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Abstract
Background Acinetobacter baumannii is a gram-negative, opportunistic pathogen, that is responsible for a wide 
variety of infections and is a significant cause of hospital-acquired infections. A. baumannii is listed by the World 
Health Organization (WHO) as a critical priority pathogen because of its high level of antibiotic resistance and 
the urgent need for alternative treatment solutions. To address this challenge, bacteriophages have been used to 
combat bacterial infections for more than a century, and phage research has regained interest in recent years due 
to antimicrobial resistance (AMR). However, although the vast majority of deaths from the AMR crisis will occur in 
developing countries in Africa and Asia, few phages’ studies have been conducted in these regions. In this study, we 
present a comprehensive characterization of the bacteriophages vAbBal23 and vAbAbd25, actives against extremely 
drug-resistant (XDR) A. baumannii.

Methods Phages were isolated from environmental wastewaters in Dakar, Senegal. The host-range, thermal and pH 
stabilities, infection kinetics, one step growth assay, antibiofilm activity assay, sequencing, and genomic analysis, were 
performed to characterize the isolated phages.

Results Comparative genomic and phylogenetic analyses revealed that vAbBal23 and vAbAbd25 belong to the 
Caudoviricetes class, Autographiviridae family and Friunavirus genus. Both phages demonstrated activity against strains 
with capsular type KL230. They were stable over a wide pH range (pH 3 to 9) and at temperatures ranging from 25 °C 
to 40 °C. Additionally, the phages exhibited notable activity against both planktonic and biofilm cells of targeted 
extremely drug resistant A. baumannii. The results presented here indicate the lytic nature of vAbBal23 and vAbAbd25. 
This is further supported by the absence of genes encoding toxins, resistance genes and bacterial virulence factors, 
highlighting their potential for future phage applications.
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Introduction
Acinetobacter baumannii is a gram-negative opportunis-
tic pathogen that is primarily responsible for a variety of 
infections, including pneumonia, urinary tract infections, 
ventilator-associated pneumonia, and bacteremia. This 
bacterium is widely distributed in diverse environments 
such as water, soil, food, activated sludge, and the human 
body [1, 2], A. baumannii poses a significant challenge as 
a nosocomial pathogen, contributing to multidrug-resis-
tant (MDR) infections and representing approximately 
20% of infections in intensive care units worldwide [3]. 
Unfortunately, over 80% of A. baumannii strains exhibit 
resistance to antibiotics, including β-lactams, carbapen-
ems, aminosids and cyclins, owing to the presence of 
multiple genetic elements encoding antimicrobial resis-
tance [4, 5]. Despite the use of carbapenems for treating 
A. baumannii infections, a recent surge in carbapenem 
resistance represents an important challenge in treat-
ment [6]. One of the pivotal virulence characteristics of 
this bacterium is its ability to form biofilms, which are 
communities of bacteria encased within a self-produced 
extracellular matrix [7] that adhere to either biotic or abi-
otic surfaces [8]. Within biofilms, bacteria exhibit high 
resistance to antibiotics and disinfectants [9], making 
their inhibition or eradication challenging in various set-
tings, including husbandry, the food industry, and clini-
cal environments [10]. Additionally, antibiotic resistance 
facilitates bacterial dissemination, potentially exacerbat-
ing the prevalence of healthcare associated infections 
caused by these bacteria [11]. According to the World 
Health Organization, A. baumannii ranks among the 
most dangerous pathogens, underscoring the urgent 
need for novel therapeutic strategies [12]. Given the 
global rise in antibiotic resistance, bacteriophage therapy 
has reemerged as a promising avenue of investigation 
[13].

Bacteriophages are viruses capable of targeting and 
eliminating specific bacteria. Bacteriophages are ubiqui-
tous in environments containing their host bacteria, and 
play pivotal roles in various biological processes [14]. 
While they were employed for treating various diseases 
until the 1940s, the advent of antibiotics in 1941 led to a 
decline in the use of bacteriophage therapy, although it 
persisted as a treatment modality in Soviet-aligned coun-
tries [15]. The key characteristics of phages include their 
specificity and ability to replicate within the host and at 
the site of infection without adverse effects [16]. In recent 
decades, a growing body of evidence from several stud-
ies has demonstrated the efficacy of phage therapy in 

treating drug-resistant bacterial infections [17], owing to 
its bacteriolytic activity and ability to eradicate bacterial 
cells within biofilms [18].

This study explores the properties of phages isolated 
from environmental wastewaters in Dakar, Senegal that 
target extremely drug resistant (XDR) A. baumannii 
isolates. The biological properties of the potential thera-
peutic phages, including plaque morphology, host range, 
stability, burst size, and planktonic and biofilm activity, 
were evaluated. In addition, the whole-genome anno-
tation of phages was investigated, which provides vital 
information for further therapeutic development and 
applications.

Materials and methods
Collection and identification of isolates
In this study, all 13 XDR A. baumannii strains from hos-
pital acquired infections were collected from the bio-
banks of two routine laboratories at tertiary hospitals 
in Dakar. Conventional phenotypic identification via 
the disk diffusion method confirmed all A. bauman-
nii isolates as XDR, according to the criteria defined by 
Magiorakos et al. [19]. The K locus types (KL) were deter-
mined through whole genome sequencing (WGS) and 
subsequent bioinformatic analysis using Kaptive 2.0 [20]. 
The bacterial cultures were grown in Luria Bertani (LB) 
broth or on agar (Difco Laboratories, Detroit, MI, USA) 
at 37  °C. Bacterial growth was monitored turbidimetri-
cally by measuring the optical density at 600 nm (OD600), 
with an OD unit of 1.0 corresponding to 3 × 108 cells/mL.

Isolation, purification, and host range of bacteriophages
Bacteriophages specific to A. baumannii were isolated 
from environmental wastewater sources in Dakar, Sen-
egal. The presence of phages was initially assessed using 
the double layer method, as outlined by Kusradze et al. 
[21]. In summary, a 1 mL wastewater sample, was cen-
trifuged and filtered through a 0.22-µm-pore-size mem-
brane (Millex®, syringe filter). After, 10 µL of the filtered 
sample was added on an overnight bacterial solution and 
inoculated into 2.5 mL of melted nutrient agar medium 
(0.7%). The resulting mixture was poured onto a plate 
containing 1.5% nutrient agar, creating two-layer plates. 
After the top layer solidified, the plates were incubated at 
37 °C for 24 h. The formation of plaques on the plate indi-
cates bacterial susceptibility to the phage. Single-plaque 
isolation was subsequently conducted for phage purifica-
tion. The host range of the phages was evaluated through 
a spot test by testing a serial dilution of the phage stock 
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(1010 PFU/mL) against 13 clinical XDR isolates and 
determining the efficiency of plating (EOP).

Effects of temperature and pH on the phage stability
To evaluate the thermal stability of the phages, 100 µL of 
phage solution (1 × 1010 PFU/mL) was incubated at tem-
peratures ranging from 25 °C to 70 °C for 1 h. Following 
incubation, 50 µL samples were collected for phage titra-
tion. These samples were then subjected to 10-fold dilu-
tion, and 4 µL of each dilution was spotted onto LB agar 
plates containing host bacteria, followed by overnight 
incubation. The plates were subsequently examined to 
determine phage titers. For the assessment of pH stabil-
ity, 10-fold diluted aliquots were prepared after 1  h of 
incubation in SM buffer at various pH values (3, 5, 9, and 
12), with pH 7.5 serving as the control. The phage titers 
were then determined. All experiments were conducted 
in triplicate biological assays, with each assay comprising 
triplicate plaque assays.

In vitro activity of phages against XDR A. baumannii
The in vitro bacteriolytic activity of the phages against 
their respective bacterial hosts was evaluated at vari-
ous multiplicity of infection (MOIs) values, follow-
ing the method described by Carlson [22]. Overnight 
bacterial cultures were diluted to an optical density at 
600  nm (OD600) of 0.2 in fresh LB medium and incu-
bated at 37 °C until they reached the mid-log phase. The 
microplates were then prepared by adding bacterial sus-
pensions and phages at different MOIs (1, 10− 1, 10− 3), 
followed by incubation at 37 °C with agitation. The con-
trol group consisted of A. baumannii isolates incubated 
with LB medium without phages. Bacterial growth was 
monitored by measuring the OD600 every 10 min using a 
spectrophotometer for 16 h. Each experiment was inde-
pendently conducted in triplicate, with triplicate assays 
performed for each replicate.

For one-step growth experiments, a previously 
described method was employed [23]. Briefly, following 
phage adsorption at room temperature for 5  min and 
centrifugation at 10,000  g for 30  s, the supernatant was 
removed. The pelleted cells were resuspended in 20 mL 
of preheated (37 °C) LB broth and centrifuged at 10,000 g 
for 30 s (repeated 3 times). The final resuspended pellet 
was then incubated at 37  °C. Samples were collected at 
5 min intervals, and phage titers were immediately deter-
mined. Each experiment was replicated three times.

Biofilm formation and the antibacterial activity of the 
phage against biofilms
The antibiofilm activities of phages vAbBal23 and 
vAbAbd25 were experimentally assessed at two differ-
ent MOIs (10 and 1). To evaluate the effects of the phages 
on the biofilm formation of the host strain AB12, we 

conducted inhibition experiments on bacterial growth 
in 96-well plates and the OD600 values of each well were 
measured at 24  h post bacterial inoculation. We inves-
tigated the effects of phages on pre-existing biofilms 
formed by two XDR strains using a method described 
previously by Zaki et al. [24]. Overnight cultures of each 
strain were diluted 1:10 in fresh LB medium and incu-
bated at 37  °C until an OD600 of 0.2 was reached. Sub-
sequently, 100 µL of each culture was transferred to 
individual wells of a 96-well microtiter plate and incu-
bated at 37 °C for 24 h to allow biofilm formation. Follow-
ing incubation, the plates were emptied and cleaned three 
times with phosphate buffer saline (PBS). Each well was 
then treated with either 100 µL of the phage solution in 
SM buffer (pH 7.4) at various MOIs (1 and 10) or supple-
mented with LB medium. The plates were further incu-
bated for 24 h at 37 °C. Following the incubation period, 
the wells were emptied and cleaned twice with sterilized 
PBS. Subsequently, each well was stained with 150 µL of 
1% crystal violet. After 15 min of staining at room tem-
perature, the wells were rinsed with sterile water, and sol-
ubilized in 150 µL of 100% ethanol for 10 min. A volume 
of 100 µL from each well was then transferred to a fresh 
96-well plate. The reduction in biomass was determined 
by measuring the difference in absorbance at 600  nm 
between the control (untreated) and phage-treated wells. 
Each experiment was replicated at least three times. For 
quantification, after incubation of the plates for 24 h, the 
supernatants were collected for planktonic cell counting 
and adherent cells were scraped from the surface of the 
well using pipette tips and suspended in PBS for biofilm 
cell counting. Serial dilutions of suspended cells were 
then plated for bacterial counting. Each experiment was 
replicated three times.

Genomic DNA extraction
Genomic DNA (gDNA) was isolated from high-titer 
stocks (> 1010 PFU/mL). Initially, 1 mL of phage lysate 
was treated with 10 µL of DNase I (20 U) and 4 µL of 
RNase A (20 mg/mL), followed by incubation for 30 min 
at 37 °C. DNA extraction was then performed using the 
phenol-chloroform method [25]. Proteins were removed 
and phage DNA was purified by two cycles of phenol/
chloroform/isoamyl alcohol extractions and DNA was 
precipitated with isopropanol. After washing in 70% 
ethanol, the pellets were resuspended in 30 µL of water. 
Nucleic acid concentrations were quantified using a 
Qubit 2.0 fluorometer (Thermo Fisher Scientific) to 
assess sample quality.

Genome sequencing and bioinformatic analysis of 
sequencing data
For library preparation, 1 ng of DNA was utilized with 
Nextera XT DNA library preparation kits (Illumina®, 
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San Diego, CA, USA), following the manufacturer’s 
protocol. WGS was conducted on Illumina® iSeq100 
sequencers, with a 300-cycle i1 Reagent V2 Kit (Illu-
mina®, San Diego, CA, USA). Quality control of the 
reads was performed using FastQC v0.12.1 [26], fol-
lowed by adaptor trimming with trim-galore v0.6.10 [27]. 
The trimmed paired-end reads were de novo assembled 
using SPAdes v.3.15.5 [28] in careful mode. Cover-
age per contig and assembly validation were assessed 
using BBMap v 35.85 with default parameters [29], and 
contaminating host DNA was manually removed. The 
input genome, sorted and indexed using Samtools v1.18 
[30], and assembly error corrections were performed 
using Pilon v1.24 with default parameters [31]. The pre-
dicted coding sequences (CDS), transfer RNAs (tRNAs), 
transfer-messenger RNAs (tmRNAs), virulence factors 
(VFs), antimicrobial resistance genes (AMRs), clustered 
regularly interspaced short palindromic repeats (CRIS-
PRs), and functional annotations for CDSs were identi-
fied using Pharokka v1.3.0 with default parameters [32]. 
Circular genome visualization was performed using the 
option pharokka_plotter. The whole genome sequences 
of phages underwent phylogenetic analyses utilizing the 
Virus Classification and Tree building Online Resource 
(VICTOR) (https:/ /ggdc.d smz.de/ vict or.php, accessed 
on 23 April 2024). Phage sequences were sourced from 
the NCBI nucleotide database. Pairwise comparisons 
of the nucleotide sequences were performed using the 
Genome-BLAST Distance Phylogeny (GBDP) method, 
with the recommended settings for prokaryotic viruses 
[33]. In accordance with ICTV recommendations, the 
phage taxonomy was refined using VIRIDIC  (   h t  t p :  / / r h  e a  
. i c b m . u n i - o l d e n b u r g . d e / V I R I D I C /     , accessed on 23 April 
2024), which employs the virus intergenomic distance 

calculation method under the BLASTn default settings 
[34]. Double-stranded DNA (dsDNA) bacteriophages 
are classified into the same species if they share an aver-
age nucleotide identity (ANI) of 95% or greater. Phages 
with an ANI of at least 70% across the entire genome are 
grouped within the same genus [34, 35].

Results
Antimicrobial susceptibility testing
The A. baumannii strains, which were classified as sensi-
tive or resistant, presented varying levels of susceptibil-
ity to the tested antibiotics, and a resistance phenotype 
was determined. The bacterial strains showed resistance 
major antibiotics such as imipenem, tobramycin, tetracy-
clin and ciprofloxacin. All the isolates were characterized 
as XDR (Supplementary Table 1).

Phage isolation, purification and host range
Two phages vAbBal23 and vAbAbd25 were isolated from 
environmental wastewater samples, using XDR A. bau-
mannii AB12 as the host strain. Strain AB12 belong to 
the sequence type 164 (ST164) and has the capsular type 
KL230. A spot test of the serial diluted phages on a bacte-
rial lawn of strain AB12 was done and phage vAbBal23 
formed clear plaques 1–2  mm in diameter with a halo, 
whereas phage vAbAbd25 formed clear plaques < 1  mm 
in diameter without a halo (Fig.  1). Host range analysis 
showed that among the 7 different KL types, both phages 
could infect only two strains with the same KL type 
(KL230) (Supplementary Table 2).

Physicochemical stability of the phages
We assessed the ability of phage particles to remain 
infectious across a range of temperatures and nonneutral 

Fig. 1 Plaque morphology of phage vAbBal23 (clear plaque 2 mm with a halo) and vAbAbd25 (clear plaque, < 1 mm without a halo) on isolate AB12
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pH solutions. Each experiment was conducted in tripli-
cate repetitions and p values (“*” for p-value < 0.05, “**” 
for p-value < 0.01, “***” for p-value < 0.001, and “****” for 
p-value < 0.0001) were used for statistical and quantita-
tive analysis. The temperature stability tests revealed 
that after one hour of exposure, both phages remained 
fully infectious at temperatures up to 40 °C, but they lost 
titer at higher temperatures. A thermal transition was 
observed at a midpoint of approximately 55 °C (p < 0.0001 
for vAbBal23, p = 0.0319 for vAbAbd25), with a subse-
quent decrease in phage viability up to 65 °C (p < 0.0001), 
and no viable phage was observed at 70  °C (p < 0.0001) 
(Fig.  2A and B). The optimal pH values for maintaining 
phage activity ranged from 5 to 9. However, the titer of 
phages was significantly reduced when they were exposed 
to an alkaline buffer solution at pH 12 (p < 0.0001). Addi-
tionally, the two phages showed different tolerances to 
acidic environments; vAbAbd25 remained stable at pH 
3, whereas vAbBal23 showed a slight decrease in phage 
viability (p < 0.0001) after being exposed to a pH 3 buffer 
for one hour (Fig. 2C and D).

Infection dynamics and one step growth assay
The growth curves of the host strain AB12 were moni-
tored after treatment with vAbBal23 and vAbAbd25 by 
measuring changes in the OD600 nm over a 16 h incuba-
tion period. Comparisons were made between untreated 
bacterial growth and growth in the presence of phage 
lysate at different MOIs (1, 10− 1, 10− 3). The results 
revealed a steady increase in growth for uninfected XDR 
A. baumannii isolates, whereas treatment with phages 
significantly inhibited bacterial growth. Both phages 
showed similar bactericidal activity, with phage vAb-
Bal23 treatment resulting in a 70% reduction in bacte-
rial growth and vAbAbd25 treatment showing a 71.7% of 
reduction. Treatment with a combination of both phages 
resulted in a slight increase in bactericidal reduction to 
75.8%. No significant differences were observed with dif-
ferent MOI treatments (Fig. 3A, B and C).

According to the one-step growth assay, the latent 
period for both phages was approximately 15  min, 
defined as the time between adsorption and the start of 
the initial burst. The estimated burst size, the average 
number of new phage particles released per infected cell, 

Fig. 2 Stability of phages vAbBal23 and vAbAbd25 under various conditions. (A) and (B) Effects of temperature on the stability of phages. The phage was 
incubated at different temperatures for 1 h. (C) and (D) Effects of pH on the stability of phages vAbBal23 and vAbAbd25. The phage was incubated for 1 h 
at different pH values. The experiments were independently performed in triplicate with triplicate assay. The data are presented as the means ± standard 
errors from three replicates. “ns” means no significant difference, “*” means p < 0.05, “**” means p < 0.01, “***” means p < 0.001, “****” means p < 0.0001
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was 2 103 and 270 PFU/cell for vAbBal23 and vAbAbd25, 
respectively (Fig. 3D).

Biofilm assay
Both phages, at all assayed MOIs, significantly succeeded 
in subverting biofilms (p < 0.05). In co-cultures set-up at 
MOI 1, significant losses (p < 0,05) of approximately 70% 
and 71.7% biomass were observed after 24  h for vAb-
Bal23 and vAbAbd25 on AB12 (Fig.  4A and B). For the 
viable count assay, the results demonstrated significant 
reductions (p < 0.05) in both planktonic and biofilm cells 
for the phages vAbBal23 and vAbAbd25 (Fig. 4C and D).

Genomic characterization
The genomes of phages vAbBal23 and vAbAbd25 were 
sequenced and duly assembled, resulting in contigs of 
41,386  bp and 41,193  bp genome size, respectively. The 
GC content of the vAbBal23 phage genome is 39.2%, 
whereas that of the vAbAbd25 phage genome is 39.3%. 
The genome of phage vAbBal23 encodes 60 protein-
coding genes (CDSs), while phage vAbAbd25 encodes 
58 CDSs. A comparison of the annotated CDSs in both 

phage genomes revealed that, 32 CDSs in vAbBal23 and 
28 CDSs in vAbAbd25 are predicted to be hypothetical 
proteins or proteins of unknown function. Both genomes 
contain known proteins relevant to the phage tail, head, 
packaging, DNA metabolism-related proteins, and host 
lysis proteins (endolysin, holin/anti-holin). No genes 
related to toxins, virulence factors, antibiotic resistance, 
or integrase enzymes were detected among the CDSs 
with predicted functions in phage genomes. Circular 
maps of the annotated genomes of phages vAbBal23 and 
vAbAbd25 are displayed in Fig. 5, and a detailed descrip-
tion of the CDS is available in Supplementary Tables 3 
and 4.

The phylogenetic tree generated by the Virus Clas-
sification and Tree Building Online Resource (VIC-
TOR) serves as an effective tool for viral classification. 
In the VICTOR phylogenetic tree, phages vAbBal23 and 
vAbAbd25, along with their homologous sequences, 
were compared with other phages classified in the ICTV 
classification. The analysis revealed that vAbBal23 and 
vAbAbd25 resemble each other and cluster together with 
phages belonging to the unclassified Friunavirus group 

Fig. 3 In vitro planktonic cell lysis assay evaluating phage A) vAbBal23 against strain AB12, B) vAbAbd25 against strain AB12 and C) a combination of 
phages vAbBal23-vAbAbd25 against strain AB12. Each phage was studied at multiplicities of infection (MOIs) 1, 10− 1, and 10− 3. The data represent the 
means and standard errors from three biological and technical triplicate experiments for single phage treatment and triplicate experiments for phage 
cocktail treatment. D) One-step growth curve of phages vAbBal23 and vAbAbd25 on AB12. The data points indicate the PFUs/mL at different time points. 
Each data point represents the mean of three independent measurements

 



Page 7 of 11Ndiaye et al. BMC Microbiology          (2024) 24:449 

(Fig. 6A), which is consistent with previous findings. The 
hosts of these unclassified Friunavirus phages are from 
the Acinetobacter genus. Average nucleotide identity 
(ANI) analysis of phages vAbBal23 and vAbAbd25 with 
closely related phages shows that both phages represent 
new species in the genus Friunavirus (ANI < 95%) and 
propose the name “Friunavirus sninA” and “Friunavirus 
sninB” respectively (Fig. 6B).

Discussion
An infection caused by a bacterial strain resistant to all 
available antibiotics can represent a fatal outcome for a 
patient. Each year, approximately 700,000 individuals die 
from untreatable bacterial infections [36]. Phage therapy 
has the potential to serve not only as an exceptional clini-
cal option to prevent such fatalities but also as a standard 

treatment if certain challenges are addressed. One major 
challenge is the highly specific nature of phages, which 
can infect only a small percentage of bacterial strains.

In this study, we isolated two Acinetobacter phages, 
vAbBal23 and vAbAbd25, that demonstrated a narrow 
host range, which is a typical feature of Acinetobacter 
phages [37, 38]. Both phages showed significant bac-
tericidal efficacy, reducing bacterial populations by up 
to 75.8%. Phages targeting A. baumannii are relatively 
specific to the Acinetobacter genus [39]. This limited 
host range is advantageous as it minimizes the elimina-
tion of other bacterial species, preserving the micro-
biota [40]. However, it can represent a challenge in 
identifying phages that specifically match the bacteria’s 
K locus for each infection [41]. Further characterization 

Fig. 4 Efficacity of phages vAbBal23 and vAbAbd25 to reduce preformed biofilms for strains (A) AB12, (B) AB13 and quantification of planktonic and 
biofilm (C) AB12, (D) AB13 after phage treatments. The biofilm biomass and bacterial cell viability were determined by the crystal violet assay and the 
colony counting method, respectively. The data are illustrated in a violin plot derived from a biological triplicate and technical triplicate experiments. The 
statistical significance is denoted as “*” for p-value < 0.05, “**” for p-value < 0.01, “***” for p-value < 0.001, and “****” for p-value < 0.0001
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of Acinetobacter phages vAbBal23 and vAbAbd25 
focused on their potential application as antimicrobial 
therapeutics.

Phage attachment to the bacterial surface represents 
the initial stage of the phage life cycle. Furthermore, 

alterations in environmental pH and temperature condi-
tions, where the phage resides, are recognized as crucial 
factors influencing the phage life cycle [42]. The phages 
vAbBal23 and vAbAbd25 exhibit high stability across a 
temperature range from 25 °C to 40 °C, notably showing 

Fig. 6 Phylogenetic and comparative genomic analyses of the phages vAbBal23 and vAbAbd25. (A) Phylogenetic tree of vAbBal23 and vAbAbd25 gen-
erated by VICTOR using the whole-genome sequences of phage homologs in BLASTn. (B) Percentage sequence similarity between phages calculated 
using VIDIRIC

 

Fig. 5 Predicted coding sequences (CDSs) of phages (A) vAbBal23 and (B) vAbAbd25 with transfer RNAs (tRNAs), transfer-messenger RNAs (tmRNAs), 
virulence factors (VFs), antimicrobial resistance genes (AMRs), clustered regularly interspaced short palindromic repeats (CRISPRs) and functional annota-
tion of the CDSs
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sustained viability at the typical human body temperature 
of 37  °C. Additionally, the phages demonstrated excep-
tional stability across a wide range of temperatures and 
pH values, making them suitable for pharmaceutical for-
mulation and therapeutic use. Its resilience in both acidic 
and alkaline environments (pH 3–9) also allows for oral 
administration without compromising its viability in the 
gastrointestinal tract [43].The resilience of these phages 
to pH and temperature, is a pivotal factor determining 
their suitability for therapeutic applications, particularly 
considering the various routes of administration available 
[44].

The one-step growth curve revealed that both phages 
had a short latent period of 15 min. However, vAbBal23 
had a larger burst size (2,103 PFU per infected cell), 
whereas vAbAbd25 had a smaller burst size (270 PFU 
per infected cell).Studies have indicated that phages with 
a long latent period may experience prolonged and less 
efficient growth and replication, whereas those with a 
short latency can replicate more rapidly and efficiently 
release progeny phages [45]. Additionally, phages with 
a large burst size are regarded as more virulent because 
they can quickly and efficiently eradicate bacterial infec-
tions [46].

In this study, we also explored the impact of phages 
vAbBal23 and vAbAbd25 on reducing the biomass of 
A. baumannii biofilm through disruption assays. Bio-
films are bacterial communities that exhibit strong 
resistance to antibiotics and are often associated with 
chronic infections [47, 48]. Several factors contribute 
to the heightened antimicrobial resistance of biofilm-
associated microorganisms, including the extracellular 
matrix, which forms a physical barrier limiting the dif-
fusion of antimicrobial agents [49]. Furthermore, the 
depletion of nutrients and oxygen within the biofilms can 
lead bacteria to enter a stationary phase, reducing their 
susceptibility to antimicrobial agents [50]. The ability of 
bacteria to form biofilms on various surfaces increases 
the risk of contamination, especially in settings such as 
healthcare facilities and food processing industries [51]. 
Despite efforts, devising effective strategies to eradicate 
biofilms remains challenging, and suitable agents for con-
trolling bacterial biofilms are currently lacking [52]. The 
impact of the isolated phages on two XDR A. bauman-
nii isolates embedded in biofilms was assessed. The iso-
lated lytic phage effectively reduced the biofilm content 
of these isolates by up to 68% after 24 h of treatment and 
therefore has the potential to be successfully used as a 
biofilm treatment agent. To improve phage effectiveness 
and more efficiently eradicate bacterial biofilms, bac-
teriophage cocktails, comprising multiple phages with 
varying host ranges and modes of action offer promis-
ing approaches and can expand the host range, and pre-
vent the formation of phage-resistant mutants [22, 53]. 

Additionally, phages can be engineered and combined 
with antibiotics to enhance antimicrobial activity [54]. 
For example, Grygorcewicz et al. recently demonstrated 
that a cocktail of A. baumannii phages, when combined 
with antibiotics, exhibited potent lytic activity in eradi-
cating biofilms in human urine [55].

A critical aspect of this characterization involved the 
analysis of the phages genomes. This comprehensive 
analysis aimed to ensure the absence of resistance genes, 
virulence factors and the inability of the virus to undergo 
lysogenic conversion, as either of these traits would ren-
der it unsuitable for therapeutic use [56]. WGS analysis 
revealed that either of the two phages carried virulence, 
antibiotic resistance, or bacterial toxin-related genes. 
Phages with these characteristics are considered to have 
a low risk of promoting antibiotic resistance, making 
them suitable candidates for treating bacterial infections 
[57]. Additionally, we confirmed that both phages are 
indeed lytic phages with no typical prophage conversion 
genes, such as integrase or repressor genes. However, 
approximately half of the predicted gene products remain 
unidentified. The successful utilization of other phages 
belonging to the Friunavirus genus has been reported 
in phage therapy trials [58, 59] and supports the appro-
priateness of the characterized phages in this study for 
potential application in phage therapy.

An area for extending this study involves testing the 
combination of multiple lytic phages with good host 
ranges and promising antibacterial activity or a combina-
tion of phages with antibiotics to assess their effects on 
MDR and biofilm-producing A. baumannii. Also, future 
research may explore phage-derived enzymes as poten-
tial biological agents to target A. baumannii and its bio-
films. Therefore, the establishment of large phage banks 
containing thoroughly characterized phages is crucial for 
the development of phage therapy in Senegal.

Conclusion
This study suggests that the phages vAbBal23 and 
vAbAbd25 exhibit good heat tolerance and a wide range 
of pH stabilities. They are effective against XDR A. bau-
mannii in both plankonic cells and biofilms. Detailed 
genomic annotation excluded the presence of toxin-
coding genes, antibiotic resistance determinants, and 
other bacterial virulence factors. The results presented 
here support the potential of the phages vAbBal23 and 
vAbAbd25 as therapeutic agents against XDR resistant A. 
baumannii infections.
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