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Diabetic retinopathy is the leading cause of blindness worldwide. It is caused by the abnormal growth of the retinal blood vessels.
Plasminogen activator inhibitor1 (PAI1) is the key growth factor and the inhibition of PAI1 can reduce the angiogenesis. In this
study, currently available inhibitors are taken and tested for the toxicity, binding affinity, and bioactivities of the compounds by
in silico approach. Five toxic free inhibitors were identified, among which N-acetyl-D-glucosamine shows the significant binding
affinity and two of the molecules are having the better bioactivity properties. The molecular optimization of 2-(acetylamino)-2-
deoxy-A-D-glucopyranose and alpha-L-fucose can be used for the treatment of diabetic retinopathy.

1. Introduction

Almost half of the diabetes mellitus patients have the high
risk of diabetic retinopathy. Worldwide, 17 million people are
affected with proliferative diabetic retinopathy [1]. In diabetic
patients, the sugar molecules accumulate in retinal blood
vessels and damage them; sometimes themolecules block the
vessels. Due to this, supply of oxygen and other nutrition to
the retina will be reduced; this condition is called ischemia.
To overcome this situation, the retina will produce new blood
vessels, the process known as neovascularization. But the
newly produced vessels are abnormal and fragile; they leak
fluid into macula, a part of the retina which is responsible
for clear central vision, and cause vision loss [2]. Presently,
laser treatment is in use to treat retinopathy, but it leads to
peripheral vision loss as it burns the retina. The alternative
strategy is to control the expression of the growth factors
which induce angiogenesis.

Plasminogen activator inhibitor1 (PAI1) is one of the
growth factors responsible for neovascularization in diabetic
patients. After ischemia, it is secreted from endothelial cells

[3]. It is reported that inhibition of PAI1 will lead to 53%
reduction in retinal angiogenesis and prevent tumor invasion
and vascularization [4, 5]. In this study, an attempt was made
to identify the better therapeutic inhibitor for PAI1.

2. Materials and Methods

2.1. PAI1 Structure Retrieval andActive Site Identification. The
3D structure of PAI1 was retrieved from Protein Data Bank
(PDB) [6]. To identify the active site of the protein, the depth
and solvent accessible surface area (SASA) were computed
and based on that the probability values are assigned to each
amino acid using DEPTH server [7]. The residue with high
depth and SASA values are likely to form the active site.

2.2. Identification of Inhibitors. The inhibitor compounds
(used as ligands in docking studies) so far identified against
PAI1 protein were collected from various databases, namely,
Human Metabolome Database (HMDB) [8], DrugBank [9],
Pharmacogenomic knowledgebase (PharmaGKB) [10], and
PDB.
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Table 1: Ligand molecules of PAI1 protein.

Database Inhibitor molecules
HMDB Atorvastatin, dimethyl sulfoxide, and simvastatin.

DrugBank Troglitazone.

PharmaGKB
Antidepressants (including amitriptyline hydrochloride, amoxapine, clomipramine hydrochloride, and desipramine
hydrochloride), citalopram, and fluoxetine.

PDB 2,5-Dihydroxy-3-undecyclohexa-2,5-diene-1,4,-dione; 1,2-ethanediol; beta-D-mannose; alpha-L-fucose;
N-acetyl-D-glucosamine; 2-acetylamino-2-deoxy-A-D-glucopyranose; ribose; acetic acid.

2.3. Toxicity Screening. The collected ligand compounds
were screened for toxicity using the online server Tox-
Predict (http://apps.ideaconsult.net:8080/ToxPredict). It esti-
mates the hazard of chemical structures mainly based on
Lipinski’s rule and Cramer’s rule. The molecules which are
having the hydrogen donors ≤ 5, hydrogen bond acceptor ≤
10, molecular mass ≤ 500 daltons, and log𝑃 ≤ 5 are likely to
obey Lipinski’s rule, and Cramer’s rule classifies the chemical
compounds into three classes based on the 33 metabolic
activities.The compounds belonging to class I are of loworder
of toxicity, class II are more innocuous than the other two
classes, and class III are of significant toxicity.

2.4. Docking. Docking calculations were carried out using
interactive molecular graphics programs ArgusLab [11] and
PatchDock [12]. Ligand was placed on a search point in
the binding site which was calculated by DEPTH server; a
set of diverse and energetically favorable rotations was cre-
ated. In ArgusDock, exhaustive search methods for flexible
ligand docking were used to calculate the binding energy.
PatchDock algorithm divided the surface representation of
the molecules into concave, convex, and flat patches. Then,
complementary patches were matched in order to generate
candidate transformations and evaluated by scoring func-
tions. The results were visualized by Molegro Molecular
Viewer (http://www.molegro.com).

2.5. Bioactivity Prediction. The bioactivities of the biologi-
cally significant ligands were predicted by OSIRIS Property
Explorer (http://www.organicchemistry.org/prog/peo/). The
calculations were originally optimized on training sets of
more than 5000 compounds with measured log𝑃 values and
more than 2000 compounds with measured log 𝑆 values. The
drug score ranges between 0 and 1.

3. Results and Discussion

3.1. PAI1 Structure Retrieval and Identification of Active Site.
There are 9 structures with IDs 3LW2, 3Q02, 3R4L, 1C5G,
1DB2, 1DVN, 1DVM, 1LJ5, and 1B3K which are available for
PAI1 in PDB, amongwhich the structure IB3K,which consists
of 4 chains, was selected as it is in active form and is free
frombeing boundwith othermolecules.The active site region
was identified, represented in Figure 1, and the amino acid
composition of the active site is represented in Figure 2.

Figure 1: Active site region of the protein is red in colour.
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Figure 2: Amino acid composition of active site of PAI1.

3.2. Identified Ligand Compounds for PAI1. The inhibitors to
the protein of our interest are listed in Table 1.

3.3. Toxicity Prediction. The toxicity of the molecules, based
on Lipinski’s rule and Cramer’s rule whether they induce
carcinogen or eye irritation, is represented in Table 2.

Based on the lower toxicity, the ligands were filtered
for further studies; the molecules include 2-acetylamino-
2-deoxy-A-D-glucopyranose, alpha-L-fucose, beta-D-mann-
ose, N-acetyl-D-glucosamine, and ribose.

3.4. Docking Study of PAI1 with Selected Ligand Molecules.
The graphical representations of the docking of PAI1 pro-
tein with 2-acetylamino-2-deoxy-A-D-glucopyranose, alpha-
L-fucose, beta-D-mannose, N-acetyl-D-glucosamine, and
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Table 2: Toxicity prediction of the inhibitors of PAI1.

Ligand molecule Obey Lipinski’s rule? Cramer’s rule Carcinogen Eye irritation
Troglitazone Yes Class III No No
Dimethyl sulfoxide Yes Class III No No
Atorvastatin No Class III No No
Simvastatin Yes Class III No No
Citalopram Yes Class III No No
Fluoxetine Yes Class III No No
2,5,Dihydroxy-3-undecyciohexa-2,5-diene-1,4,dione No Class III No No
1,2-Ethanediol Yes Class I No Yes
Beta-D-mannose Yes Class I No No
Alpha-L-fucose Yes Class I No No
N-Acetyl-D-glucosamine Yes Class I No No
2-(Acetylamino)-2-deoxy-A-D- glucopyranose Yes Class I No No
Ribose Yes Class I No No
Acetic acid Yes Class III No No
Amitriptyline hydroxychloride No Class III No No
Amoxapine Yes Class III No No
Clomipramine hydrochloride Yes Class III No No
Desipramine hydrochloride Yes Class III No No

Table 3: Binding energy of 2-acetylamino-2-deoxy-A-D-glucopyranose with PAI1.

Bond Energy Residues involved
Hydrogen −2.5 (kcal/mol) 2.64532 Å (length) Glu 1387
Hydrogen −2.5 (kcal/mol) 2.99992 Å (length) Val 1388
Hydrogen −2.5 (kcal/mol) 2.69638 Å (length) Pro 947

Hydrogen −0.835562
(kcal/mol) 3.43289 Å (length) Ser 1131

Hydrogen −2.5 (kcal/mol) 2.72334 Å (length) Ser 1131
Hydrogen (nondirectional) −13.551 (kcal/mol) —

Steric −71.96 (kcal/mol) (by PLP)
−24.70 (kcal/mol) (by LJ16-6)

Asp 948, Gly 949, Thr 945, Thr 946, Thr
951, Ala 1130, Asn 1135, Asp 1389, Lys 1392,

Pro 1393, Thr 1386, Val 1127, Val 1136

Table 4: Binding energy of alpha-L-fucose with PAI1.

Bond Energy Residues involved
Hydrogen −2.50 (kcal/mol) 2.84262 Å (length) Val 1388
Hydrogen −0.91 (kcal/mol) 3.41776 Å (length) Ser 1131
Hydrogen (nondirectional) −4.04 (kcal/mol) —

Steric −52.65 (kcal/mol) (by PLP)
−17.65 (kcal/mol) (by LJ16-6)

Asp 948, Gly 949, Pro 947, Thr 945, Thr
946, Tyr 951, Ala 1130, Asp 1389, Glu 1387,

Pro 1393, Thr 1386, Val 1127, Val 1136

ribose are in Figures 3, 4, 5, 6, and 7; yellow lines represent
hydrogen bonds, pale blue dots represent hydrogen atom
acceptors, yellow dots represent hydrogen atom donors, red
dots represent positive ions, and dark blue dots represent
negative ions. The corresponding binding energy values are
presented in Tables 3, 4, 5, 6, and 7 and the overall energy of
each inhibitor binding with PAI1 is in Table 8.

3.5. Bioactivity Properties. The bioactivity of the ligands
which are toxic free and having biologically significant
binding affinity is represented in Table 9.

Among the presently identified inhibitors against PAI1,
only five of them, namely, 1,2-ethanediol, beta-D-mannose,
alpha-L-fucose, N-acetyl-D-glucosamine, and 2-(acetylam-
ino)-2-deoxy-A-D-glucopyranose, come under class I of
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Table 5: Binding energy of beta-D-mannose with PAI1.

Bond Energy Residues involved
Hydrogen −1.34 (kcal/mol) 3.05 Å (length) Glu 1387
Hydrogen −0.23 (kcal/mol) 3.51 Å (length) Glu 1387
Hydrogen −2.45 (kcal/mol) 3.11 Å (length) Val 1136
Hydrogen −1.78 (kcal/mol) 3.24 Å (length) Thr 945
Hydrogen −2.50 (kcal/mol) 2.86 Å (length) Tyr 951
Hydrogen (nondirectional) −15.91 (kcal/mol) —

Steric −35.10 (kcal/mol) (by PLP)
−445.37 (kcal/mol) (by LJ16-6)

Asp 948, Gly 949, His 950, Thr 946, Ala
1130, Arg 1134, Asn 1135, Asp 1389, Gln
1126, Lys 1392, Pro 1393, Thr 1386, Val

1127, Val 1388

Table 6: Binding energy of N-acetyl-D-glucosamine with PAI1.

Bond Energy Residues involved
Hydrogen −2.50 (kcal/mol) 2.85 Å (length) Val 1127
Hydrogen −0.21 (kcal/mol) 3.55 Å (length) Ser 1131
Hydrogen −2.50 (kcal/mol) 3.02 Å (length) Ser 1131
Hydrogen −0.90 (kcal/mol) 3.42 Å (length) Tyr 951
Hydrogen −2.50 (kcal/mol) 2.84 Å (length) Pro 947
Hydrogen (nondirectional) −14.54 (kcal/mol) —

Steric −44.44 (kcal/mol) (by PLP)
13.40 (kcal/mol) (by LJ16-6)

Asp 948, Gly 949, His 950, Thr 945, Thr
946, Ala 1130, Asn 1135, Asp 1389, Gln
1126, Glu 1387, Lys 1392, Pro 1393, Thr

1386, Val 1136, Val 1388

Table 7: Binding energy of ribose with PAI1.

Bond Energy Residues involved
Hydrogen −1.02 (kcal/mol) 3.39 Å (length) Val 1127
Hydrogen −2.30 (kcal/mol) 2.57 Å (length) Ser 1131
Hydrogen −2.49 (kcal/mol) 2.59 Å (length) Ser 1131
Hydrogen (nondirectional) −5.82 (kcal/mol) —

Steric −46.01 (kcal/mol) (by PLP)
−17.31 (kcal/mol) (by LJ16-6)

Asp 948, Gly 949, Pro 947, Thr 945, Thr
946, Tyr 951, Ala 1130, Asp 1389, Glu 1387,

Thr 1386, Val 1136, Val 1388

Table 8: The overall binding affinity of ligands with PAI1.

Ligand molecule Binding energy
(kcal/mol)

Area covered
(Å)

N-Acetyl-D-glucosamine −7.83 386.10
2-Acetylamino-2-deoxy-A-D-
glucopyranose −6.03 402.30

Beta-D-mannose −6.00 508.40
Alpha-L-fucose −5.43 283.50
Ribose −5.13 251.00

Cramer’s rule. As 1,2-ethanediol causes the irritation in eye, it
is excluded from the study.The remaining ligand compounds
are used for further study.

Thedocking results showed thatN-acetyl-D-glucosamine
is highly biologically significant followed by 2-(acetylamino)-
2-deoxy-A-D-glucopyranose, beta-D-mannose, alpha-L-fuc-
ose, and ribose in decreasing order. The above five molecules
are toxic free and can bind with PAI1, but the bioactivities of
the compounds revealed that 2-(acetylamino)-2-deoxy-A-D-
glucopyranose and alpha-L-fucose are having the property of
druglikeness at moderate level; the rest cannot be used for the
purpose of drug.

4. Conclusion

For the known inhibitors of PAI1, toxicity, binding affinity,
and bioactivity were predicted computationally. There were
five molecules identified; moreover they have the feasible
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Table 9: Bioactivity of the selected ligands of PAI1.

Ligand 𝑐log𝑃 Solubility Molecular weight Druglikeness Drug score
2-Acetylamino-2-deoxy-A-D-glucopyranose −1.63 −0.15 191.01 −0.50 0.67
Alpha-L-fucose −1.63 −0.15 101.00 −0.56 0.67
Beta-D-mannose −3.5 0.42 312.00 −5.08 0.38
N-Acetyl-D-glucosamine −2.3 −0.02 221.00 −3.05 0.5
Ribose −1.3 −0.06 134.00 −5.68 0.4

Figure 3: Binding of 2-acetylamino-2-deoxy-A-D-glucopyranose
with PAI1.

Figure 4: Binding of alpha-L-fucose with PAI1.

binding affinity with PAI1 as well. As the molecular weight
of N-acetyl-D-glucosamine and beta-D-mannose is higher
and 𝑐Log𝑃 value is higher for ribose, there is a least priority
to these compounds to be used as drug. The molecules
2-(acetylamino)-2-deoxy-A-D-glucopyranose and alpha-L-
fucose were identified as better therapeutic inhibitors to PAI1
than other molecules used in this study. Due to the toxic
free nature and significant binding energy, this study can be
extended at clinical level. For the efficient and quick treatment
level, they should be structurally optimized as the drug score
of the identified two molecules was moderate.

Figure 5: Binding of beta-D-mannose with PAI1.

Figure 6: Binding of N-acetyl-D-glucosamine with PAI1.

Figure 7: Binding of ribose with PAI1.
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