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As a convenient device for observing neural activity in the natural environment, portable EEG technology (PEEGT) has an
extensive prospect in expanding neuroscience research into natural applications. However, unlike in the laboratory environment,
PEEGT is usually applied in a semiconstrained environment, including management and engineering, generating much more
artifacts caused by the subjects’ activities. Due to the limitations of existing artifacts annotation, the problem limits PEEGT to take
advantage of portability and low-test cost, which is a crucial obstacle for the potential application of PEEGT in the natural
environment. ,is paper proposes an intelligent method to identify two leading antecedent causes of EEG artifacts, participant’s
blinks and head movements, and annotate the time segments of artifacts in real time based on computer vision (CV). Fur-
thermore, it changes the original postprocessing mode based on artifact signal recognition to the preprocessing mode based on
artifact behavior recognition by the CV method. ,rough a comparative experiment with three artifacts mark operators and the
CVmethod, we verify the effectiveness of the method, which lays a foundation for accurate artifact removal in real time in the next
step. It enlightens us on how to adopt computer technology to conduct large-scale neurotesting in a natural semiconstrained
environment outside the laboratory without expensive laboratory equipment or high manual costs.

1. Introduction

Electroencephalography (EEG) has been proved to be a
useful methodological tool for understanding brain activi-
ties, including the processes of perception, cognition, and
decision, which are the basis of daily behaviors, business, and
engineering activities.

With the great attention to human decision-making and
the recognition of limitations of traditional psychological/
self-reported driven approaches [1–4], the neuromanage-
ment on revealing the mechanism of human’s behavior and
decision-making based on brain imaging technology is

promoted [5–7]. However, due to the high cost of pur-
chasing and maintaining neurometric equipment and the
complex operation and data analysis mode, brain technol-
ogies are limited to the laboratory environments and hin-
dered from becoming widespread.

Neurophysiological measurements initially rely on high-
cost equipment, complex systems, and many professional
operations (e.g., measuring the size of the head, marking the
position of electrodes on the scalp, placing electrodes on the
scalp, and using conductive glue). Benefiting from the de-
velopment of portable EEG technology (PEEGT), devices
become cheaper and smaller, such as single-electrode
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NeuroSky MindWave, four-electrode Muse, and fourteen-
electrode Emotiv. What is more, with simple preparation,
EEG data are collected through the wireless network. ,e
PEEGT devices are suitable for nonclinical studies with
better interactive experiences [8]. Nowadays, more andmore
research and commercial applications use PEEGT as a
measurement tool. ,e utilization of PEEGT significantly
expands the application of neurophysiological measure-
ments and dramatically increases the practicability of
neurometric equipment, such as in marketing [5], man-
agement [9], education [10], and engineering [11].

,e PEEGT effectively reduces the threshold of the ex-
perimental environment in business and management sit-
uations. It is especially suitable for the volatile, uncertain,
complex, and ambiguous (VUCA) environment. It makes
large-scale and long-time neurophysiological measurements
at the lowest cost possible. Moreover, subjects are allowed to
have slight movements in position during a long-lasting
experiment, for example, adjusting sitting or head posture
like in a natural situation; we called this the semiconstrained
environment. ,e semiconstrained environment is different
from a constrained environment where subjects in the
laboratory are under strict restrictions on autonomous ac-
tivities.,ere is also a distinction between a semiconstrained
and unconstrained environment where subjects have sig-
nificant activity freedom. Nevertheless, fewer experimental
restrictions in semiconstrained and unconstrained envi-
ronments bring more artifacts by physical activities, which is
difficult for artifacts operation.

Annotation of artifacts is a prerequisite for removing
artifacts and EEG analysis. Existing methods of artifact
annotation face the tradeoff between testing convenience
and annotation accuracy, making it inapplicable in daily
business scenarios where there are high requirements for
both the convenience of collection and the accuracy of
artifact annotation. ,e methods relying on additional
reference signals or biological signal equipment are not
applicable for the daily context that needs PEEGT. In
contrast, methods relying onmultiple algorithms have a long
computing delay and are less accurate than methods with
additional reference signals. Last but not least, most existing
methods can only be used in postacquisition or offline
settings, but real time is an essential demand of artifact
annotation in business scenarios.

Considering existing methods, effectively annotating
artifacts generated from physical activities usually requires
manually annotating artifacts in postacquisition offline
settings, which is extremely time-consuming and dependent
on the data operator’s expertise level. What is worse, to
ensure the accuracy of the testing results and meet the re-
quirements of business scenarios, tests with PEEGT usually
need a larger sample size, a longer test time, and a more
uncertain test environment. In a word, it is a great challenge
to apply neuroscience in scenarios emphasizing “natural”
due to the lack of adequate and suitable artifact processing
technology. ,e artifact problem limits PEEGT to take
advantage of portability and low test cost, which is a crucial
obstacle for the potential application of PEEGT in the
natural environment. It is worth noting that a challenge also

exists in the laboratory EEG test, but the traditional ex-
periment has more reference equipment assistance andmore
processing time. ,erefore, in most laboratory cases, the
limitation can be arranged by investing more resources.

Intelligent algorithms in computer vision (CV) bring
new possibilities to solve the above difficulties. ,is article
proposes one intelligent computing method on real-time
portable EEG artifact annotations with computer vision,
which changes the original artifact postprocessing mode
based on signal recognition to the artifact preprocessing
mode based on behavior recognition. It is especially suitable
for artifact problems in semiconstrained environments in-
volved in most real scenes in engineering and management.
Besides, it provides the foundation for the subsequent ar-
tifact intelligent removal by the machine learning algorithm.

Our main contributions can be summarized as follows:

(1) We introduce a thought about changing the original
signal recognition-based artifact postprocessing
mode to the artifact preprocessing mode based on
behavior recognition by the computer algorithm,
making it possible to process artifacts in real time
using only a camera instead of additional expensive
neurological equipment and amounts of manual
processing.

(2) We propose an intelligence method based on
computer vision to automatically annotate the time
segments and categories of artifacts caused by blinks
and head movements in real time, which is of great
importance for the large-scale application and real-
time analysis of PEEGT and traditional EEG.

(3) We suggest a procedure about how to use large-scale
neurological measurement in business and man-
agement scenarios with fewer restrictions on sub-
jects’ physical activities. ,e method ensures that the
artifacts caused by the physical activities in blinks
and head movements can be annotated in real time,
which greatly expand neuroscience research into real
applications environment including engineering and
management.

2. Literature

2.1. EEG Artifacts. Electroencephalogram (EEG) is a stan-
dard method of measuring human brain activities that
change over time in the form of electrograms. EEG data has
shown great potential in research and commercial appli-
cations. It can be used as a diagnostic and monitoring tool
for clinical applications, such as quantifying anesthesia levels
before and during surgery [12], and film and advertising
evaluation, such as film and television effect research [13].
However, there are many inherent challenges in EEG
analysis, specifically the removal of various artifacts.

Generally, the artifacts of the EEG signal are mainly from
the physiological activities of the participant and the ad-
ditional noise artifacts introduced by the EEG acquisition
instrument. ,e latter can be reduced or even eliminated by
improving the operating performance of the EEG signal
acquisition instrument. However, bioelectrical signals
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generated by physiological activities are inevitably hidden in
the EEG signals or even submerged in the EEG signals,
which seriously affects the authenticity of the EEG signals
and complicates the research work of feature extraction and
EEG signal analysis. Blinks and head movements are two
kinds of major signal artifacts. As a result, the research work
of feature extraction and analysis of the EEG signals becomes
complicated.

Figure 1 [14, 15] shows typical artifact waveforms with
obvious and common interference to EEG signals. ,e blink
artifact is generated by blinking eyes, while the head
movement artifact is generated by head rotation or
movements.

2.2. EEG Artifacts Annotation Methods. EEG artifact an-
notation has always been a challenge in the EEG signals
analysis process. Challenges come from the complexity of
the method and the nonlinearity of the noise. For example,
due to the “nonlinear” nature of the artifact, it is difficult to
annotate the artifacts from the original EEG data without
affecting the normal signal. In addition, some methods
cannot be used for real-time applications. Until now, al-
though researchers have been exploring lots of EEG artifact
annotation methods, there is still no consensus on which
algorithm is most suitable for a specific application.

In general, there are two categories of EEG artifact
annotation methods: direct labeling of artifacts and indirect
separation of artifacts [16].

2.2.1. Direct Labeling of Artifacts. Direct labeling of artifacts
refers to annotating artifact signals in real time when EEG
signal is collected. However, it requires additional reference
signals from reference electrodes channels or additional
biological monitoring equipment. Li et al. [17] adopted
additional channels of real EMG from neck and head
muscles as input and realized the significant separation of
EEG and EMG artifacts without losing the underlying EEG
features. Mannan et al. [18] realized the simultaneous col-
lection of EEG and EOG signals by adding the channels of
EOG electrodes and combined independent component
analysis (ICA), regression, and high-order statistics to
identify and eliminate artifactual activities from EEG data. In
terms of adding monitoring equipment, König et al. [19]
used a laboratory-level eye tracker to annotate blink and eye
movement artifacts in the constrained environment.
Compared with the traditional manual artifact annotation,
adding reference equipment has dramatically improved the
accuracy and efficiency. Nevertheless, additional channels
cause the additional possibility of artifacts. On the other
hand, the additional expensive and complicated laboratory
equipment will increase the burden of operators and par-
ticipants and the terms of the test environment.

2.2.2. Indirect Labeling of Artifacts. Indirect separation of
artifacts refers to separating the mixed signals by multiple
integrated algorithms without the reference electrodes or
monitoring equipment. Jan et al. [20] improved the ICA

method to better artifact removal. Chang et al. [21] used
artifact subspace reconstruction (ASR) to preprocess EEG
data and, combined with the ICA separation method, greatly
improved the accuracy of artifact removal. Indirect sepa-
ration of artifacts avoids extra electrodes, making it con-
venient in the test environment and reducing the extra noise.
However, the method needs to integrate a variety of algo-
rithms, increasing the algorithm’s complexity and reducing
the artifact annotation’s real-time performance. Moreover,
due to the lack of reference supervision of the artifact signals,
the accuracy of the indirect artifact annotation is generally
lower than those of the direct methods.

Although the two above-mentioned methods for artifact
annotation have made explorations from different directions
and achieved good results, they are based on sacrificing one
aspect to improve the other, making it hard to apply in daily
business scenarios. More specifically, the direct labeling of
artifacts achieves better accuracy of artifact annotation with
additional reference electrodes and laboratory equipment at
the cost of the convenience in equipment operation and the
comfort of participants. In contrast, the method of indirect
separation of artifacts achieves more convenient signal ac-
quisition with integrated algorithms at the cost of the ac-
curacy of artifact annotation. Because the scenarios of daily
business have high requirements for both the convenience in
signal acquisition and the accuracy of artifact annotation,
methods used in these scenarios should not only simplify the
test environment and ease participant’s test burden but also
ensure the accuracy of artifact annotation and take the real-
time requirements into account.

2.3. Semiconstrained Environment. In neuroscience, re-
search and experiments are conducted in two kinds of
settings, laboratory settings and nonlaboratory settings. A
laboratory test environment is carefully designed, in which
researchers and participants need to follow strict restrictions
and guidelines. Usually, other experimental settings outside
laboratories are nonlaboratory settings. However, in most of
the research articles, researchers either directly employ the
term without further clarification [22] or use nonlaboratory
settings to refer to a relatively broad idea [23]. For example,
experiments conducted in the unattended home [24] and
observational studies conducted in a community [25] are
different in settings, but both are referred to as
“nonlaboratory.”

In the past literature, scientists did not specify how to set
up neurological devices in conditions other than a labora-
tory. It is an unexpected gap in neural experiments. In many
cases, it is unrealistic to keep participants motionless in a
place with no distraction, especially in the natural envi-
ronment using PEEGT.,erefore, to provide a more precise
scope to clarify the application of our methods and algo-
rithms, we define a term in our paper, a “semiconstrained
environment,” compared to a fully attended laboratory and
an unattended natural setting. A semiconstrained envi-
ronment describes an experimental setting where partici-
pants are required to wear a device; however, the research
does not propose a highly restricted demand on participants
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(such as zero movements at all during measurement) since it
is not always available to set up a lab-based environment.

3. Methodology

3.1. Method Proposed. In traditional EEG signal artifact
processing without additional reference equipment, ex-
perienced signal processors must manually mark the ab-
normal signal period in the test signal after completing
signal preprocessing, such as band-pass filtering. Usually,
such an operation needs to be repeated 10–20 times for
each subject, and more marks lead to a better operation
effect. ,en, the unique signal processing software will use
algorithms such as ICA to automatically remove similar
artifact signals according to the manually marked signal
form. ,is method requires a long time and high personnel
investment. In principle, such a manual postmarking and
removal algorithm cannot ensure accuracy, and there is a
certain degree of fuzzy space, even if it is existing in
common practice.

In this paper, CV is introduced into neurological ex-
periments. It can detect subjects’ behaviors simultaneously
during the experiment and mark the events that may pro-
duce artifacts from the source shown in Figure 2. ,us, it
improves the real-time performance of artifact processing,
avoids the later manual investment, and makes artifact
marking no longer an ambiguous activity based on
experience.

3.2. Process. ,e key to accurate artifact annotation in a
semiconstrained environment is timely identifying the
most common participants’ physical activities that may
cause artifacts, for example, blinks and head movements. In
this paper, a method for annotating blink and head
movement artifacts with computer vision in daily business
scenarios is proposed, which meets requirements under
this semiconstrained environment to a great extent. ,e
method is shown in Figure 3. Firstly, it is necessary to
collect the participants’ initial state and calibrate the al-
gorithm. Specifically, the subjects’ eye-closing threshold is
collected to measure blinking state during the test, and the
subjects’ initial sitting orientation is for the measurement
of head movement state. Notably, the initialization of
PEEGT equipment and standard commercial high-defini-
tion cameras, unlike the cumbersome operation of lab eye-

tracking equipment, performs the initial state check and
calibration only to ensure the equipment availability and to
collect the initial eye and head positions of the subjects.

Next, the PEEGT equipment and camera are used to
synchronously collect participants’ facial signals and EEG
signals in real time. ,e blinks and head movements are
detected with computer vision based on facial feature
points. It is critical to note that the original EEG signals are
downsampled in sync with the facial signal. Finally, the
facial and the EEG signals in the same time series are
analyzed and processed with the same analysis frequency.
,e EEG signals with blink and head movement artifacts
are annotated.

,e site-setting of the method is shown in Figure 4; the
participant is wearing PEEGT devices and looking at the
screen. In a semiconstrained environment, the participant
can adjust his or her posture during the experiment. ,e
camera ensures that head activity can be entirely recorded.
Based on the computer algorithm with supervised real time
and synchronization, the method can annotate the time
segments of blinks and head movements that cause EEG
artifacts.

3.3. Recognition Algorithm

3.3.1. Facial Feature Points Positioning. As mentioned
above, the recognition algorithm first needs to collect the
participant’s facial signals and then monitor facial condition
according to the specific facial features. ,e purpose of facial
feature points positioning is to further define facial feature
points (facial features and edge). ,e algorithms collect the
baseline values of participants before the test, and the col-
lected data and standards are unified. ,erefore, the judg-
ment threshold has corresponding calculations and
standards for people of different face types.

,e methods of facial feature point positioning can be
categorized into the global method, the constrained local
model (CLM) method, and the regression method, based on
detecting face appearance and face shape information. ,e
global method is to model the global face appearance and
global face shape information explicitly [26]. ,e CLM
explicitly models the local face appearance and the global
face edge information [27]. ,e regression method uses
global and local appearance information to implicitly embed
global shape information for joint feature point detection

(a) (b)

(c)

Figure 1: Typical artifact waveforms [14, 15]. (a) Clean EEG. (b) Blink artifact. (c) Head movement artifact.
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[28]. Generally, the regression method performs better
because it contains more information compared to the other
two. One representative algorithm of the regression method
is Ensemble of Regression Trees (ERT) [29]. ERT is often

used in facial feature point positioning because it is swift
(it takes about 1ms to detect each facial feature point) and
can deal with the missing calibration of some key points in
the training set.

This Paper
Method

The Traditional
Method

The activity
of subject

EEG artifactEEG artifact

Automatic
artifact annotation

based on
computer vision

Artifact removalArtifact removal

Manual
artifact annotation

based on signal waveform
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STEP 3
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Removal
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Figure 2: ,e proposed method.
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Wink and head movement artifacts annotation

Artifact-annotated EEG signal
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Figure 3: Method of EEG artifact annotation with supervised computer vision.

PEEGT

Screen

Camera
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Figure 4: ,e site-setting of blink and head movement artifacts annotation with supervised computer vision.
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,e method in this paper uses the ERT algorithm to
position 68 key feature points (as shown in Figure 5) of each
face within 1ms through three steps: shape invariant split
tests, choosing the node splits, and feature selection pro-
posed by Kazemi and Sullivan [29], which can estimate the
face’s landmark positions directly from a sparse subset of
pixel intensities, achieving super-real-time performance
with high-quality predictions. ,e pseudocode for this
program is as follows (Algorithm 1).

def face_landmarks ():
predictor� dlib initializes shape_predictor

(“shape_predictor_68_face_landmarks.dat”)
# cv2 is the OpenCv library
cap� cv2 gets the first camera of the machine
while (cap is opened):

flag, im_rd� cap.read () builds 3D matrix
img_gray� cv2.cvtColor (im_rd,

cv2.COLOR_RGB2GRAY)
faces� detector (img_gray)
for k, d in enumerate (faces):

shape� predictor (im_rd, d)
END face_landmarks

,e implementation display of the recognition effect in
the practical example of this method is shown in Figure 6.

3.3.2. Blink and Head Movement Detection

(1) Blink Detection. In Subsection 3.3.1, basic facial in-
formation and 68 key feature points of each face are po-
sitioned. In the method proposed, a participant’s blink is
detected by analyzing the closure degree of the eye region
(six feature points forming a closed ellipse), as shown in
Figure 7.
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Eye Aspect Ratio (EAR) is equal to the sum of the lengths
of two vertical line segments divided by the double length of
horizontal line segments. ,e EAR stands for the state of
eyes’ opening and closing, and pi is one of the 68 feature
points forming the eye region (as shown in formula (1)).
Research shows that EAR can approach zero at the moment
of closing eyes and return to the original value when opening
eyes [30]. Bymonitoring whether the value of EAR fluctuates
rapidly and approaches zero in real time, this method can
identify whether the participant’s eyes are closed. However,
the threshold for blink detection is undefined in this method,
introducing noises in the natural environment. ,erefore,
considering the sampling rate of CV, this paper monitors the
blink state by setting the base value before measurement.
,at is, the data of eye-closed state for 1 minute before the
test are collected, and the blink detection threshold
Blinkthreshold based on its average value is defined:

Blinkthreshold �
1
N

􏽘

N

i�1
Bi. (2)

In the above equation, N represents the number of samples
in 1 minute. Since the sampling rate of CV is 25,N� 1500. Bi

is the data of eye-closed state collected at the ith time. After
collecting and calculating the blink detection threshold
Blinkthreshold, blinks are detected according to the value:

EARper_second � min EARp􏼐 􏼑,

Blinkstatus �
1, if EARper_second ≤ Blinkthreshold,

0, if EARper_second > Blinkthreshold,

⎧⎨

⎩

(3)
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Figure 5: 68 key feature points of each face.
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where EARper_second is the minimum value of EAR in each
cycle. If EARper_second is less than or equal to Blinkthreshold, it is
determined that there is blinking action within 1 second. If
EARper_second is greater than Blinkthreshold, it is determined
that there is no blinking action within 1 second. ,e
pseudocode for this program is as follows (Algorithm 2).

def face_ear ():
if obtain 68 feature points of the face:

ear_r_list.append (ear_r), ear_l_list.append
(ear_l)

ear_r_status, ear_l_status� 0
If N� � 25:

ear_r_persecond�min(ear_r_list),
ear_l_persecond�min(ear_l_list)

ear_r_list.clear, ear_l_list.clear
If ear_r_persecond≤

blink_r_threshold:
ear_r_status� 1

else:
ear_r_status� 0

If ear_l_ persecond≤
blink_l_threshold:

ear_l_status� 1

else:
ear_l_status� 0

return ear_r_status, ear_l_status
else return null

END face_ ear

(2) Head Movement Detection. Head movement (HM) de-
tection is related to face orientation. In facial feature point
positioning, 68 key feature points, including eyes and nose,
are extracted from each facial image. In this paper, we refer
to the center points of the eyes and nose to define the face
orientation coordinates [31].

In (2), the eyes and nose have been correctly posi-
tioned. ,e three facial feature points determine an
isosceles triangle by connecting lines between the three
points. Considering the symmetry of the face, we can
calculate the angle between the plane of the isosceles
triangle and the image plane to determine the gaze di-
rection. If one side of the triangle is located on the image
plane, it is easy to calculate the angle of the gaze direction.
,e judgment of facial orientation is realized through the
calculation of trigonometric function, as shown in
Figure 8.

,e triangle ABC is the projection of the isosceles tri-
angle ABE on the image plane, which means that if the

(a) (b) (c)

Figure 6: ,e implementation display of recognition effect.

CLOSE

Figure 7: Method of blink detection.
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person in the picture looks straight ahead, the projection
triangle will coincide with the isosceles triangle. ,e triangle
CDE is located on the plane perpendicular to the image plane
and isosceles triangle plane. If θ is the angle between line α
and line β and ϕ is the angle between the image plane and the
isosceles triangle plane, then

cosϕ �
|CD|

|DE|
,

|CD| � |AC|sin θ, |AD|

� |AC|cos θ,

(4)

cos ϕ can be calculated by trigonometric function as
follows:

cos ϕ �
|AC|sin θ

����������������

|AB|
2

− |AC|
2cos2θ

􏽱 . (5)

,erefore, determining the direction of the sight is to see
how the isosceles triangle is projected on the image plane:
the maximum distance from the eye to the mouth reveals the
direction of the human gaze. After obtaining the partici-
pant’s gaze direction, the attention direction is recorded,
while the lateral (HM) of the participant is identified
according to point A’s coordinates.

Similarly, for head nodding, it is calculated as follows:

d � p27 − p30
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (6)

di is obtained for each segment of detection. ,us,

D′ � Median d1, d2, d3, . . . , dN􏼈 􏼉. (7)

N� 1500 represents the number of samples in 1 minute.
,en,

ϕ′ �
|D − D′|

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

D′
∗ 90. (8)

In the above equation, ϕ′ is the angle at which the subject’s
head is nodding, ranging from 0 to 90°.

In addition, participants sit on the designated spot
during the test in a semiconstrained environment and
cannot move back and forth smoothly. ,erefore, the above
two detection conditions can meet the detection marks of

most HM artifacts, and the HM can be estimated by the
angle difference between the two moments.

Instead of judging the absolute HM angle of the par-
ticipant, the proposed method calculates the relative HM
angle change in EEG artifact annotation.

,erefore, it is necessary to have

ψ �
1
N

􏽘

N

i�1
∅i,

∅relative � ψt − ψt− 1,

Headstatus �

0,∅relative ≤ 10°,

1, 10° <∅relative ≤ 30°,

2, ∅relative > 30°,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where ψ is the real-time HM angle of the participant
relative to the right ahead direction in a sampling period.
∅relative refers to the change of the HM angle of the
participant in the current second relative to the previous
second. If ∅relative is less than 10°, it is judged to be rel-
atively static and counted as 0. If∅relative is greater than 10°
and less than 30°, it is judged as a micro-HM and counted
as 1. If ∅relative is greater than 30°, it is judged as a distinct
HM and counted as 2. Head vertical and horizontal
movements are calculated separately and Headstatus de-
pends on the bigger one. ,erefore, HM artifacts are
detected and marked as different levels in the EEG artifact
annotation.

,epseudocode for this program is as follows (Algorithm3).

def face_angle ():
if obtain 68 feature points of the face:

head_angle_list.append (angle)
current_angle� angle
If N� � 25:

head_change� current_angle–last_angle
If head_change≤ 10:

head_status� 0
else if 10< head_change≤ 30:

(a)

A

D

B

E

C
α

α β
θ

Φ

(b)

Figure 8: Facial image (a) and projection isosceles triangle model (b).
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head_status� 1
else:

head_status� 2
head_angle_list.clear
return head_status

else:
last_angle� angle

else:
return null

END face_ angle

3.4. EEG Artifact Annotation with Supervised Computer
Vision. ,e process of blink and head movement artifacts
annotation with supervised computer vision is shown in
Figure 9. Firstly, the participant’s facial and EEG signals are
collected synchronously and in real time. ,en, the blink
detection algorithm is used to determine whether the blink
action occurs. If there is a blink, the EEG signal in this state is
annotated. ,en the head movement algorithm, which
determines whether a head movement occurs, is activated. If
there is no head movement, the blink artifact is identified. If
there is a head movement, the EEG signal in this state is
annotated, and the head movement and blink artifacts are
both identified.

It should be noted that the time window of the above
process is 1 second. In a semiconstrained environment
where tests generally take a long time, the 1-second time
window can significantly reduce the time complexity and
space complexity of data processing if enough EEG signals
are retained and improve the efficiency of the whole test
process. Real-time feedback also plays an important role in
meeting the diverse business application needs.

3.5. Method Implementation. Firstly, in algorithm imple-
mentation, we use Python 3.0 as the primary develop-
ment language, and the development tool is PyCharm.
,e tool libraries used in the system development are
Dlib, OpenCV, math, and NumPy. Specifically, Dlib is
mainly used for face recognition and feature point la-
beling, OpenCV is mainly used for image processing and
generation, math is used for mathematical algorithm
calculation, and NumPy is used for feature point data
processing.

,rough the implementation, we verify the feasibility of
the above method. In the example, we set the test envi-
ronment and CV systems as in Figure 4 and performed the
EEG acquisition for 24 seconds. In order to ensure the
sensitive and accurate acquisition of EEG signals, we used
the laboratory EEG equipment (ANTeegoTMmylab) instead
of PEEGT to measure the example.

,e model (by the author team) carried out four ac-
tivities: blinking twice, towards two directions, and head
movements twice, once slight and once severe. ,e imple-
mentation results indicated that all the activities were
captured with the methods. All the artifacts were marked
simultaneously by the 1-second time window, as demon-
strated in Figure 10.

4. Experiment

4.1. Experiment Design and Participant. We designed the
experiment to verify whether the proposed intelligent
computing method effectively recognizes and annotates the
subject’s activities in an authentic test environment.

,e experiment recruited one participant that watched
TV reality show programs for 15 minutes wearing PEEGT
equipment and the test site-setting as in Figure 4. In the
semiconstrained environment, the participant was not told

Synchronously collect real-time
facial signal and EGG signal

Collected?

Blink?

Detect blink

Annotate blink artifact

Detect head movement

Annotate head movement artifact

Artifact identification

End

Head move?

N

Start

Y

Y

Y

N

N

Figure 9: Process of EEG artifacts annotation with supervised computer vision.
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the requirement of body movement restriction, and no one
else was present during the experiment. ,e camera above
the screen recorded the participant’s head movements and
blinks. ,e experimenters were observed through one-way

glass and real-time system data. ,e scene picture is shown
in Figure 11.

,ree observers with EEG artifact processing experience
watched the recorded video. ,ey manually marked the

Head movement
(Severe)

Blink
(Slight lateral view)

Blink
(Front view)

Head movement
(Slight)

1 Second

1 Second

1 Second 1 Second

24 Second0 Second

HM-2

HM-1 BLINK -500 µV

5 sEEG data scale bar

BLINK

Figure 10: ,e example of the method implementation.

Figure 11: ,e experiment scene.

CV

Observer C

Observer B

Observer A

RV

(a)

CV

Observer C

Observer B

Observer A

RV

(b)

Figure 12: ,e original results of the experiment.
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participant’s activity in the video, including blinks (left eye,
right eye, and two eyes) and head movements (slight: ro-
tation or tilt more than 10° and less than 30°; severe: rotation
or tilt more than 30°). To simulate a large-scale artifact
process task, the three observers perform a 30-minute ir-
relevant annotating task before the labeling task of this
experiment. ,e participant’s video is played at normal
speed during the annotating process, and backward progress
is not allowed.

,e experimental team also manually marked the par-
ticipant’s movements as the reference value to ensure the
accuracy of the marking. If necessary, the video can play
slowly and repeatedly. For operability, the time granularity
of all manual marking is 1 second.

4.2. Experiment Result. ,e activity markers of the partic-
ipant were compared among the CV, three observers, and
the reference value (RV, by experiment team). ,e original
mark results are shown in Figure 12. ,e statistical result is
shown in Table 1.,e time granularity of all manual marking
is 1 second, so the total represents 900 seconds, and each row
has 900 horizontal grids in Figure 12. Note that the blinks
here only refer to the ones detected by naked eyes.

5. Discussion

Overall, the experimental results show that the CV method
in this paper got an ideal achievement, including sensitivity,
specificity, and detection number. Moreover, the CV
method has the advantages of real time and low cost.

For blink annotation, in general, the frequency of blinks
correctly identified by the CV method is higher than that by
the manual method, and the frequency of missed detections
is lower under the close sensitivity and specificity. It is
difficult for manual marking to maintain a high concen-
tration and to notice the instant blink event for a long time,
even with relevant data processing experience. In addition,
the fuzziness of the human brain in judging events in un-
structured data such as video will also lead to errors and
omissions. ,e above reasons explain why the traditional
artifacts processing cannot be applied to the business large-
scale and long-time semiconstrained environment of
PEEGT.

On the other hand, as for the CV method used in this
experiment, the frequency of errors is slightly higher than
that in the manual method in blink detection, which is due
to categorizing the subject’s eye-drooping activity as a blink
event. From the perspective of bioelectrical signal inter-
ference, blinks and eye-drooping are the same. However, it
is shown that even if the facial feature points can be
captured all the time, the CV still has the possibility of
recognizing some activity events incorrectly. Nevertheless,
by optimizing the model, the false detection rate can be
controlled, fully competent for the artifacts annotating
long-time continuous EEG signal acquisition. In addition,
there may be subtle differences between frequencies of two
eyes’ blinks in the CV method that independently detects
binocular activity, which is distinguished from the

observer’s overall observation style. ,us the difference
may be more significant for participants with greater eye
size differences. However, in large-scale and long-term
tests, the influence of the above slight differences is almost
negligible, especially in a semiconstrained test
environment.

For headmovements, the results are similar to the blinks.
,e CV recognition shows a significant advantage in effi-
ciency, effectiveness, sensitivity, and specificity close to
manual marking. ,en it shows the great advantage of in-
telligent computing in a long-term mechanical task, and the
method proposed in this paper is effective.

6. Conclusion and Future Work

,e method proposed by this paper changed the original
artifact postprocessing mode based on signal recognition to
the artifact preprocessing mode based on behavior recog-
nition by CV, which combined and optimized three efficient
computer recognition algorithms. ,e paper also proved the
method’s effectiveness in the experiment. ,rough real-time
monitoring of the participant’s facial signals, the intelligent
system can identify two main antecedent causes of the EEG
artifacts, participant’s blinks and head movements, and
annotate the artifacts’ time segments in real time. In a
semiconstrained environment where PEEGT is generally
used, the intelligent computing methodmakes PEEGT break
through the current application bottleneck limited by arti-
facts, which meets the needs of processing large-scale test
data with low cost and simple operation demands. ,e
method introduces a new perspective to neurophysiological
measurements. It utilizes the algorithm with a readily
available commercial camera instead of expensive laboratory
equipment or/and high manual costs. In addition, it en-
lightens us on conducting large-scale testing in a semi-
constrained environment outside the laboratory.

,e innovation of introducing the CV method into
neurophysiological measurements is noteworthy:

(1) We proposed a new idea of detecting behavioral
artifacts in EEG signals in real time. ,erefore, the
paper focuses on introducing the panorama of the
method instead of the advantages of specific
algorithms.

(2) Most of the machine learning algorithms in neu-
roscience and behavioral science run offline, but real-
time detection is the innovation that the paper
emphasized; and scenarios described in the paper are
not the same as offline artifact mark recognition and
thus are not comparable.

(3) We believe that interpretability is essential for a new
method, and the algorithm black box is not con-
ducive to trust and accept the innovation.

However, machine learning can effectively recognize
blinking, head movement, and other behaviors in real time.
,us, in the specific recognition algorithms, we chose the
method of logical judgment by feature points and achieved
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ideal detection results. Nevertheless, with the acceptance of
this method and continuous optimization of the algorithm,
intelligent methods will be applied on a larger scale. ,e
accuracy of the CV method will be promoted, which is the
fundamental advantage of the algorithm compared with the
manual annotation.

On the other hand, the efficient and accurate annotation
of artifacts caused by the subject’s activities is the critical
precondition step for intelligent artifacts removal. ,e al-
gorithm can accurately capture the individual physiological
activity differences among participants in the same actions,
such as blinks, thanks to the CV method. ,us, the su-
pervised machine learning algorithm can be based on the
individual differences for more accurate individual artifact
removal and correcting, which will greatly improve the
accuracy of EEG artifact signal processing.,at is the goal of
the next stage of this paper. In the future, it will be critical for
PEEGT to start large-scale commercial applications in more
complex experimental environments, such as the engi-
neering management, the effects of film and television
programs, advertising research, information flow research,
aroma cognition test, and game interaction test.
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