dysregulated calcium homeostasis or perturbations of

mitochondrial proteins) (105–109). Common to these alterations is

often an increased production of reactive oxygen species, activation

of serine/threonine kinases, which induce inhibitory phosphorylation

of insulin/IGF signalling proteins. These events are also associated

with type 2 diabetes, ageing and neurodegenerative diseases, high-

lighting the importance of proper mitochondrial function for whole

body physiology (110,111). Dysregulation of mitochondrial dynamics

in the hypothalamus results further in a disrupted mitochondrial-

ER cross-talk in POMC neurones, underlining close interaction of

these organelles in the hypothalamus and the complex modulation

of insulin/IGF signalling by these organelles (105,107). Interestingly,

treating mice with the insulin sensitiser rosiglitazone can reverse

insulin resistance and ameliorate mitochondrial dysfunction in the

CNS (112), underlining the interplay of insulin signalling and mito-

chondrial function in the brain.

Discrimination between central IR and IGF1R signalling

Although insulin and IGF1 signalling have been extensively studied

over recent decades, the molecular discrimination between IR and

IGF1R signalling events is far from trivial (113). Because both

receptors use the same intracellular downstream signalling cascade

(114), unique activation markers do not exist. The classical approach

for investigating and discriminating central insulin and IGF1 sig-

nalling comprises in vitro stimulation using low concentrations of

both hormones (1–10 nM), followed by immunoblotting for phos-

phorylated receptors, IRS proteins, AKT and ERK (2,115). For in vivo

approaches, insulin/IGF can be applied intranasally in the form of a

nasal spray to bypass the blood–brain barrier, which allows the

delivery of insulin/IGF into the brain with no or only marginal

effects in peripheral tissues (116–118). This is followed by magnetic

resonance imaging to measure cerebral blood flow as an indicator

of increased brain activity. In addition, insulin/IGF can be injected

(i) into the inferior vena cava, thereby reaching the brain via the

circulation (37,94,119) or (ii) directly into the brain using stereotaxic

injection in fasted animals (37,120,121), followed by brain dissec-

tion and immunoblotting of phosphorylated signalling pathway

molecules. Although several phospho-tyrosine and serine IRS1 anti-

bodies are available to decipher altered insulin/IGF action, the

detection of specific IRS2 phosphorylation is more difficult because

there is a lack of site-specific phospho antibodies. Because novel

IRS2 serine and tyrosine phosphorylation sites have been detected

in normal and resistant states (12,122), there is a need for new,

specific phospho-IRS2 antibodies to improve the understanding and

analysis of selective insulin signalling. In the brain, insulin/IGF sig-

nalling can also be visualised using immunohistochemical detection

of, for example, PIP3 (123), or the general marker for neuronal acti-

vation c-fos (124). However, these markers are not specific for IR

or IGF1R activation.

Another possibility for differentiating between IR and IGF1R sig-

nalling is the use of specific inhibitors and agonists or the genetic

modulation of proteins in these signalling pathways (Table 2). The

use of specific agonists or antagonists, which modulate receptor

activation on different levels, facilitates the discrimination of speci-

fic signalling. One specific IR antagonist comprises the covalently

dimerised insulin derivative B29-B290, which inhibits insulin binding

and downstream signalling (125). The monoclonal antibody XMetA

is a partial agonist, acting in an allosteric manner by enhancing

insulin binding to its receptor but selectively activating the PI3K-

AKT node, whereas the ERK pathway does not appear to be

affected (126). Because selective insulin resistance exists in diabetic

conditions by exclusive alteration either of the AKT pathway or the

ERK pathway (127), the use of XMetA is of particular interest for

investigating selective brain insulin signalling. The peptide S961

possesses agonistic and antagonistic properties on IR signalling.

When used at a high concentration, S961 exhibits antagonistic

characteristics (128) and induces systemic insulin resistance. How-

ever, when used at a concentration in the range 1–10 nM, S961

© 2016 The Author. Journal of Neuroendocrinology published by
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acts as a partial agonist in vitro, increases IR and AKT phosphoryla-

tion and promotes mitogenic effects without affecting metabolic

endpoints, inducing selective insulin signalling (129).

For IGF1R signalling, the peptide analogue JB1 specifically binds

to the N-terminus of IGF1R, prevents IGF1 binding and blocks

IGF1R signalling via both the downstream AKT and ERK pathways

(130). The cyclolignan picropodophyllin (ppp) not only inhibits

IGF1R activity by inhibiting its tyrosine phosphorylation, but also

causes a down-regulation of IGF1R protein levels, mimicking clo-

sely changes to central IGF1R signalling in diabetic conditions

(131–133). Importantly ppp also induces apoptosis in IGF1R defi-

cient cells, indicating the nonspecific IGF1R effects of this inhibi-

tor. Thus, good controls are needed when using this antagonist to

specifically address IGF1R signalling. When used at a low concen-

tration, the synthetic protein tyrosine kinase inhibitor tyrphostin

AG1024 exhibits a preference for inhibiting IGF1R, as indicated by

almost eight-fold lower IC50 values for tyrosine kinase activity and

four-fold lower IC50 values towards exogenous substrates com-

pared to IR inhibition (134). The use of monoclonal antibody alpha

IR-3 specifically inhibits IGF1 binding to its receptor and sup-

presses IGF1R-mediated ERK and AKT activation, and can also be

used to address IGF1R signalling in vitro (135). Moreover, ligand

specific markers have been described for IR and IGF1R signalling,

such as 14-3-3 proteins and GIPC1, which have been shown to

solely interact with IGF1R in yeast systems (136). In addition,

glypican 4 has been shown to interact with unoccupied IR but

not with IGF1R, whereas binding of the ligand causes dissociation

of glypican 4 from IR but binding to IGF1R (137). This is of speci-

fic interest because the interaction might be a marker for non-

activated and activated IR compared to IGF1R signalling. However,

whether all these interactions hold true in the brain is currently

unknown. Finally, stimulation of insulin or IGF1 in the context of

a knockout of the IR or IGF1R, or the use of antisense

oligodeoxynucleotides directed against the receptors (138), results

unequivocally in specific outcomes for their signalling pathway,

whereas the use of genetic ablation of downstream signalling pro-

teins, such as IRS proteins in the brain, will influence both path-

ways. The use of specific Cre-lines for a variety of brain cell

populations helps to delineate the effect of insulin/IGF signalling

in distinct brain subpopulations (139). Mice with a knockout of IR

in POMC neurones exhibit unaltered energy homeostasis, whereas

mice deficient for IR on AgRO neurones display increased hepatic

glucose output, demonstrating that insulin receptor signalling in

distinct neurones differentially influence metabolism (64). The

novel site-specific recombinase (SSR) Dre, which recognises palin-

dromic sequences termed ‘rox’ sites, extends the portfolio of avail-

able SSRs and may be used to investigate multiple gene splice

variants within one mouse model using Cre and Dre technology

(140). The use of adenoviral-associated virus (AAV) expressing Cre

recombinase will further accelerate the understanding of these

crucial pathways allowing for fast and precise genetic modulation/

ablation of insulin/IGF signalling molecules in discrete brain sub-

populations or regions (141,142). The CRISPR/Cas9 technique can

be used both to generate fast genetic knockout models and to

introduce disease-relevant point mutations in, for example, the IR

or IGF1R, allowing the rapid analysis of their effects (143,144).

These results and opportunities highlight the power of genetic

modifying techniques for revealing novel insights into the com-

plexity of brain insulin/IGF signalling.

Although the use of genetic knockout models of brain IR and

IGF1R reveals distinct phenotypes, indicating different signalling

events, it often does not accurately reflect observed signalling alter-

ations in metabolic disease models, which can occur later in life.

Examples include a reduction of brain IR expression during ageing

or the presence of neuroinflammation-associated brain insulin

resistance, which is absent in brain insulin receptor knockout ani-

mals (22,37,45,145). Conventional knockout strategies for IR and

IGF1R signalling molecules can cause developmental dysregulations,

as observed for neuronal IGF1R deficiency. Thus, use of inducible

Cre lines or AAV injection in older animals can help to improve our

understanding of the effects of brain insulin/IGF resistance on

physiology during ageing.

In summary, the toolbox of different agonists, antagonists and

genetic modifications of the IR and IGF1R signalling cascade will

help to decipher selective insulin/IGF1 signalling and resistance in

the brain, as well as its effect on metabolism, as reflected in human

pathophysiological conditions.

Human brain insulin signalling: where are we?

The human brain is an insulin-sensitive organ. As in rodents,

human brain insulin signalling modulates food intake and body

Table 2. Different Methodologies to Detect and Investigate Altered Insulin and Insulin-Like Growth Factor 1 (IGF1) Signalling in the Brain.

Methods Insulin signalling analysis IGF-1 signalling analysis References

Analysis of inhibitory phosphorylation IRS-1, IRS-2 and IR phosphorylation IRS1, IRS-2 and IGF-1R phosphorylation (2,115)

Intranasal application Insulin IGF-1 (116–118)

Analysis of hormone stimulation via

vena cava or stereotaxic injection

pAKT, pERK, PIP3 staining, c-fos pAKT, pERK, PIP3 staining, c-fos (37,120,121,123,124)

Use of agonist/antagonist B29-B’29, S961 peptide, XMetA Jb1, picropodophyllin, AG1024, a-IR3 (125,126,128–130,132–135)

Genetic modification IR KO, IR-AS, AAV, CRISPR/Cas9 IGF-1 R KO, siRNA, AAV, CRISPR/Cas9 (138,141–143) (see also

references in Table 1)

AAV, adenoviral-associated virus; IR, insulin receptor; IRS, insulin receptor substrate; KO, knockout; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phos-

phatidylinositol (3,4,5)-triphosphate.
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weight and impacts upon cognitive function. Recent data even

indicate a role for human brain insulin signalling in regulating

peripheral glucose and fatty acid metabolism, highlighting the

importance of central insulin signalling for human physiology (98).

Importantly, brain insulin resistance has also been demonstrated

in humans. Obesity, ageing, and increased levels of saturated fatty

acids are linked to brain insulin resistance. Causes for human

brain insulin resistance are not well understood and are the sub-

ject of current research worldwide. Recently, it has been shown

that gestational diabetes impairs foetal postprandial brain activity

(146), which may be a result of brain insulin resistance, as

demonstrated in rodents (147). Intranasal insulin appears to be

less effective in obese compared to lean individuals (97). In addi-

tion, selective brain insulin resistance has been characterised in

humans. Here, intranasal insulin fails to alter neuronal networks,

which influence body weight control but improve mood and

declarative memory (148). Whether this is a result of differential

uptake and/or the enrichment of insulin in specific brain parts has

not been fully clarified.

Whether intranasal application of insulin is able to attenuate or

even overcome brain insulin resistance in humans, a condition not

characterised by brain hyperinsulinaemia, is still unknown. How-

ever, systemic application of the long acting insulin analogue

insulin detemir, which is able to cross the blood–brain barrier,

causes a marked reduction in food intake compared to regular

human insulin in healthy volunteers, indicating that enhanced

insulin action, even in healthy people, modulates food intake

(149,150). In addition, peripheral insulin detemir application

improves the action of brain insulin in overweight, nondiabetic

humans (151), showing that central insulin application via nasal

sniffing may improve brain insulin resistance. Insulin resistance

can be also attenuated by insulin sensitisers, such as metformin,

which is widely used in clinics. Interestingly, metformin has been

shown to penetrate the brain, which makes it an attractive drug

for counteracting central insulin resistance (152). The effect of

other insulin sensitising agents on brain insulin signalling in

humans, such as thiazolidinediones (TZD) or glucagon-like peptide

1 receptor agonist, has not been extensively tested. Although TZDs

only modestly penetrate the brain, their peripheral administration

has been shown to reduce brain insulin resistance in animal

models (112), suggesting that TZDs can influence central insulin

signalling in humans.

A crucial milestone for the diagnosis and treatment of brain

insulin resistance is the identification of a specific marker that is

reliable and simple to measure. The identification of such marker(s)

might not only facilitate the diagnosis of central insulin resistance

but also improve the understanding of its influence on diabetes-

related neurological alterations.

Conclusions

Overall, IGF1R signalling is important for brain development and

neuronal proliferation, whereas brain IR signalling is a crucial

homeostatic factor modulating various aspects of brain physiology.

Although insulin and IGF signalling share signalling molecules and

exert several similar effects on brain physiology, varying in strength,

they also exhibit specific physiological differences (e.g. the effect of

central insulin receptor signalling on neuroinflammation and brain

development compared to brain IGF1R signalling). Still, it is very

difficult to specifically dissect and differentiate between IR and

IGF1R signalling. The use of specific receptor agonists and antago-

nists will help shed light on this scenario and decipher selective

insulin resistance as observed in obese patients. Because human

brain insulin/IGF resistance is present in metabolic disorders and

neurodegenerative diseases, its accurate diagnosis, understanding

and potential reversal is of utmost importance, especially in the

wake of an obesity pandemic and the worldwide increase of

patients suffering from neurodegenerative diseases.
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